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Abstract: To predict the fate of groundwater contaminants, accurate spatially 

continuous information is needed. Because most field sampling of groundwater 
contaminants are not conducted spatially continuous manner, a special estima­

tion technique is required to interpolate/extrapolate concentration distributions 

at unmeasured locations. A practical three-dimensional estimation method for 

in situ groundwater contaminant concentrations is introduced. 

1 INTRODUCTION 

Groundwater contamination is an important environmental issue. Researchers 
have conducted extensive field experiments to analyze geophysical, chemical 
and biological processes that control the fate and movement of groundwater 
contaminants [1 ,3 ,4 ,9, 11 ,12). In order to describe and predict underlying phys­

ical, chemical and biological processes affecting chemical fate and transport, ac­
curate spatially continuous information is needed. Because most field sampling 

for arbitrary values of the coupling parameter a. 
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of groundwater contaminants are not conducted spatially continuous manner, 
a special estimation technique is required to interpolate/extrapolate contam­
inant concentration distributions at unmeasured locations. These interpola­
tions/extrapolations are complicated by uncertainties often associated with an 
unknown distribution of contaminant fluxes in space and time reflected in a 
complex velocity field within a heterogeneous aquifer. 

Many geostatistical techniques have been developed for estimating geophys­
ical/chemical parameters and groundwater contaminant concentrations (see, 
for example, [2,5,6,7,10] and references there in). But, application of these 
estimation methods to groundwater contaminant data often fail to obtain sat­
isfactory results because methods are based on the geostatistical intrinsic as­
sumptions [10], and because field data behave irratically or contain "outliers." 
The geostatistical intrinsic hypothesis (or stationary assumptions) is that spa­
tial correlationship between data points depend only on the separation vector 
(modulus and direction) and not on the individual sample location. But, the 
global behavior of contaminant plume follows dynamical process governed by 
groundwater flow; consequently, the concentration of contaminant strongly de­
pends on sample location. Questions concerning the locations or regions of high 
pollutant concentrations and contaminant plume dimensions are key issues in 
enviromental concerns. The first obstacle, the intrinsic geostatistical hypoth­
esis, can be overcome by extracting the plume macroscopic behavior from the 
field data. The concept of macroscopic plume behavior is essentially similar 
to that of drift or trend in geostatistics in the sense of nonstationarity. In 
geostatistics, the general profile of most regionalized variables is assumed to 
be stationary, and, hence, the slowly varying minor nonstationary components 
(drift or trend) observed in the field data may be approximated by lower order 
polynomials. However, the greater portion of a goundwater contaminant plume 
exhibits nonstationary characteristics. Thus, a major component of the plume 
should be estimated from dynamical processes and measured in a large region. 
On the other hand,=ODthe drift should be estimated in a "small neighborhood" 
of the point where kriging to be performed. Additional problems arise when 
concentrations are estimated. For example, conventional semivariograms are 
too sensitive to obtain correct spatial correlations for data exhibiting a wide 
variance. These correlations are needed for determining variogram models in 
a kriging procedure. The log transformation commonly used to compress data 
variance contains a logical conflict between original data structure and applica­
tion of kriging algorithm. Consequently, to make spatial interpolations of data 
exhibiting a large variance, there is a need to develop a new robust estimator. 
This paper introduces a new robust estimator which is consistent and robust. 

The general procedure of our proposed estimation method is following: 
( 1) Divide the field site into several subregions based on all available infor­

mation. (2) In each subregion, macroscopic plume behaviors (or deterministic 
transport components) are estimated from the field data. These estimated 
values are subtracted from the field data to obtain residuals. (3) Based on 
complexities of spatial distribution of the residuals, divide each subregion into 
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several small blocks. ( 4) In each block, calculate experimental variograms using 
a robust estimator and determine mathematical variogrammodels. (5) Perform 
kriging to estimate residual at each desired location. (6) Finally, combine kriged 
residual values with the estimated macroscopic transport components. 

