
6
Types for Trees

F. Barbanera, M. Dezani-Ciancaglini
Universita degli studi di Torino
Dipartimento di Informatica, C. so Svizzera 185, 10149 Torino, It alia
Email: barba, dezani@di.unito.it

F.J. de Vries
Computer Science Division, ETL
1-1-4 Umezono, Tsukuba, lbaraki 305 Japan, E-mail: ferjan@ etl.go.jp

Abstract
We introduce a type assignment system which is parametric with respect to five fam­
ilies of trees obtained by evaluating >.-terms (Bohm trees, Levy-Longo trees, ...).
Then we prove, in an (almost) uniform way, that each type assignment system fully
describes the observational equivalences induced by the corresponding tree represen­
tation of terms. More precisely, for each family of trees two terms have the same tree
if and only if they get assigned the same types in the corresponding type assignment
system.

Keywords
Bohm trees, approximants, intersection types.

1 INTRODUCTION

A theory of functions like the >.-calculus, which provides a foundation for the func­
tional programming paradigm in computer science, can be seen essentially as a the­
ory of "programs". This point of view leads naturally to the intuitive idea that the
meaning of a >.-term (program) is represented by the amount of "meaningful in­
formation" we can extract from the term by "running it". The formalization of "the
information" obtained from a term requires first the definition of what is, in a >.-term,
a "stable relevant minimal information" directly observable in the term. This is the
token of information which cannot be altered by further reductions but can only be
added upon. (As an example the reader may think of the calculation of the ../2. The
calculation process merely adds decimals to the already calculated decimal expan­
sion).
All stable relevant minimal information produced during a computation can quite
naturally be represented as a tree. This tree then embodies the total information
hidden in the original term. There are many such a tree representation in litera­
ture, depending on the possible notions of stable relevant minimal information; the

Programming Concepts and Methods D. Gries, & W-P. de Roever (Eds.)
© 19981FIP. Published by Chapman & Hall

12 Programming Concepts and Methods

most commonly used being top trees (or Berarducci trees (Berarducci 1996)), weak

trees (or Levy-Longo trees (Sangiorgi 1994)), head trees (or Bohm trees (Barendregt
1984)), eta trees and infinite eta trees (infinite eta trees are in one-one correspon­
dence with Nakajima trees (Nakajima 1975)). Hence the various notions of tree rep­
resent different notions of meaning of a term (in particular they also specify different
notions of undefined value).
This apparently vague intuition is substantiated by results starting with (Wadsworth
1976), which show that there exist precise correspondences between the tree repre­
sentations of terms and the local structures (or equivalently the .A-theories) of cer­
tain .A-models ((Barendregt 1984), Chapter 19). In particular, such correspondences
amount to the fact that two .A-terms have the same tree representation iff they are
equal in the .\-model. For example,

- the infinite eta trees represent the local structure of Scott's Doo model as defined
in (Scott 1972) (this result is proved in (Wadsworth 1976));

- the eta trees represent the local structure of the inverse limit model defined in
(Cappo et al. 1987);

- the head trees represent the local structure of Scott's Pw model as defined in (Scott
1976) (a discussion on this topic can be found in (Barendregt 1984), Chapter 19);

- the weak trees were introduced by Longo in (Longo 1983) (following (Levy
1976)), who proved that they represent the local structure of Engeler models as
defined in (Engeler 1981).

Orthogonally, the results about observational equivalences confirm this operational
intuition of dynamically evolving meanings of terms encorporated in the tree rep­
resentations. For instance in (Wadsworth 1976) Wadsworth shows that two .A-terms
M, N have the same infinite Bohm tree iff for all contexts C[] the following holds:

C[M] has a head normal form <:::> C[N] has a head normal form.

The same property holds even considering eta trees and normal forms (Hyland 1976).
Weak trees correspond, instead, to the observational equivalence with respect to
weak head normal forms in suitably enriched versions of the .A-calculus (Sangiorgi
1994, Boudol et al. 1996, Dezani et al. 1997) .

.A-terms represent programs which themselves are static entities and as such can
be "handled", in contrast to the more ineffable computations. It would be very useful
if these dynamic aspects could be analysed with tools dealing with static entities like
terms and types. Type assignment disciplines are typical static tools, much used in
the programming practice to check decidable properties of programs.

There are several results showing how very powerful typing disciplines can be
devised that, at the (of course expected) price of being undecidable, can be used to
analyze the dynamic world. For instance the observational equivalences induced by
a number of tree representations of terms.

- Each inverse limit .A-model is isomorphic to a filter model, i.e. to a model in which
the meanings of terms are sets of derivable intersection types (Cappo et al. 1983).

Types for trees 13

- Two terms have the same Bohm tree iff they have the same set of types in the
standard intersection type discipline (Barendregt et al. 1983), as proved in (Ronchi
della Rocca 1982).

- Two terms have the same Levy-Longo tree iff they have the same set of types
in the type discipline with union and intersection of (Dezani et al. to appear), as
proved in (Dezani et al. 1997).

- Two terms have the same Berarducci trees iff they have the same set of types in a
type assignment system with applicative types (Berarducci et al. to appear).

In the present paper we design one type assignment system for each of the five
families of trees mentioned above (more precisely, a type assignment system (al­
most) parametric with respect to these five families.) For each family of trees we
show that two terms have the same tree if and only if they get assigned the same
types in the corresponding type assignment system.
This is a new result for the eta trees and the infinite eta trees. Moreover, our proof
method unifies the earlier proofs mentioned above, while making the following im­
provements:

- we simplify the types of (Ronchi della Rocca 1982) since we do not consider
infinite type variables;

- we do not allow the union type constructor which is considered instead in (Dezani
et al. 1997);

- the applicative types are build starting from just one constant instead of two (this
last is the choice of (Berarducci et al. to appear)).

