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Abstract: This paper relates to minimax control design problems for a class 
of parabolic systems with nonregular boundary conditions and uncertain dis­
tributed perturbations under pointwise control and state constraints. The main 
attention is paid to the Dirichlet boundary control that offers the lowest reg­
ularity properties. Our variational analy§is is based on well-posed multistep 
approximations and involves the solving of constrained optimal control prob­
lems for ODE and PDE systems. The design procedure essentially employs 
monotonicity properties of the parabolic dynamics and its asymptotics on the 
infinite horizon. Finally we justify a suboptimal three-positional structure of 
feedback boundary controllers and provide calculations of their optimal param­
eters that ensure the required system performance and robust stability under 
any admissible perturbations. 

1 INTRODUCTION 

In this paper we formulate and study a minimax feedback control problem 
for linear parabolic systems with uncertain disturbances and pointwise con­
straints on state and control variables. We deal with boundary controllers act­
ing through the Dirichlet boundary conditions that are the most challenging 
for the parabolic dynamics. The original motivation comes from applications 
to some environmental problems; see [6] where a groundwater control problem 
of this kind has been considered for the case of one-dimensional heat-diffusion 
equations. Here we study a general class of multidimensional parabolic control 
systems that cover a fairly broad range of practical applications. 

Dynamical processes in these systems are subject to pointwise (hard) state 
and control constraints that are typical in applied problems. Moreover, the 
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for arbitrary values of the coupling parameter a. 

© 

The original version of this chapter was revised: The copyright line was incorrect. This has 
been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35359-3_40

IFIP International Federation for Information Processing 1999
S. Chen et al. (eds.), Control of Distributed Parameter and Stochastic Systems

http://dx.doi.org/10.1007/978-0-387-35359-3_40


112 

only information available for uncertain disturbances/perturbations is an ad­
missible region of their variations. A natural approach to control design of 
such uncertain systems is minimax synthesis which guarantees the best system 
performance under the worst perturbations and ensures an acceptable behav­
ior for any admissible perturbations. This approach is related to H 00-control 
and differential games; see, e.g., (1], (2], (3]. However, we are not familiar with 
any results in these theories that may be applied to parabolic systems with 
hard control and state constraints under consideration. In (4] the reader can 
find a number of feedback boundary control results for unconstrained parabolic 
systems based on Riccati equations. 

In this paper we develop an efficient design procedure to solve minimax 
control problems for hard-constrained parabolic systems. This procedure takes 
into account monotonicity properties of the parabolic dynamics and asymptotic 
characteristics of transients on the infinite horizon. It was initiated in [6] for 
the case of one-dimensional heat-diffusion equations and then developed in (7] 
where partial results for multidimensional systems were reported. The results 
presented below include a justification of a suboptimal discontinuous feedback 
control structure and optimization of its parameters along the parabolic dy­
namics. In this way we minimize an energy-type cost functional in the case 
of maximal perturbations and ensure the desired state performance within the 
required constraints for all admissible disturbances. Based on a variational 
approach, we obtain verifiable conditions for "stability in the large" of the 
nonlinear closed-loop control system that excludes unacceptable self-vibrating 
regimes. 

Our design and justification procedures involve multistep approximations 
and results from the optimal control theory for ordinary differential equations. 
As a by-product of this approach, we obtain a complete measure-free solution 
for a class of state-constrained optimal control problems related to approxima­
tions of the parabolic dynamics. 

2 PROBLEM FORMULATION AND BASIC PROPERTIES 

Consider a self-adjoint and uniformly strongly elliptic operator defined by 

n 82 
A:=- L -c 

i,j=l X, XJ 

(1.1) 

where c E IR, a;j E C00 (clf2), 

n n 

L a;j(x)eiej 2: I) I: a, v > 0 Vx En, e = (6, 6, 0 0 0 ' en) E IR", 
i,j=l 

n is a bounded open region in IR" with the sufficiently smooth boundary r. 
Given positive numbers g_, a, /3, and iJ, we define the sets of admissible controls 
u(t) and admissible uncertaindisturbances w(t) by 

Uad = {u E L2(0,T) I u(t) E (-a,g] a.e. t E (O,T]}, 
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Wad= {wE L2 (0,T) I w(t) E a.e. t E [O,T]}. 

Suppose that Xo is a given point in n at which we are able to collect information 
about the system performances, and let TJ > 0. Consider the following minimax 
feedback control problem (P): 

minimize J(u) = max ( lu(y(t, xo))ldt 
w(·)EWad Jo 

over u(-) E Uad subject to the system 

{ 
+ Ay = w(t) a.e. in Q := (0, T) x 0 

y(O,x)=O,xEO 
y(t, x) = u(t), (t, x) E E := (0, T] x f, 

the pointwise state constraints 

ly(t, xo) I :S 'TJ 'Vt E [0, T], 

and the feedback control law 

u(t) = u(y(t, xo)) 

acting through the Dirichlet boundary conditions in (2). 