The purpose of this paper are to provide a systematic methodology for esti­
mating in situ groundwater contaminant concentrations, to introduce the 'Rp­
estimatorfor producing correlations between data points characterized by large 
variance, and to address some of mathematical problems related to estimation 
of goundwater contaminants. The method can be used generally to estimate 
space and time dependent geophysical, chemical and biological parameters; thus 
it may be useful to those developing numerical models for capturing the main 
feature of the groundwater contaminant distributions. 

2 ESTIMATION OF MACROSCOPIC PLUME BEHAVIOR 

As the first step for estimating the global plume behavior represented in the 
field data, the field site is divided into several subregions. Adjacent subregions 
may be overlapped to obtain spatially continuous information. The size of each 
subregion strongly depends on the geological structure of the field site and the 
global characteristics of data distributions. Each region showing distinctive 
distribution behavior is contained in a separated subregion. All available field 
data are visualized and analyzed. Also, any information related to the field site 
such as geological aquifer history are incorporated. 

The macroscopic behavior is a spatially continuous large scale behavior de­
scribing the main profile of the plume movement. This step is difficult be­
cause the parameters in the transport equations, such as, dispersion/diffusion 
and seepage velocity share a highly nonlinear interdependence in space and 
time. Also, the measured contaminant concentration themselves add uncer­
tainties due to spatial variabilities and unequal analytical confidence intervals. 
The criteria on how to choose basis functions and some specific approxima­
tion functions to estimate the macroscopic plume behavior are proposed. The 
approximating functions are chosen based on the global characteristics of the 
solute transport process in porous media. Nonlinear optimization techniques 
are needed for estimating parameters appeared in the approximating basis func­
tions. 

The basis functions are chosen using the following criteria: 
(1) "Simple" functions are preferred because they are easily evaluated. At 

the same time, a "low order" approximation should capture the main profile 
of the plume movement. Here, the order of the approximation refers to the 
number of basis functions needed for the approximation. 

(2) The approximation functions must capture the global plume behavior 
outside sampling network. In many practical applications, sampling networks 
often don't cover the entire extent of the contaminant plume; however, extrap­
olation of plume movement outside the sampling network is often desired. 

(3) Basis functions should be "robust" in the sense that they are not very 
sensitive to unevenly spaced data points. 
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According to the selection criteria described above, specific basis functions 
are chosen based on the available field data and the process to be described 
(e.g., transport of a tracer or the spatial distribution of aquifer permeabil­
ity). Focusing on the problem at hand, advective, dispersive/diffusive solute 
transport in porous media depends on space, time, and solute concentration. 
If, in addition, recharge, chemical, biological, and other reactive processes are 
considered, then the solute transport may be approximated [8], in Cartesian 
coordinates, using 

ac - = V · (D · VC)- V · (VC) + f 
8t 

(2.1) 

with appropriate initial and boundary conditions, where C = C(x, y, z; t) is 
the concentration of the solute, i.e., the mass of solute per unit volume of 
fluid, D = D(x,y,z;t;C) is the dispersion tensor, V = V(x,y,z;t;C) is the 
pore water velocity vector, f = f ( x, y, z; t; C) is a "forcing function" related to 
recharge, chemical, and biological activities. Note that the coefficients D and 
V depend on space, time and concentration itself. 