All the type systems we introduce (but that representing Beraducci trees) induce
filter >.-models in the sense of (Barendregt et al. 1983). Clearly the theories of these
filter models coincide with the equalities of the corresponding trees. So as byproduct
we obtain alternative proofs of the characterizations of the theories of Scott's Doo
model (Wadsworth 1976) and of the filter >.-model (Ronchi della Rocca 1982). No­
tice that these new proofs (unlike the original ones) are constructive, in the sense
that, whenever two terms have different interpretations, we build a compact d such
that d approximates only the interpretation of one of the two terms. Really d is the
principal filter induced by a type which can be deduced only for one of the two terms.

The long-term goal of this research is to find answers to the question "what can be
added to the pure >.-calculus in order to internally discriminate terms having differ­
ent trees?", which can be formulated for each family of trees.
An intersection type assignment system played a crucial role to show that observa­
tional equivalence in lazy concurrent >.-calculus is equivalent to Uvy-Longo tree
equality (Dezani et al. 1997). We hope that similar results can be obtained for the
other families of trees. This would justify the present choices. A very limited num­
ber of type constants and type constructors allows us to search for a proof along the
following lines.
Suppose we were able to define for each type a a test term Ta such that TaM con­
verges iff M has type a. Then we would obtain an observational equivalence which
coincides with the tree equality (see (Boudol1994)).

14 Programming Concepts and Methods

The paper is organized as follows. In Section 2 we shall recall the various defini­
tions of tree. Moreover, we shall introduce the notion of approximant. In Section 3
we shall describe the type assigment systems which will be used for our main result
and we shall give a theorem of approximation stating that a term has a type iff there
exists an approximant of the term which has the same type. Section 4, instead, con­
tains our main result.
Syntax, basic notation on the .A-calculus and the usual conventions on variables to
prevent explicit mentioning of a-conversion are as in (Barendregt 1984).

The proofs we omitted for reasons of space can be found in the full version of the
paper which can be obtained from the URL:
ftp :1/lambda.di. uni to.i t/pub/dezani/tm. ps.gz.

2 TREES AND APPROXIMANTS

In this section we recall the various notions of trees which can be obtained by eval­
uating .A-terms. As briefly discussed in the introduction, in order to describe trees,
it is natural to formalize first the intuitive possible notions of stable relevant mini­
mal information coming out of a computation (naturally inducing different notions
of meaningless term (Kennaway et al. 1996)).
If during a computation we get the following terms, their underlined parts will re­
main stable during the rest (if any) of the computation: ;&M1 ... Mm, .Ax .M, P@Q
(where @ is the explicit representation of the operation of application and P is a
term which will never reduce to an abstraction.) Having a stable part in a computa­
tion, however, does not necessarily mean that we consider it relevant. For instance,
we could consider an abstraction (.Ax.M) relevant only in case M is of the form

.Ay1 ... Yn .zN1 ... Nm (n, m ~ 0). This means that we can end up with different
notions of what a stable relevant minimal information is.
In order to formalize such notions it is possible to define for each notion a reduction
relation such tpat

(a) if a term can produce a stable relevant minimal information we can get it by
means of the given reduction relation;
(b) the computation process represented by the reduction relation stops once a
stable relevant minimal information is obtained.

In the following we give a number of such reduction relations for .A-terms present in
the literature. All of them are proper restrictions of the usual !)-reduction relation.

Definition 1 Given the following axioms and rules:

(;3) (.Ax.M)N--+ M[Njx]
(17) .Ax.Mx -7 M ifx rf:. FV(M)
(v) M--+ N =:} ML--+ NL
(v)t M -7 N =:} M L -7 N L (proviso M is not a strong zero term*).

*That is, it cannot be reduced to a weak head normal form (as defined in Definition 2.2.) by means of the
reduction relation induced by the ((3) rule (Berarducci 1996). Such terms are called unsolvables l~f'order
0 in (Longo 1983) and strongly unsolvables in (Abramsky et al. 1993).

Types for trees

(~) M---* N :::} >..x.M---* >..x.N

we can define the following reduction relations on >..-terms.

(top reduction) -*tis the relation relation induced by (P) and (v)t
(weak head reduction) -*w is the reduction relation induced by (P) and (v)
(head reduction) -*his the reduction relation induced by (P). (v) and(~)

15

(eta head reduction) -*e is the reduction relation induced by (P). (v), (~) and
(11).

The weak head reduction is better known as lazy reduction (Abramsky et al. 1993).

The sets of terms in normal form with respect to the above defined reduction re­
lations can be described syntactically. Such description makes explicit the different
intended notion of stable minimal relevant information.

Definition 2 1. A top normal form* is a term of one of the following three kinds:

(a) an application term of the form xM1 ... Mm (m;:::: 0);
(b) an abstraction term >..x.M;
(c) an application term of the form M N, where M is a strong zero term.

2. A weak head normal form is a term of one of the following two kinds:

(a) anapplicationtermoftheformxMl ... Mm (m;:::: 0);
(b) an abstraction term >..x.M.

3. A head normal form is a term of the following kind:

(a) >..x1 ... Xn·YMl ... Mm (m, n;:::: 0).

4. An eta head normal form is a term of the following kind:

(a) >..x1 .. . xn.yM1 ... Mm (m,n;:::: 0),
where Xn 't Mm orxn E FV(yM1 .. . Mm-d·

Notice that the sets of normal forms in the above definition are presented in a proper
inclusion order, i.e. the set of top normal forms includes that of weak normal forms,
etc.

