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Abstract: Controllability properties of a partial differential equation (PDE) 
model describing a thermoelastic plate are studied. The PDE is comprised of a 
Kirchoff plate equation coupled to a heat equation on a bounded domain, with 
the coupling taking place on the interior and boundary of the domain. The cou­
pling in this PDE is parameterized by a > 0. Control is exerted through the 
(two) free boundary conditions of the pla:te equation, and through the Robin 
boundary condition of the temperature. These controls have the physical in­
terpretation, respectively, of inserted forces and moments, and prescribed tem­
perature, all of which act on the edges of the plate. The main result here is 
that under such boundary control, and with initial data in the basic space of 
wellposedness, one can simultaneously control the displacement of the plate ex­
actly, and the temperature approximately. Moreover, the thermal control may 
be taken to be arbitrarily smooth in time and space, and the thermal control 
region may be any nonempty subset of the boundary. This controllability holds 
for arbitrary values of the coupling parameter a. 

for arbitrary values of the coupling parameter a. 
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1 INTRODUCTION 

Statement of the Problem 

Let n be a bounded open subset of JR 2 with its sufficiently smooth boundary 
denoted as f. The boundary will be decomposed as f =fa U f 1, with both 
fa and f 1 being open and nonempty, and further satisfying fo n f 1 = 0. In 
addition, let f2 be any open and nonempty subset of f. With this geometry, 
we shall consider here the following thermoelastic system on finite time (0, T): 

{ Wtt -1tl.wtt + tl.2w + atl.() = 0 ( ) 
f38t - rytl.() + (]'()- atl.Wt = 0 on 0, T X n; 

ow 
w = 011 = 0 on (0, T) x fo; 

{ 
tl.w + (1- p.)B1w + a8 = u1 

atl.w (1 )()B2w OWtt ()() on (O,T) X f1; (1.1) 
Tv + - J1. a;:- - I 011 + a 011 = u2 

+ )..() = { Uo3 on (0, T) X f2 
u on (0, T) x f\f2 

>. > 0· - , 

w(t = 0) = Wa, Wt(t = 0) = W1, ()(t = 0) = ()0 on Q. 

Here, a, (J, TJ and 0' are positive parameters. The positive constant 1 is propor­
tional to the thickness of the plate and assumed to be small with 0 < 1 M. 

lJ2w lJ2w lJ2w 
The boundary operators B; are given by B1w =: 2111112 axay ay2 -11? ax2 , 

- ( 2 2) lJ2w (a2w lJ2w) ( 1) . 
and B2w = 111 - 112 axay + 111112 lJy2 - lJ:z:2 . The constant J1. E 0, 2 IS 

the familiar Poisson's ratio, and 11 = [111, 112] denotes the outward unit normal 
to the boundary. Here we shall also make the following geometric assumption 
on the (uncontrolled) portion of the boundary f 0 : 

3 {xo,Yo} ElR2 such that h(x,y) 0 on fa, (1.2) 

where h(x, y) =: [x- xo, y- Yo]. 
The PDE model (1.1), with boundary functions u1 = u2 = 0, and u3 = 0, 

mathematically describes an uncontrolled Kirchoff plate subjected to a ther­
mal damping, with the displacement of the plate represented by the function 
w(t, x, y), and the temperature given by the function 8(t, x, y) (see [8]). The 
given control variables u1(t,x) and u2(t,x) are defined on the portion of the 
boundary (0, T) X f 1; the control UJ(t, X) is defined on (0, T) X f2. 