(1.2) 

(1.3) 

(1.4) 

Problem (P) formulated above is one of the most difficult control problems 
unsolved in the general theory. Our purpose is to develop an approach that 
takes into account specific features of parabolic systems and allows us to find 
a feasible suboptimal feedback control. To furnish this, we employ the spec­
tral representation of solutions to the parabolic system (2) with the Dirichlet 
boundary conditions. 

Let >. E ffi be an eigenvalue of the operator A in (1) and let ¢J E L2 (0) 
be the corresponding eigenfunction satisfying the condition ¢llr = 0. It is well 
known that, under the assumptions made, one has the properties: 

(a) All the eigenvalues.>.;, i = 1, 2, ... , of A form a nondecreasing sequence 
that accumulates only at oo, and the first eigenvalue .>.1 is simple. 

(b) The corresponding orthonormal system of eigenfunctions is complete in 
L2(!J). 

Let y E L 2 (Q) be a generalized solution to (2) which uniquely exists for each 
(u, w) E Uad x Wad; see [5]. Based on the properties (a) and (b) and taking into 
account that both admissible controls and perturbations in (2) depend only on 
t, we conclude that the generalized solution y(·) admits the representation 

(1.5) 
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where /-Li = l r/J;(x)dx and series (5) is strongly convergent in L2 (Q). This 

allows us to deduce, involving the maximum principle for parabolic equations, 
the following monotonicity property of solutions to (2) with respect to both 
controls and perturbations. 

Theorem 1. Let (u;,w;) E L2(0,T) x L2(0,T) and let y;(·), i = 1,2, be the 
corresponding generalized solutions to (2). Then 

y!(t, x) 2: Y2(t, x) a.e. in Q 

ifu!(t) 2: u2(t) and w1(t) 2: w2(t) a.e. in [O,T]. 

One can see from Theorem 1 that the bigger magnitude of a perturbation is, 
the more control of the opposite sign should be applied to neutralize this pertur­
bation and to keep the corresponding transient within the state constraint (3). 
This leads us to consider feedback control laws ( 4) satisfying the compensation 
property 

u(y) u(fj) if y 2: fj and y · u(y) 0 Vy, fj E JR. (1.6) 

The latter property implies that 

T ( 
foiu(y(t))idt 2: Jo iu(fj(t))idt if y(t) 2: fj(t) 2: 0 or y(t) jj(t) 0 

for all t E [0, T], i.e., the compensation of bigger (by magnitude) perturbations 
reguires more cost with respect to the maximized cost functional in (P). This 
allows us to seek a suboptimal control structure in (P) by examining the control 
response to feasible perturbations of the maximal magnitudes w(t) = (3 and 
w(t) = -{!_for all t E [0, T]. 

3 SUBOPTIMAL CONTROL UNDER MAXIMAL PERTURBATIONS 

Taking into account the symmetry of (P) relative to the origin, we consider the 
case of upper level maximal perturbations w(·) = (3 and the corresponding set 
of admissible controls 

Uad := {u(-) E Uad I - Ci u(t) 0 a.e. t E [0, T]}. 

To find an optimal control u(t) in respose to the maximal perturbations, we 
have the following open-loop control problem (P): 

minimize J(u) =-loT u(t)dt (1.7) 

over u(-) E U ad subject to system (2) with w(-) = (3 and the constraint 

y(t) 1J Vt E [0, T]. (1.8) 
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This is a state-constrained Dirichlet boundary control problem which was con­
sidered in [8) in more generality. In [8) we obtained necessary optimality con­
ditions for (P) that involve the adjoint operator to the so-called Dirichlet map 
and Borel measures. Those conditions are rather complicated and do not allow 
us to determine an optimal control. 

Following [6), let us explore another approach to solve problem (P). It leads 
to suboptimal feasible solutions of a simple structure that can be used to design 
and justify a required feedback law in the original minimax control problem 
(P). To furnish this, we approximate (P) by optimal control problems for ODE 
systems directly obtained from the spectral representation (5) as x = x 0 and 
w(·) = i]. In what follows we suppose, additionally to the basic assumptions 
in Section 2, that the first eigenvalue .X1 in (a) is positive. Together with the 
other properties in (a) this gives 

0 < .X1 < .X;, i = 2, 3, ... , 

which ensures that the first term in (5) dominates as t-+ oo. This allows us to 
employ the first term rule [6) when the time interval is sufficiently large and thus 
to confine our treatment of suboptimality to the first order ODE approximation. 
In this way we arrive at the following constrained ODE optimal control problem 

(P1): minimize the cost functional (7) along the controlled differential equation 

y = -.X1 y + J.ll cP1 (xo)(iJ + ( c + .XI)u(t)) a.e. t E [0, T), y(O) = 0 (1.9) 

subject to u(·) E U ad and the state constraint (8). 