Example 3 Let ~n =: >..x. x ... x and On =: ~n ... ~n· Moreover, let Q =: .___. ..._____...
n n

>..x.f(xx), R =: >..zxy.x(zzy) and~~ = >..xy.xxy. Then

1. For each n ;:::: 2 the term On is an example of strong zero term.
2. 02 is not a top normal form, while On (for n ;:::: 3) are top normal forms that

cannot reduce to weak head normal forms.
3. >..x.02 is a weak head normal form which cannot reduce to head normal form.
4. ~~is a head normal form but it is not an eta head normal form.
5. >..f.f(QQ) and >..xy.x(RRy) are eta head normal forms.

• called mot stable form in (Kennaway et al. 1997).

16 Programming Concepts and Methods

Following (Berarducci 1996) we say that a term is mute iff it does not have a top
normal form.
With this definition we can represent in tree notation all the various related kinds
of information we can distract from a term. Given a term M for each of the four
reduction relations we can try to reduce M to normal form. If it has no normal form
then no information is obtainable out of M and its tree is .1. Otherwise, put the
information so obtained in a node and build the children of such a node by repeating
this process on the various subterms of the normal form. In case of head normal
forms this amounts to the usual construction of Bohm trees.

Definition 4 (i) The top tree It (M) of a term M is defined by cases as follows:

- if M -+t xN1 ... Nm (m ~ 0), then:

/t(M) = x

~
lt(Ni) . . . lt(Nm)

- if M -+t >.x.N, then:

Tt(M) = >.x

lt(N)

- if M -+t N P, where N is a strong zero term, then:

Tt(M) = @

~
Tt(N) Tt(P)

- otherwise: Tt(M) = .1

(ii) The weak tree Tv (M) of a term M is defined by cases as follows:

- if M -+w xN1 ... Nm (m ~ 0), then:

T..(M) = x

~
T..(Ni) . . . T..(Nm)

- if M -+w >.x.N, then:

Types for trees 17

T,(M) = AX

T,(N)

- otherwise: T,(M) = 1..

(iii) The head tree 1h(M) of a term M is defined by cases as follows:

- if M -+h AX1 ... Xn·YNl ... Nm (n, m 2: 0), then:

1h(M) = AX1 ... Xn·Y

~
1h(N!) . . . 1h(Nm)

- otherwise: 1h(M) = 1..

(iv) The eta tree Te (M) of a term M is defined by cases as follows:

- if M -+e AX1 ... Xn .yN1 ... Nm (n, m 2: 0), where Xn :f:. Nm or Xn E
FV(yN1 ... Nm_!), then:

- otherwise:

T.(M)= X
Te(Nl) . . . Te(Nm)

Te(M) = 1..

Finally the fifth family of trees we shall consider in this paper is the family of the
infinite 'fJ-normal forms of head trees (and hence of eta trees as well), as defined in
(Barendregt 1984). In order to give the definition of infinite 'fJ-normalform, we need
first to recall briefly the definition of infinite 'fJ-expansion of a variable.

Given a variable x one can consider a (possibly) infinite tree resulting by the limit
of a series of expansions like the following one:

We denote by T 2:'1 x the fact that Tis a (possibly) infinite "7-expansion of x.
We refer to (Barendregt 1984) (10.2.10) for a formal definition of 2:'7.

18 Programming Concepts and Methods

Definition 5 LetT be a head tree, i.e. T ::: 7h(M) for some M. The infinite 7]­

normal form ofT, 001J(T), is defined as follows:

007](1.) = l.

AX! .. . Xn·Y

1\
001J(T!) .. . oo1J(Tm)

It is possible now to define infinite eta trees.

ifxn ~'1 Tm and
Xn rf. FV(1i),
l<i<m-1

otherwise

Definition 6 The infinite eta tree 1i(M) of a term M is defined as oo17(le(M)).

As recalled in the introduction, the interest of the above tree representations is
that they represent the local structure (or, equivalently, the A-theory) of different A­
models.
As usual when dealing with (possibly) infinite structures, one can consider finite
approximations. In our case, we can get approximations by pruning our trees. We
need to add a constant in our language (l.) in order to represent the (possibly infinite)
parts of the trees that have been pruned. An approximation of a tree then represents
certain finite stable information that can be extracted from a term.
Given a notion of tree, approximations of a tree can be represented as terms in a
slightly enriched A-calculus.

Let A.t be the set of terms obtained by adding the symboll. to the syntax of the
pure A-calculus.
We extend the·· notion of ~rreduction (t E { t, w, h, e}) to A.t by adding the clauses

l.M ~ l. fortE {w,h,e}, Ax.l. ~ l. fortE {h,e}.

Definition 7 Fort E { t, w, h, e }, we define At ~ A.t as the set of normal forms
with respect to ~t- Ai is defined to be equal to Ae.

We denote by Ain) (t E {t, w, h, e, i})the set of approximate normal forms with
at most n symbols.
(M)ih) (t E {t, w,h, e, i}) denotes the approximate normal form representing the
tree obtained out of Tt (M) by cutting it at height h and putting as leaves at the end
of the cut edges the constant 1..
It is trivial to verify that (M)ih) E At for all M. Since the tree representations

easily extend to approximate normal forms, we define (A)ih) similarly. For instance,

Types for trees 19

by looking at Tt(~3~3), it is easy to verify that (~a~a)~h) for h = 0, 1, 2, 3 are
..L, ..L..L, ..L..l(Ax . ..L) and ..L..L(Ax . ..L)(Ax.x..L..L).

There is a natural partial order between approximants which can be easily formal­
ized by induction.

Definition 8 FortE {t, w, h, e, i}, the relation =::;t is the least partial order on .At,
such that:

(a) ..L :::;t A;
(b) if A :::;t A', then Ax.A =::;t Ax.A';
(c) if Ai =::;t AUori = 1, ... , n, then A1 .. . An :::;t Ai ... A~.

It is trivial to verify that (M)~h) =::;t (MW+l) for all h.