With the denotation 
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we will throughout take the initial data [wo, WI, Ba] to be in H{-0 (0} x Hf.0 (0) x 
L2 (0). In this paper, we will study controllability properties of solutions of 
(1.1) under the influence of boundary control functions in preassigned spaces. 
In particular we intend to address, on the finite time interval [0, T], the following 
problem of exact-approximate controllability with respect to the basic energy 
space Hf.0 (0) x Hf,0 (0) x L2 (0) (this term being coined in [5]): For given data 
[wo, WI, Bo] (initial) and [wa, wf, Ba] (terminal) in Hf.0 (0) x Hf0 (0) x L2 (0) and 
arbitrary f > 0, we seek a suitable control triple [ui, u2 , u3] E £ 2(0, T; L2 (fi) x 
H-I(r!)) X crp::;2,T) (where r > 0 and = (0, T) X r;, i = 0, 1, 2) such 
that the corresponding solution [w, Wt, B] of (1.1) satisfies the steering property 
at terminal time T 

[w(T), Wt (T)] = [wif, wf] ; and IIB(T) - Bifll£2(!1) (1.3) 

In regards to the literature on this particular problem, the most relevant 
work is that of J. Lagnese in [9]. Therein, Lagnese shows that if the coupling 
parameter a is small enough and the boundary r is "star-shaped" , then the 
boundary-controlled system (1.1) is (partially) exactly controllable with re­
spect to the displacement w. Also in [14], a boundary-controlled thermoelastic 
wave equation is studied, with a coupling parameter a likewise present therein, 
and a result of partial exact controllability (again for the displacement) for this 
PDE is cited. This controllability result is quoted to be valid for all sizes of a; 
however in [15], the author has acknowledged a flaw in the controllability proof, 
the correction of which necessitates a smallness criterion on a, akin to the situ­
ation in [9]. The chief contribution of the present paper is to remove restrictions 
on the size of the coupling parameter (see Theorem 3 below),'at the expense 
of adding the arbitrarily smooth boundary control U3 in the thermal compo­
nent. For a 1-D version of (1.1), S. Hansen and B. Zhang in [6], via a moment 
problem approach, show the system's exact null controllability with boundary 
control in either the plate or thermal component. Other controllability results 
for the thermoelastic system which do not assume any "smallness" condition on 
the coupling parameters deal with distributed/internal controls. Such include 
that in [5], in which interior control is placed in the Kirchoff plate component 
subject to clamped boundary conditions; with such control, one obtains exact 
controllability for the displacement w, and approximate controllability for the 
temperature B. Alternatively in [3], interior control is placed in the heat equa­
tion of (1.1) so as to obtain exact controllability for both components w and B. 
In addition, the work in [13] deals with obtaining a result of null controllability 
for both components of a coupled wave and heat equation, in the case that 
interior control is inserted in the wave component only. 

So again, the main contribution and novelty of this paper is that we consider 
boundary controls acting via the higher order free boundary conditions, and we 
do not assume any size restriction on the coupling parameter a. Moreover, 
we do not impose any geometric "star-shaped" conditions on the controlled 
portion of the geometry. 
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It should be noted that the particular type of boundary conditions imposed 
on the mechanical variables greatly affects the analysis of the problem, even 
in the case of internal control. Indeed, in the case of all boundary conditions, 
save for the free case, it is known that the thermoelastic plate semigroup can be 
decomposed into a damped Kirchoff plate semigroup and a compact perturba­
tion (see [5] and [12]). Since controllability estimates are invariant with respect 
to compact perturbations (at least in the case of approximately controllable 
systems, which we are dealing with here), the aforesaid decomposition, valid 
for the case of lower order boundary conditions, reduces the problem of exact 
controllability for the mechanical variable to that of uncoupled Kirchoff plates. 
Thus, the case of lower order boundary conditions allows a reduction of the 
coupled problem into one which has been much studied in the past. This strat­
egy, while successfully employed in the case of clamped or hinged boundary 
conditions (see [5]), is not applicable here. Indeed, in our present case of free 
boundary conditions, there is no decomposition with a compact part, as in the 
lower order case (see [12]); moreover, the controllability operator correspond­
ing to the given boundary controls is not bounded on the natural energy space. 
This latter complication is due to the fact that the Lopatinski conditions are 
not satisfied for the Kirchoff model under free boundary conditions. 