As a simple case, assume that the porous medium is homogeneous, isotropic, 
saturated, the flow is steady-state, and that there is no external source. Then 
the transport equation (2.1) can be simplified as 

ac [ 82C a2c a2c] [ ac ac ac] at = Dx ox2 + Dy oy2 + Dz oz2 - vx fh + vy oy + Vz 8z , (2.2) 

where Dx, Dy and Dz are dispersion coefficients in the x, y and z-directions, 
Vx, Vy and Vz are the average linear pore water velocities in each coordinate 
direction defined by Vx = Vx/cP, Vy = vy/c/J, Vz = Vz/c/J, in which Vx, Vy, and 
Vz are specific discharge components, and cjJ is the porosity of the medium. If 
a contaminant is released instantaneously at the origin (x,y,z):::: (0,0,0), the 
mass distribution of the contaminant at timet is given by 

M ( x2 y2 z2 ) 
C(x,y,z;t):::: 8(7rt)3/2¢JDxDyDz exp - 4Dxt- 4Dyt- 4Dzt ' (2.3) 

where M is the mass of contaminant introduced at the point source, X = 
x - Vx t, Y = y - Vy t and Z = z - Vz t [8]. The averaged pore water velocities 
Vx, vy and Vz contribute movement of the center of mass of the contaminant 
plume (the propagation process). Dx, Dy, and Dz contribute to the longitu­
dinal and transverse spreading of the plume around the plume centroid (the 
dispersion/diffusion process). The solution (2.3) of the ideal equation (2.2) is 
a simple representation of these two processes throughout two parameter sets 
V = (vx, Vy, vz) and D = (Dx, Dy, Dz). 

To approximate the gross distribution of contaminant concentrations in 
space, we propose the following linear combination of exponential functions. 

x-a y-a. z-a. m ( ( x) 2 ( y) 2 ( z) 2) F(x,y,z;a,b,c) = f;c; exp - - - , 

(2.4) 
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where m is the number of basis functions, af' ar' at' bf' b¥' bi' and c;' 1 :S i :S 
m, are parameters to be determined. In the same context as transport equations 
(2.1) and (2.2)' the parameter set a = { (af, ar' at) : 1 :S i :S m} represents 
the propagation or advection process, the set b = { ( bf, b¥, bt) : 1 :S i :s; m} 
represents the dispersion/ diffusion process, and the set c = { c; : 1 :s; i :s; m} 
is related to the magnitude of the source load. 

3 'R.p-ESTIMATOR 

The residuals are obtained by subtracting the macroscopic transport portion 
from field data. The experimental semivariogram or variogram is used to de­
scribe the pattern of spatial correlation displayed by the residuals. A mathe­
matical model is fitted to this experimental variogram, and this model is used 
in kriging to estimate the residuals at unmeasured locations. Some of mathe­
matical models commonly used in practice can be found in [10]. In this section, 
we introduce the "Rp-estimator," where R stands for "robust" and p > 0 indi­
cates the order of robustness. For 0 < p :S 1, the estimator is robust; whereas 
for p > 1 the estimator becomes sensitive to apparent outliers. The estimator 
satisfies the following properties: 

( 1) It is consistent such that spatial correlations among the original data 
are preserved under linear transformation. Thus, the original data structure, 
estimation of correlations, and kriging procedures are consistent. (2) It is ro­
bust. It reduces outlier effects on estimated correlations between data points. 
(3) It is systematic. Depending on the distribution of the data, the order p of 
robustness can be adjusted systematically. 

Let Z(x) be a regionalized function on a domain 0 in three dimiensional 
space, and Z(x;) be the realization of the function Z(x) at x; = (x;, y;, zi) E 
0, i = 1, 2, · · ·, n. Let p > 0 be a positive real number. For any vector 
h = (hx, hy, hz), we define the Rp-estimator as 

[ 
1 n(h) l 

'Rp(h) = n(h) IZ(x;)- Z(x; + hW , (3.1) 

where n(h) is the number of data pairs separated by the vector h. 
For any positive integer k, and for any positive real number p > 0, the 

following inequalities hold: 

+ + · · · + :S ( a1 + a2 + · · · + ak )P , p 2: 1, 
.. .. ·+ak)P, 0<p:S1, (3·2) 

where a; 2: 0, i = 1, 2, · · ·, k. Thus, the function 

(3.3) 

is a convex function for p 2: 1 and a concave function for 0 < p :S 1. As 
p > 0 approaches 0, robust effects are increased and the estimator Rp defined 
by equation (3.1) reduces effects of outliers for 0 < p :S 1. 
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Moreover, it is easy to see that, for any positive constant c > 0, 