It is possible to associate to a A-term, for any possible notion of stable minimal
relevant information, the sets of its approximants, that is the set of all the finite ap­
proximations of its corresponding tree.

Definition 9 FortE {t, w,h, e, i} the set .At(M) ofapproximants of M is defined
by:

.At(M) ={A E .At I 3h. A :::;t (M)~h)}.

For example .At(x(flgi)(II)} contains ..L =::;t x..L..L =::;t x(..LI)I =::;t x(..L~3I)I =::;t
x(..L~3~3I)I :::;t

It is natural to expect that our different notions of trees and approximants represent
the very same concepts, that is that they formalize the same observational behaviours
of A-terms.

Theorem 10 Fort E { t, w, h, e, i} and for any M, N:

/t(M) = /t(N) iff .At(M) = .At(N).

One can show also that It (M) is the least upper-bound of .At (M) wrt :::;t.

It is possible to extend each partial order :::;t to a partial order !;t naturally inducing
an equivalence relation on sets of approximants. Such equivalence can be proved to
coincide with the identity relation on sets of approximants and hence (by Theorem
10) to coincide with the identity on trees.

Definition 11 J. Let !;t be the relation :::;t.
2. For t E { w, h} the relation !;t is the least partial order on .At which satifies

clauses (a),(b),(c) of =::;t and, moreover,

(d) Ay.xAl···AnY!;t xAl···Anforallvariablesy¢ FV(xAl···An) (1 S
iS n).

3. For t E { e, i} the relation !;t is the least partial order on .At which satifies
clauses (a),(b),(c) of =::;t and, moreover,

(d) if A !;t xA1 ... AnY where y ¢ FV(xA1 ... An), then Ay.A !;t xA1 ... An;

20 Programming Concepts and Methods

(e) xAl···An ~t ..\zl···Zm.XAl···AnBl···Bm, wherex ~ {z1, ... ,zm}
and Bj :t. l_for 1 ~ j ~ m.

Definition 12 FortE {t, w, h, e, i} and any two terms M and N we define:
At(M) ~t At(N) <=> for all A E At(M) there is BE At(N) such that A ~t B,
and vice versa.

Lemma13 FortE{t,w,h,e,i},

At(M) ~t At(N) iff At(M) = At(N) iff 1t(M) = 'Tt(N).

The main motivation for the introduction of ~t is that it can be proved to be
compatible with the typings that we shall introduce in the next section.

3 TYPES AND TYPE ASSIGNMENT SYSTEMS

As stated in the introduction, our static tools to analyse trees (or, equivalently, their
corresponding sets of approximants) will be type assignment systems, in particular
type assignment systems using intersection-type-like disciplines.
In type assignment systems one derives statements ofthe form M :a, where a term
M gets assigned a type a and a represents a certain finite information about M.
Roughly speaking, a type will be used as a description of a particular notion of nor­
mal form. Hence, it is not possible to use a unique set of types to deal with all the trees
defined in the previous section. We shall need, instead, three sets of types: Typest to
characterize Tt. Typeswh to characterize Tv and 7h, and Typesei to characterize Te
and 7i..
After defining these sets of types, in this section we shall define an order ~t param­
eterized by the notion of tree. Then-parametrized by this order- our type assign­
ment systems will be defined (almost) uniformly for all notions of tree. All these
type assignment systems will be able to detect that a term carries no information:
Tt(M) = l_ if and only if w is the only type that the type system related to 7t can
assign toM.
In the following, we shall use the following notation: ift E {t, w, h, e, i}, then

t = { =~
eJ.

3.1 Types

ift = t

ift =wort= h
ift = e or t = i.

Let us begin with Typest. To describe a top normal form which is the application
of two terms, following (Berarducci et al. to appear) we introduce a particular type
constructor: the application a(3 between two types a and (3. In the intended interpre­
tation a term has type a(3 if its top normal form is the application of two terms, the

Types for trees 21

first one of type a and the second one of type f3. We differ from (Berarducci et al. to
appear) since we build types starting only from the unique constant w, i.e. we don't
introduce a new type constant to be interpreted as the set of all strong zero terms.
We have to prevent the presence of inconsistent types. For example, ww says that
a top normal form is the application of two terms, the first one being a strong zero
term, whereas w -+ w says that a top normal form is an abstraction. So we need to
prevent their intersection ww 1\ (w -+ w).
To describe Typest we can define first a set of "pretypes" and then restrict it.

In writing types we assume the following precedence between operators: applica­
tion, intersection, arrow. Moreover, a-+ P' -+ 1 is short for a-+ f3 ... -+ f3-+ 1· ..__,__..

n

Definition 14 (Pretypes} The set of pretypes PTypes is defined by the grammar:

p ::= w I p-+ p I p p I p 1\ P.

Definition 15 (Typest) Given a E PTypes, we define two predicates a E Typest
and a fj. Typest by simultaneous induction on a by stipulating that a E Typest iff
one of the following conditions holds (and a fj. Typest iff all the conditions do not
hold):

(Universal kind) a is w.
(Arrow kind) a is a finite intersection of the form Ae1 (a; -+ /3;) where a;, /3; E

Typest andforall J ~I either 1\jeJ /3j E Typest or 1\jeJ aj fj. Typest.
(Applicative kind) a is wf3, ora is a finite intersection of the form 1\;ei a;f3i where

1\iei f3i E Typest, and Ae1 ai E Typest is of applicative kind.
If a E Typest, then w 1\ a E Typest: the kind of w 1\ a is defined to be the kind of

a.

In what follows we shall consider only types. a, {3, 1 will range over types of any
kind, u, r, p will range over types of arrow kind (arrow types}, 11", Jl., 11 will range
over types of applicative kind (applicative types).