The strategy adopted in this paper consists of the following steps: Initially, a 
suitable transformation of variables is made and applied to the equation (1.1); 
subsequently, a multiplier method is invoked with respect to the transformed 
equation. The mulitiplers employed here are the differential multipliers used in 
the study of exact controllability for the Kirchoff plate model, together with the 
nonlocal (wDO) multipliers used in the study of thermoelastic plates in [1] and 
[2]. This multiplier method allows the attainment of preliminary estimates for 
the energy of the system. However, these estimates are "polluted" by certain 
boundary terms which are not majorized by the energy. To cope with these, we 
use the sharp trace estimates established in [11] for Kirchoff plates. The use of 
this PDE result introduces lower order terms into the energy estimate, which 
are eventually eliminated with the help of a new unique continuation result in 
[7]. It is only at the level of invoking this uniqueness result that the thermal 
control U3 on r2 must be introduced. 

We post our main result here on controllability. 

Theorem 1 Let the assumption {1.2) stand. There is then a T* > 0 so that 
for T > T* the following controllability property holds true: For given initial 
data [wo, w1, 11o] and terminal data [w6, wf, 116] in the space Hf0 (fl) x Hf-0 (n) x 
L2 (n), and arbitrary f > 0, one can find control functions [ui, u;, u3] E 
L 2 (0, T; L 2(fl) x H- 1(fl)) x Cr(E2,T) (where given r > 0) such that the cor­
responding solution [w*,wt,11*] to (1.1} satisfies (1.3) at terminal timeT. 

Remark 2 The presence of the control u3 in Theorem 1 is owing solely to 
the need to invoke the aforementioned uniqueness result of Isakov in the proof 
below; it plays no part whatsoever in obtaining the preliminary (lower order 
term-tainted) estimate on the energy. Consequently, we have the freedom to 
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prescribe the thermal control region to be as small as we wish, and the control 
U3 to be as smooth in time and space as desired. 

2 PROOF OF THEOREM 1 

A preponderant portion of the proof of Theorem 1 is wrapped up in showing 
the following result of exact controllability for the displacement only: 

Theorem 3 With the coupling parameter a in {1.1) being arbitrary and the as­
sumption ( 1. 2) in place, there is then a T* > 0 so that forT > T*, the following 
property holds true: For all initial data [wo, w1, Oo] E Hf0 (0) x Hf.0 (0) x L2(0) 
and terminal data [wl', wTJ E Hf0 (0) x Hf-0 (0), there exists [u1, u2, u3] E 
L2 (0,T;L2(fl) x H- 1(f1)) x H'(I;2,T), where arbitrarys 2::0, such that the 
corresponding solution [w,wt,O] to {1.1) satisfies [w(T),wt(T)] = [wa,wf] . . 

Indeed, if Theorem 3 is shown to be true, then using the miminal norm 
steering control (see Appendix B of [10]), one can, in a straightforward fash­
ion, construct a control [ui, u;, uj] such that the corresponding trajectory 
[w*, w;, 0*] has the desired reach ability property (1.3). (See [4] for the pre­
cise details). Accordingly, the sequel is devoted to showing the validity of 
Theorem 3. 

The theme of the proof of Theorem 3 is a classical one. Denoting the 
control space U, = L2(fl) x H-1(rl) x H'(f2), one defines the operator .CT: 

D(.CT) C U -+ Hf0 (0) x Hf.o (0) to be that which takes the terminal control 
to the terminal state; i.e., .CT [u1, u2, u3] = [w(T),wt(T)], where [w(T),wt(T)] 
is the plate component of the solution to (1.1) at timet= T. As it is defined, 
.CT is a closed, unbounded operator, with its domain being densely defined. 
By a principle of functional analysis then (see e.g., [16]), to prove Theorem 
3, which is essentially a statement of the surjectivity of .CT, it is enough to 
establish the PDE inequality 

where [¢, ¢t, '¢']is the solution to the following backwards system, corresponding 
to terminal data [¢0, ¢1] E D(.CT): 
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8¢ 
¢ = = 0 on I: a T; uv ' 

(2.2) 

+ >-1P = 0 on (O,T) X r, A?. 0; 

(¢(T), 4>t(T), 1P(T)] = (¢0, </>1, 0) 

The proof of Theorem 3 is then based upon showing the inequality (2 .1), 

at least forT> 0 large enough, where [ lr
1 

, 4>tlr1 , 1Pir2 ] are traces of the 

solution(¢, 4>t, 1P) to the backwards system (2.2). Because of space constraints, 
we give here only a broad sketch of the proof of Theorem 3; the full particulars 
are provided in (4). 