[ 
1 n(h) l } [ 1 n(h) l } 

n(h) {; lcZ(x;) - cZ(x; + hW = c n(h) {; IZ(x;) - Z(x; + hW , 

(3.4) 
and, hence, the estimator Rp preserves any scaling factor. Therefore, if the 
original data set has a large range of values, then the range can be scaled 
by multiplying by a fixed positive constant without destroying any correlation 
structure found within the original data. The Cressie-Hawkins robust estimator 
[6] 

h - [n/h) IZ(x;)- Z(x; +h) I! r 
lch( ) - 2 [0.457 + 0.494/n(h)] (3.5) 

which is commonly used in practice, the squared median of the absolute devia­
tions estimator [7]lsmad(h) = 2.198 x [median IZ(x;)- Z(x; + h)IJ 2 , and the 
conventional semivariogram [10] 

1 n(h) 2 

1(h) = 2 n(h) {; IZ(x;)- Z(x; +h) I (3.6) 

are essentially similar to the Rrestimator with p = 1/2, p = 1, and p = 2, 
respectively. However, the semivariogram 1 is not robust. The influence of 
outliers on the semivariogram 1 increases by the square IZ(x)- Z(x + h)l 2 as 
the difference IZ(x)- Z(x +h) I increases. The Cressie-Hawkins estimator lch 
and the squared median of the absolute deviations estimator lsmad are not 
robust enough so that they do not produce correct correlation between data 
points showing erratic behaviors which are commonly observed in field data. 
Moreover, they do not preserve scaling factors and are not systematic. 

4 KRIGING 

Kriging is to estimate variables at unmeasured locations. It uses the mathemat­
ical model variograms fit to experimental variograms. Many kriging methods 
are available. Among them, the universal kriging and the punctual kriging are 
simple and can be easily implemented. In this section, the punctual kriging is 
explained when the experimental variograms are obtained by the Rp-estimator. 
The application of the estimator to the uni versa! kriging can be done in a similar 
way. 

For each i, i = 1, 2, · · ·, m, let Z(x;) be a given value at location x; = 
(x;, y;, zi) that is selected for kriging. For a given location X 0 = (x 0 , Yo, z0 ), 

assume that the value Z(x 0 ) at X 0 can be approximated by a linear sum of 
known values Z(x;), i = 1, · · ·, m. Let 

m 

Z(x 0 ) = Lw;Z(x;), ( 4.1) 
i=l 
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where w; 2: 0, i = 1, · · ·, m, are weights to be determined by the following 
kriging system: 

Rp(h; 0 ), 1 i :S m, 
1, 

(4.2) 

where Rp ( h;j) is the correlation value estimated by the Rp-estimator at lag 
h;i, the subscript p is the order of robustness, h;j is the "correlation lag" 
between two points x; and Xj, A is the Lagrange multiplier, and w; = 1 
is the optimality condition. Note that this kriging system ( 4.2) is "optimal" in 
the sense that the method produces the exact (original) value at the sampled 
location. However, the kriging system is optimal only inside the sampling 
network (convex) domain. Thus, the estimation procedure for points outside 
the sampling domain must consider macroscopic properties such as trend, drift, 
etc., of the original data structure together with the kriging system because the 
optimality condition in equation (4.2) is no longer valid outside the (convex) 
domain. The optimality constraint described above is independent of the choice 
of variogram; Rp-estimator, semivariogram 'Y in equation (3.6), or any other 
estimators. 

With regard to the scaling factor, for each p > 0, 

(4.3) 

for any c > 0 and lag h. Thus, the scaling factor c > 0 of the original data 
set is preserved in the correlation estimation step. Moreover, for any constant 
c > 0, the following two kriging systems: 

and 

are equivalent. 
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