To describe normal forms other than top normal forms, applicative types are not
needed. Moreover, since all the intersections are meaningful, the definition ofTypeswh
and Typesei can be given in a direct way.
However, for weak head normal forms and head normal forms, we need to have a
new constant,(, representing A-free terms*. Roughly speaking, (can be seen as the
collapse of all the applicative types.

Definition 16 (Types_h) The set of types Types•h is defined by the grammar:

Tvh ::= W I (I Twh -+ Tvh I Tvh 1\ Tvh•

* Sangiorgi in {Sangiorgi 1994) proves that >.x.xx and >.x .x(>.y.xy) have the same types when types are
built starting from w using arrow and intersection type constructors. Clearly these tenns have different
weak and head trees.

22 Programming Concepts and Methods

In order to define Typesei, since terms are considered modulo 'TJ, we are forced to
equate all atomic types to intersections of arrow types. This means that another type
constant, {), is needed.

Definition 17 (Typese;) The set of types Typese i is defined by the grammar:

Tei ::= W I (I {) I Tei ~ Tei I Tei 1\ Tei ·

3.2 Type preorders

On the sets of types of the previous subsection we define five preorder relations
which all take into account the meaning of w as universal type, of ~ as function
space constructor, and of 1\ as intersection. These five preorders have also distin­
guished clauses which make them suitable to describe the different trees.

The preorder :St defined on Typest reflects the interpretation of applicative types.
The preorder :Sh defined on Types11h equates w tow ~ w, since we want to take into
account the reduction >.x .l_ ~ l_. The preorders :Se and :Si equate all atomic types
to arrow types. They differ since in :Si the left argument of this arrow type is always
w, while this is not true for :Se. This difference is essential to mimic either infinite or
finite 1]-reductions, as we shall see later.

Definition 18 1. Let :St be the smallest binary relation over Typest such that:

- (a) it is a preorder in which 1\ is the meet and w is the top;

- the arrow satisfies:

(b) a~ w ::; w ~ w; (c) (a~ f3) 1\ (a~ 7) :Sa~ f3 1\ ")';

(d) a ~ a' and f3 :S {31 imply a ~ f3 :S a' ~ /3'.
- the applicative types satisfy:

(e) 'II' a 1\'Tr' a' :S (11' 1\ 11'1)(a 1\ a'); (f) 11' :S 11'1 and a :S a' imply 'II' a :S 11'1 a'.

2. Let :Sv be the smallest binary relation over Typesvh which satisfies the clauses
(a)-(d) above.

3. Let :Sh be the smallest binary relation over Types11h which satisfies the clauses
(a)-(d) above and moreover:

(g) w::; w ~ w.

4. Let :Se be the smallest binary relation over Typesei which satisfies the clauses
(a)-(d), (g) above and moreover:

(h) (::; {) ~ (::; (; (i) {) ::; (~ {) ::; {).

5. Let :Si be the smallest binary relation over Typesei which satisfies the clauses
(a)-(d), (g) above and moreover:

(l) (::; w ~ (::; (; (m) iJ::; w ~ iJ :S {},

Types for trees 23

a =t (3 is short for a :::;t (3 and (3 :::;t a, where t E { t, w, h, e, i }.
Notice that clause (b) is derivable from clause (g), so we can eliminate clause (b)

from the definition·s of :::;h, :::; 9 , :::;i.
For example wehavewAa =t a for every type a E Typest where t E {t, w, h, e, i},

(w -+ w) A rr =t rr for every arrow type rr E Typest, (w-+ w) A a =t a for every
type a E Typest (proviso that a =f.v w when t = w) where t E { w, h, e, i }, and
ww A rr = rr for every applicative type rr E Typest.

3.3 Type assignment systems

For each preorder introduced in the previous subsection, we define a type assignment
system associating .\-terms to the corresponding set of types. As said at the beginning
of this section, these systems can be defined almost uniformly. In fact there are six
rules which are common to all systems and which are standard in intersection type
disciplines. The type assignment systems {f-t he{v,h,e,i} are defined by such six
rules, by instantiating rule (:::;t) with the corresponding preorder. However, to define
f-t we have to deal with applicative types, and hence we need two extra rules:
(wapp) and (app). Moreover, a rule (Eqf3) is needed as well, since applicative types
are not invariant under (3-expansion of subjects. For example, without (Eqf3) we have
1- !l2l: w(w-+ w), but If (.\xy.yA2x)IA2: w(w-+ w).

A basis r is a (finite or infinite) set of statements of the shape x : a, with distinct
variables as subjects. In writing r, x : a we assume that x does not occur in r. We
denote by Bt, Bvh, Bei the sets of bases whose predicates belong to Typest, Types11h,
and Typesei, respectively.

Definition 19 {Type assignment systems) Let us consider the following axioms and
rules (where M, N are terms or approximate normal forms)

(Ax) f,x:a f- x:a

(-+I) f,x:a f- M:,B
r f- .\x.M:a-+ (3

(AI/ f- M: a f f- M:(J
ff-M:aA,B

(w) r f- M:w

(-+ E) f f- M: a -+ (3 r f- N: a
ff-MN:(J

(<) r f- M: a a <t (3
_t ff-M:,B

() M is a strong zero term r f- N: a () r f- M: rr r f- N: a
wapp f f- M N:wa app f f- M N: rra

(Eq) f f- N: a M =f3 N
f3 ff-M:a

1. The type assignment system f-t is defined by the axioms and rules (Ax), (w),

24 Programming Concepts and Methods

(--+I),(--+ E), (AI), (wapp), (app), (Eqf3), and(~t), where r E Bt ando:,(3 E
Typest.

2. The type assignment system 1-- t for t E { w, h, e, i} is defined by the axioms
and rules (Ax), (w), (--+ I), (--+ E), (A I), and (~t), where r E Bt and o:, (3 E
Typest.