Step 1. We start by making the substitution 

(2.3) 

where parameter { ::: This particular choice of parameter allows the PDE 
(2.2) to be transformed into the following equation whose forcing function 
is comprised in part of the high order term 1Pt: 

a$ "'= - = 0 on I: T. 'I' 01/ o, ' 

where the c; are constants depending on the physical parameters. 

(2.4) 

Step 2. At this point we invoke a multiplier method with respect to the 
uncoupled equation in (2.4), using two multipliers which are, respectively, stan­
dard (as in (9]) and nonstandard (as in (1) and (2]). To wit, we multiply this 
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equation by c/Jt, and subsequently integrate in time and space so as to arrive at 

Moreover, letting An denote the Laplacian operator with Dirichlet boundary 
conditions, and A[/ E .C(L2(Q)) its corresponding (smoothing) inverse, we then 
multiply the PDE in (2.4) by and thereafter integrate in time and 
space. Adding the resultant expression to (2.5), and subsequently majorizing 
the sum, we obtain the following: 

Lemma 4 The solution ;j] to (2.4) satisfies the following relation for 

all s andrE (0, T]: 

+ ll$·r'lli:1•1n)] ::: 
< C 1T dt+ l.o.t. 

where l.o. t ( ;j, denotes, as usual, "lower order terms" (below the en­

ergy level) of ;j, and 

Step 3. Taking a radial vector field h E JR 2 which meets the requirement 
in (1.2), one can derive the following inequality which is an analogue to that 
demonstrated in (9]. In deriving this estimate the trace result in (11] is critically 
invoked. 

Lemma 5 For all toE (0, T), the solution to (2.4) satisfies 

+ dt 

< CT faT 

where St = T- fa, and s2 =fa. 
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Step 4. A standard energy argument shows that the heat component ;j; 
satisfies the estimate 

{ II (OJ dt < C ( { L(r,J + dt 

+ 1T llitll:fo(O) dt) + l.o.t. (i,it,;j;). 

This inequality, in combination with Lemmas 4 and 5, eventually give (again 
the full details are in [4]), 

Lemma 6 ForT> 0 large enough, the solution [i, it, ;j;] of (2.4} satisfies the 

following estimate: 

1T + llitll:f
0

(0) + ll;j;II:'(O)l dt 

+ II [ i(T)' it (T)] II (0) X Hf
0 

(0) 

< CT 1T dt+ l.o.t. (i,it,;j;). (2.6) 

Step 5. Note that in the inequality (2.6), there is no boundary trace term 
1/llr2 , reflecting the contribution of the control u3 ; the observability estimate 
(2.6) is independent of thermal control. However, to remove the corrupting 
lower order terms in this estimate so as to have the desired inequality (2.1), 
the thermal control now comes directly into play. Indeed, a compactness­
uniqueness argument is now to be employed, with this argument making critical 
use of the Holmgren's-type uniqueness result derived in [7] for overdetermined 
(in both the mechanical and thermal variables) thermoelastic systems. The cor­
rect use of this uniqueness theorem necessitates the appearance of the thermal 
control U3. With such control in place, we then have 

Lemma 7 ForT> 0 large enough, the existence of the inequality (2.6} implies 
that there exists a CT such that the following estimate holds true: 

l.o.t. (i, it, ;j;) ':5_ CT ( ( dt + ll;j;ll 2 
) . (2.7) lo L 2(r,) [H•(E2,T)]' 

The inequalities (2.6) and (2.7), and the transformation i(t) = 
and ;j;(t) = give the desired inequality (2.1), thereby completing the 
proof of Theorem 3. By the remarks made at the beginning of this section, 
with this partial exact controllability result in hand, the exact-approximate 
controllability statement Theorem 1 follows. 
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