The next theorem provides the complete exact solution of the state-constrained 
problem (PI) with no measure involved. 

Theorem 2. Let J.llcPl(xo)iJ > AlTJ· Assume in addition that either 

J.llcPl(xo)(iJ- a(c AlTJ or Tl := ln J.llcPl(xo)iJ > T. (1.10) 
.X1 J.llcPl(xo)f3- A11] -

Then system (8), (9) is controllable, i.e., there is u(-) E Uad such that the corre­
sponding trajectory of (9) satisfies the state constraint (8). Moreover, problem 
(PI) admits an optimal control of the form 

if t E (0, f1) 

if t E (r1,T) 

where f 1 = min{ r1, T} with r1 computed in (10). 

(1.11) 

To prove this theorem, we first approximate (P1 ) by a parametric family of 
optimal control problems without state constraints. The latter problems can be 
completely solved by using the Pontryagin maximum principle [9) which pro­
vides necessary and sufficient conditions for optimality in this case. We prove 
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that optimal controls to approximating problems are piecewise constant and 
contain both bang-bang and singular modes. Passing to the limit, we establish 
all the results of Theorem 2 and come to a surprising conclusion that the op­
timal control ( 11) for the state-constrained problem occurs to be simpler than 
the ones for the unconstrained approximations. 

In the way we justify that a two-positional form in (11) can be accepted as 
a reasonable suboptimal control structure for problem (P) with the parabolic 
dynamics. Then we optimize this structure subject to (2), (8), and u(·) E U ad· 

This gives 

u(t) = { 0 _ -u 

with the optimal parameters 

- !fJ- 'f) 
u:= ---, 

1 + Cf 

and T satisfying the equation 

for 0 < t < r 
for T < t < T 

·- p;I/J;(xa) 
1·- 6 A· , 

i=l I 

f e->.;T[(c + A;)(!fJ- rJ)e>.;T- {3(1 + q)] = 0. 
i=l I 

(1.12) 

(1.13) 

(1.14) 

We establish that (14) has a unique solution T = f(T) E (0, T) for all T 
sufficiently large and that any control (12), (13) is feasible to (P) for all positive 
r f(T). Moreover, the switching timeT= r(T) is optimal in (P) and r(T) .j. f 
as T-+ oo where the asymptotically optimal switching time f is computed by 

f = 2_ In {3( 1 + q) 
A1 (c+-\d(!.B-rJ) 

4 FEEDBACK CONTROl DESIGN 

The obtained results allow us to justify the three-positional control law 

{ 
-u if y >if 

u(y) = 0 if - q_ < y < if 
g if y -q_ 

(1.15) 

as a suboptimal feedback structure in (P) with the compensation property (6). 
Now using the monotoriicity of transients with respect to both controls and 
perturbations as well as their asymptotic properties as t -+ oo, we arrive at the 
following theorem. 

Theorem 3. Let the feedback control parameters (u, u, if, u) in (15) are com­
puted by the formulas (13), 
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and their counterparts for /3. Then the control law (15) is feasible for any 
perturbations w(·) E Wad bezng optimal in the case of maximal perturbations 
when T is sufficiently large. Moreover, u(T) i7 and Q:(T) 2: as T -t oo 
where the positive numbers 

{1.16} 

{1.17} 

form the maximal dead region [-Q:, u] under which feedback (15) keeps the state 
constraints (3) on the infinite horizon [0, oo) for any admissible perturbations. 

Finally we observe that the feedback control (15) with the parameters cal­
culated in Theorem 3 does not guarantee the robust stability of the highly 
nonlinear (discontinuous) closed-loop system (2), (4), (15) under any admissi­
ble perturbations. Indeed, this system may have a self-vibrating regime (i.e., 
its zero-equilibrium is not stable in the large) if the dead region [-2:, u] is not 
sufficiently wide. The next theorem excludes such a possibility and ensures the 
required robust stability of the closed-loop control systems. Its proof is based 
on a variational approach and turnpike asymptotic properties of the parabolic 
dynamics. 

Theorem 4. The closed-loop control system (2), (4), (15) with arbitrary pa­
rameters ( ii., :g, i7, is stable in the large if 

(1.18) 

When < /3, the stability condition (18) can be written in the simplified 
form 

through the suboptimal dead region bounds 

which correspond to the first terms in (16) and (17). 
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