Since terms are considered modulo a-conversion, the weakening rule is admissi­
ble. Moreover we have fiM 1--t M:o: whenever f 1--t M:o:, where fiM = {x:(3 E
r I X E FV(M)} fortE {t,w,h,e, i}.

We want to consider unions of bases taking the intersections of the types with
the same subjects. Since not all intersections of types in Typest are types, we need
to allow in this case only unions of compatible bases, according to the following
definition. For the other sets of types any two arbitrary bases are compatible.

Definition20 Left E {t,wh,ei}. Wesaythattwobasesf,f' E Bt are compatible
if and only if X : 0: E r and X : (3 E r' imply 0: A (3 E Typest. If r and r' are
compatible bases we define their union l±J as:

fl±Jf' {x: o:A(3jx: o:Efandx: (3Ef'}.

Accordingly we define: f ~T' ¢:} :Jf". f l±J f" = f'.

Notice that X : 0: A w E r l±J f' whenever X : 0: E r and X f/:_ Dom(f'), since by
convention we get x:w E r'. Similarly when X : (3 E r' and X f/:_ Dom(f).

As expected, we have generation lemmas for all the given type assignment sys­
tems. Due to the presence of rule (Eqf3). in the generation lemma for 1--t we need
to consider approximate normal forms instead of arbitrary terms.

Lemma 21 (Generation Lemma for 1--t)

/. r 1--t l_: 0: implies 0: =t w;
2. Iff 1--t A: o:, o: =f:.t w, and

(a) A= X, then X: (3 E r for some (3 ~t o:;
(b) A= >.x.A', then 0: =t 1\;Ef(o:; --+ (3;) and ViE I r, X: o:; 1--t A' : (3;;
(c) A = X A 1 ... An A'' then there is (3 such that r 1-- t A': (3, and either

r 1--t xA1 ... An: (3 --+ o:, oro: 2:t rr(3 and f 1--t xA1 ... An: 1r for some rr;
(d) A ::: l.A1 .. . AnA', then there is (3 such that r 1--t A':(3, o: 2:t rr(3 and

f 1-- t l.A1 ... An: 1r for some rr.

3. Iff 1--t A: o: and f 1--t A: (3, then o: A (3 E Typest.

Lemma 22 (Generation Lemma for 1--t) Lett E { w, h, e, i }.

I. f 1--t l.: o: implies o: =t w;
2. f 1--t x: o: if.fx: (3 E f for some (3 ~to:;

Types for trees 25

3. r f-t >.x.M:a (and a =/=v w when t = w) iff a =t /\;e 1 (a;-+ {3;) and ViE I
r,x: a; f-t M: {3;;

4. r f-t M N: a iff there is (3 such that r f-t M: (3-+ a, and r f-t N: (3.

With a standard proof we can show that rule (Eq{j) is admissible in the systems
f-t fortE {w, h, e, i}.

Our type assignment systems enjoy the approximation theorem, i.e. we can deduce
a type for a term M iff we can deduce this type for an approximant of M, w.r.t. the
relative notion of approximant (Theorem 23). Such a theorem, having an interest also
by itself, will be used in the next section to show that our type assignment systems
are tools to analyse the observational behaviour represented by trees.

The Approximation Theorem can be proved by means of a variant of Tail's "com­
putability" technique (Tait 1967) by defining sets of "approximable" and "com­
putable" terms.

Theorem23(ApproximationTheorem) Lett E {t,w,h,e,i}.
r f-t M: a iff there is A E At(M) such that r f-t A: a.

4 CORRESPONDENCE BETWEEN TREES AND TYPINGS

In this section we present the main result of the paper, namely that our type as­
signment systems can be used to analyse the observational behaviour represented by
trees. As recalled in the introduction, similar results are present in the literature for
particular notions of tree.

We shall provide an (almost) uniform proof for a theorem which considers other
trees besides the ones of the results recalled above. More precisely, we shall prove
that f-t derives the same types for two terms M, N iff M, N have the same t-trees,
wheret E {t,w,h,e,i}.
In order to prove this property, we follow an approach similar to (Dezani et al. 1997)
and to (Berarducci et al. to appear) in that we do not allow an infinite set of type
variables. The expressive power needed for our purposes and that could be provided
by an infinity of type variables can be obtained instead by defining, as we shall
do, an infinite set of constant types. These constants will also allow to define the
characteristic pairs (basis; type} for approximate normal forms.
The key idea is that characteristic pairs give us sufficient information to discriminate
between approximate normal forms obtained by pruning (in a suitable way) different
trees.

We introduce three different sets of type constants, one for each set of types
Typest,
Typesvh and Typesei. It is easy to verify that each one of these constants belong to
the corresponding set of types.

26 Programming Concepts and Methods

Definition 24 1. Let 0 = (ww-+ w-+ w) 1\ ((w-+ w) -+ ww). We define ifJo as the
type w(ww -+ 0) and inductively ¢Ji+1 = ifJ;O.

2. Define 1/!}n) = ((-+ wi-+ (-+ wn-i-+ () 1\ (for all i::; n.

3. Define X~n) = (-+ 1'J; -+ (-+ 1'Jn-i -+ (-+ 1'J 1\ (for all i :S n.

We need to consider special kinds of bases which allow us to distinguish occur­
rences of different variables or even different occurrences of the same variable. More
precisely in presence of applicative types it suffices to give different types to occur­
rences of different variables, but in all other cases we need to give also different types
to different occurrences of the same variable.

Definition 25 1. We definer t E Bt as the basis {xn: ifJn I n EN}.
2. f E Bvh is a special basis of degree n if each type declaration in f has the form

x:f\;E 1 (a~i)-+ ... -+ a~]-+ 1/!ln)) where n;::; nforalli E I and moreover

each 1/!ln) occurs only once as last type.
3. f E Bei is a generalized special basis of degree n if each type declaration in f

has the form x: (or x: 1\;El(a~i) -+ ... -+ a~] -+ (n -+ Xln)) where n; ::; n

for all i E I and moreover each Xln) occurs only once as last type.

Notice that f t contains only applicative types, while special basis and generalized
special basis contain only arrow types and atomic types.

We associate now to each approximate normal form A EAt a basis f E Bt and
a type 1 E Typest fort E { t, w, h, e, i }. We call the pair (f; 1) the t-characteristic
pair of A.

Definition 26 Let A EAt·

1. The t-characteristic type ctt (A) of A is defined as follows.

(a) ctt(>.x;.A) = ifJ;-+ ctt(A),
(b) ctt(l_Al .. . An)= wctt(At) ... ctt(An),
(c) ctt(x;Al ... An)= ifJ;ctt(At) ... ctt(An)·

2. The t-characteristic pair cpt (A) of A is (f t; ctt(A)).

Definition 27 Let A E Ain) fortE {w, h, e, i}.

The t-characteristic pair of degree n ppin)(A) of A is defined as follows.

1. lfppt)(A) = (f, x: ,8; a), then ppin) (>.x.A) = (f; ,8-+ a).

2. 1fppin) (A) = (f; a) and x does not occur in f, then ppin)(>.x.A) = (f; w -+a).

3. 1fppin)(A) = (f;; a;) where i ::; k and f = l:!-J~=l f; is a special basis of degree

n, thenppin)(l_Al· .. Ak) = (f;wa1 .. . ak)·

Types for trees 27

4. Ift E {w,h},pp~n)(A;) = (f;;o;)wherei S kandf = l:!:J~= 1 f;I±J{x:o1-+
... -+ Ok -+ '1ft)} is a special basis of degree n, then pp~n)(xA1 ... Ak) =
(f; 'if)nl). (In particular when k = 0 we obtainpp~n)(x) = ({x: '1ft)}; '1/>)n))).

5. 1ft E {e,i},pp~n)(A;) = (f;;o;)wherei s kandf = l:!:J~= 1 f;I±J{x:o1-+
... -+ Ok -+ (n -+ XJn)} is a generalized special basis of degree n, then

ppin)(xA1 ... Ak) = (f;(n-+ x)n>). (Inparticularwhen k = 0 we obtain

pp~n)(x) = ({x:(n-+ x]n)};(n-+ x)n))).

Notice that we can always choose the r; in such a way the conditions of the previous
definition are satisfied.

We can now prove that, in all cases, if the t-characteristic pair of A is (f; 1). and
if we deduce r 1-t B: 1 (and some conditions on the number of symbols of B or of

(B)~ h), where h is the height of the tree of A, hold), then A ~t B, where ~t has
been defined in Definition 11.

Lemma 28 1. Jff t 1-t A: c/J; then A= x;.
2. Iff t h A: 1m and 1l'o =/= c/J; for all i, then A =: A1A2 with f t 1-t A1: 1l' and

ft 1-t A2:o.
3. Ifft h A: c/J;-+ o, then A= AX;.A' andft 1-t A': a.
4. Iff t 1-t B: cit (A) then A ~t B.

Lemma 29 Lett E {w, h}, A E A~n) and pp~n)(A) = (f; o). Then B E At and
f 1-t B: o imply A ~t B.

Lemma 30 Assume t E {e, i}, A, BE At· Let h be the heightofTt(A), and n be

such that A, (B)~h) EAt>. Thenppin)(A) = (f;o) andf 1-t B: o imply A ~t B.

Theorem 31 (Main Theorem) For t E { t, w, h, e, i} the following conditions are
equivalent:

1. yt(M) = yt(N);
2. f 1-t M: o ijff 1-t N: a for all f, o.

Proof (1.)=>(2.). If M and N have the same trees, then they have the same sets
of approximate normal forms, and therefore the same types by the Approximation
Theorem.

(2.)=>(1.). If yt(M) =/= yt(N), then by Lemma 13 we can find an approximate
normal form A such that A E At (M) and there is no B E At (N) such that A ~t B
(or vice versa). If t = t we have by the Approximation Theorem and Lemma 28(4.)
that r t 1-t M: cit(A) and ft 1ft N: cit (A). If t E {w, h} let n be so big that
A E Ain) and (f; o) = ppin)(A). We have by the Approximation Theorem and
Lemma 29 that f 1-t M: o and f 1ft N: o. If t E { e, i}, let h be the height

28 Programming Concepts and Methods

of 1f(A) and n be so big that A, (N)~h) E A~n). This implies (B)~h) E A~n) for

all B E A(N). Moreover let (f; a) = pp~n)(A). We have by the Approximation
Theorem and Lemma 30 that r 1-t M: a and r ift N: a. 0

In all cases we get a discrimination algorithm, i.e. for two arbitrary terms M, N
with different t-trees, we can always find a basis rand a type a such that r 1-t M : a
and r ift N : a, or vice versa. The less easy case is that oft E {e, i}. In this
case we take an approximate normal form A such that A E At(M) and there is no
B E At (N) such that A ~t B (or vice versa). Let h be the height of 7f (A) and n be

so big that A, (N)~h) E An). This implies (B)~h) E A~n) for all B E A(N). Now

we can choose (f; a)= pp~n)(A).

Acknowledgements. This paper has strongly benefited from comments and remarks
by the Anonymous Referees. Matteo Sereno has been of great help in solving some
J5I':EX compilation problems.
The first author expresses his gratitude to Roberto Nobilio and Valeria Bosso for
interesting discussions. The second author thanks Masako Takahashi for hospitality
and enlightening discussions. The third author, whose work has been supported by
a COE grant of the Science and Technology Agency of Japan, thanks Yoshiki Ki­
noshita for introducing him to the ETL environment, and Vincent van Oostrom for
fruitful discussions.

REFERENCES

Abramsky S .. Domain theory in logical form. Ann. of Pure andAppl. Logics, 51, 1991, 1-77.
Abramsky S., Ong C.-H.L .. Full abstraction in the lazy .>.-calculus./nfo. and Comp. 105, 1993,

159-267.
Alessi F. Type preorders. CAAP'94, LNCS 787, Springer-Verlag, Berlin, 1994, 37-51.
Barendregt H .. The Lambda Calculus Its Syntax and Semantics. Studies in Logic 103, North­

Holland, Amsterdam, 1984.
Barendregt H., Coppo M., Dezani-Ciancaglini M .. A filter lambda model and the completeness

of type assignment. J. Symbolic Logic 48, 1983, 931-940.
Berarducci A .. Infinite Lambda-calculus and Non-sensible Models. Logic and Algebra, Lec­

ture Notes in Pure and Applied Mathematics 180, Marcel Dekker Inc., 1996, 339-
378.

Berarducci A., Dezani-Ciancaglini M .. Infinite lambda-calculus and types. Theor. Comp. Sci.,
to appear.

Boudol G .. A lambda calculus for (strict) parallel functions. Info. and Comp. 108, 1994, 51-
127.

Boudol G., Laneve C .. The discriminating power of multiplicities in the A-calculus. Info. and
Comp. 126(1), 83-102, 1996.

Coppo M., Dezani-Ciancaglini M., Honsell F., Longo G .. Extended type structures and filter
lambda models. Logic Colloquium '82, North-Holland, Amsterdam, 1983,241-262.

Coppo M., Dezani-Ciancaglini M., Venneri B .. Principal type schemes and A-calculus seman­
tics. To H.B.Curry, Essays on Combinatory Logic, Lambda Calculus and Formal­
ism, Academic Press, New York, 1980, 535-560.

Types for trees 29

Coppo M., Dezani-Ciancaglini M., Zacchi M .. Type theories, normal forms and 'Doo lambda
models. Info. and Contro/72(2), 1987, 85-116.

Dezani-Ciancaglini M., de'Liguoro U., Piperno A .. Filter models for conjunctive-disjunctive
.A-calculus. Theor. Comp. Sci. 170(1-2), 1996, 83-128.

Dezani-Ciancaglini M., de'Liguoro U., Piperno A .. A filter model for concurrent .A-calculi.
SIAM J. ofComp., to appear.

Dezani-Ciancaglini M., Tiuryn J., Urzyczyn P .. Discrimination by parallel observers. LICS
'97, IEEE Comp.Soc. Press, Los Alamitos, 1997, 396-407.

Engeler E .. Algebra and combinators. Algebra Universalis 13(3), 1981, 389-392.
Hyland M .. A syntactic characterization of the equality in some models of the .A-calculus. J.

London Math.Soc.l2(2), 1976,361-370.
Kennaway J. R., Klop J. W Sleep R., de Vries F.J .. Transfinite reductions in orthogonal term

rewriting systems. Info. and Comp. 119(1), I 995, 18-38.
Kennaway R., Klop J. W., Sleep R., de Vries F.J .. Infinitary lambda calculus. Theor. Comp.

Sci., 175(1), 1997,93-126.
Kennaway J.R., van Oostrom V., de Vries F.J .. Meaningless terms in rewriting. ALP'96, LNCS

I I 39, Springer-Verlag, Berlin, 1996, 254-268.
Levy J.J .. An algebraic interpretation of the >. - f3 - K-calculus and an application of the

labelled .A-calculus. Theor. Comput. Sci. 2(1), 97-114, 1976.
Longo G .. Set theoretical models of lambda calculus: theory, expansions and isomorphisms.

Ann. of Pure and Appl. Logic 24, I 53-188, 1983.
Nakajima R .. Infinite normal forms for the .A-calculus. LCCST, LNCS 37, Springer-Verlag,

Berlin, 1975, 62-82
Ronchi della Rocca S .. Characterization theorems for a filter lambda model. Info. and Control

54, 1982,201-216.
Sangiorgi D .. "The lazy .A-calculus in a concurrency scenario. Info. and Comp. 111(1), 120-

153, 1994.
Scott D.S .. Continuous lattices. TAGL, LNM 274, Springer-Verlag, Berlin, 1972,97-136.
Scott D.S .. Data types as lattices. Siam J. Comput. 5, 1976,522-587.
Scott D.S .. Domains for denotational semantics. ICALP'82, LNCS 140, Springer-Verlag,

Berlin, 1982,577-613.
Tait W.W .. Intensional interpretation of functionals of finite types I. J. Symbolic Logic 32,

1967,198-212.

Wadsworth C.P .. The relation between computational and denotational properties for scott's

Doo models of the .A-calculus. Siam J. Comput. 5, 1976,488-521.

BIOGRAPHY

FRANCO BARBANERA was born in Latina (3 Nov. 1963). Ph.D. at the University of Torino.

Assistant professor at the University of Torino since 1992.

MARIANGIOLA DEZANI-CIANCAGLINI was born in Torino (22 Dec. 1946). Ph.D. at the

University of Nijmegen. Full professor at the University of Torino since 1981. Member of

IFIP W.G.2.2 on "Formal Description of Programming Concepts", of the Editorial Board of

"Information and Computation", of the "Academia Europaea" and of LICS Advisory Board.

FER-JAN DE VRIES received his Ph.D from the University of Utrecht in 1989. After a six

year stay at CWI in Amsterdam he went to Japan as a visiting researcher at NTT and Hitachi.

Currently he is projectleader of the Rewriting Group of the El.Lab. in Tsukuba, Japan.

