
14
An extension of the program
derivation format
A.J.M. van Gasteren and A. Bijlsma
Department of Mathematics and Computing Science, Eindhoven University of
Technology
P. 0. Box 513, 5600MB Eindhoven, The Netherlands
telephone + 31-40-247-4317, fax + 31-40-245-1733
e-mail {net ty, lexb }@win. tue. nl

Abstract
A convention is proposed for embedding program statements into the program deriva­
tion calculus, with the aim of simplifying the stepwise construction of programs.

Keywords
Program derivation, predicate calculus, data refinement

1 INTRODUCTION

In this paper we propose an extension to the proof format commonly used for cal­
culational program derivation. This format, which was invented by W.H.J. Feijen, is
becoming widely used in the computing community and has proved itself very useful
for program derivation as well as the construction of mathematical proofs in general.
In program derivation, it is usually employed together with the axiom of assignment
to derive program fragments consisting of a single concurrent assignment in a fixed
context. The extension is intended to facilitate the derivation of programs consisting
of a sequence of assignments or procedure calls. To this end, we show how program
statements may be successively embedded in an ongoing derivation, the intended re­
sult of which is the stepwise construction of the program in the course of the calcu­
lation.

2 REVIEW OF THE PROOF FORMAT

In the usual version of the proof format we find derivations like

p

{explanation of [P = QJ}
Q

-<== {explanation of [Q -<== R]}

Programming Concepts and Methods D. Gries, & W-P. de Roever (Eds.)
© l998IFIP. Published by Chapman & Hall

168 Programming Concepts and Methods

R '

where P, Q, R denote predicates on a fixed space, and the brackets [...] denote uni­
versal quantification over that space, as in Dijkstra et al. (1990). From this we may
draw the conclusion [P {= R]. More generally, for any structures P, Q, R and rela­
tional binary operators E9 and ® the derivation

p

E9 {explanation of [P E9 Q]}
Q

® {explanation of [Q ® R]}
R

allows us to conclude [P (ffi)o(®) R], where (ffi)o(®) is the relational composition
of binary relations E9 and®. This conclusion is only useful if composition (E9)o(®)
can be simplified, i.e. is equal to or implies a single familiar operator. Composition
(=>)o({=),for instance, is decidedly not useful. The most commonly used composi­
tions are composition with equality and continued compositions of a transitive oper-
ator:

(=)o(E9) = (ffi)

(ffi)o(=) = (ffi)

(ffi)o(ffi) => (ffi) for transitive E9 '
(ffi)o(ffi) = (ffi) for transitive and reflexive E9

Here is a simplification that is perhaps less familiar: if we write x =m y for x mod m =
y mod m, the derivation

X

=m {explanation of [x mod m = y mod m]}
y

=n {explanation of [y mod n = z mod n]}
z

admits the conclusion [x mod (m gcd n) = z mod (m gcd n)]. Another slightly
unusual simplification is

(¢')o(¢') = (=) .

An example of its usefulness is the proof of Theorem 4 ofBijlsma et al. (1996).

An extension of the program derivation format 169

3 DERNATIONSCONTA~GPROGRAMSTATEMENTS

For structure transformer f and relational binary operator E9, we propose to admit
into program derivations steps like

p

E9 <Jjt>

{explanation of [f.P E9 Q]}
Q

which, as the hint suggests, will signify the validity of [f. P E9 Q]. We propose to
pronounce the above step, in the case where E9 is {::::, as "P follows by f from Q",
and similarly in other cases. As to the combination of such steps,

p

E9 <Jjt>

{explanation of [f. P E9 Q]}
Q

® <Jgt>

{explanation of [g. Q ® · R]}
R

admits only the conclusion [f.P E9 Q] A [g.Q ® R], which cannot be simplified
any further without knowledge of the properties of the operators and structure trans­
formers involved. However, if the operators are=, it follows that [g.(f.P) = R]; if
the operators are{:::: and g is monotonic, it follows that [g.(f.P) {:::: R].

In this paper, we limit ourselves to a special case where the insertion of structure
transformers yields particularly useful conclusions. From now on f will be a partic­
ular predicate transformer, namely the weakest precondition of a program statement
S. For this particular purpose, we prefer to write <J S t> rather than <1 wp.S t>. As
promised in the Introduction, this allows us to write derivations like

p

{:::: <1St>
{explanation of [wp.S. P {:::: Q]}

Q
<lTt>

{explanation of [wp. T. Q = R]}

R '

and draw the conclusion

{R} T; S {P} .

170 Programming Concepts and Methods

Observe that the statements of the program are discovered consecutively in the course
of a single derivation. Because

p

<= {explanation of [P <= Q]}
Q

is equivalent to

p
<= <1 skip 1>

{explanation of [P <= Q]}
Q,

steps introducing a program statement may be freely intermixed with classical steps
expressing a strengthening or an equivalence.

Example 1 The task is to write a program that cyclically rotates the values of in­
teger variables x, y, z and uses neither auxiliary variables nor multiple assignments.
The analogous program with two variables occurs in many textbooks of programming
(e.g. Dijkstraet al. (1984)) as an example of how to use the semantics of assignment,
but it is always given as a task for a posteriori verification, never derived. The speci­
fication of the problem is

{true}
rot.x.y.z
{x = y. 1\ y = z. 1\ z = x.} ,

where we have followed the convention of denoting the original value of x by x. (pro­
nounce 'x old'). (This can be seen as an application of the traditional 'specification
variable' or 'logical constant' approach where the precondition is implicitly extended
with terms like x = x •.)

Without introducing statements into derivations there is really no good way to tackle
this. With statements, however, we may derive

X = Ye 1\ y = Ze 1\ Z = Xe

<I X := X + y + Z I>

{to bring y and y. together in a single conjunct}
X + y + Z = Ye 1\ y = Ze 1\ Z = Xe

<1 y := -x + y - z 1>

{to create a term y = y.}
y = y. 1\ -X+ y- Z = Ze 1\ Z = Xe

<1 z := -x + y - z 1>

{to create a term z = z.}

An extension of the program derivation format

y = y. 1\ z = z. 1\ -x + y- z = x •
.q x := -x + y- z 1>

{to create a term x = x.}
y = Y• 1\ Z = z. 1\ X = x. .

171

(Note that the first step in this derivation is rather arbitrary: it should satisfy the criteria
that it introduces y into the first conjunct and does not remove x from it, but apart
from these we have a lot of choice. After the first step, however, there is no more
choice and the calculation is guided entirely by the wish to create the conjuncts of
the precondition one by one.)

0

We conclude that the specification is satisfied by the program

{true}
x := -x + y -z

; z := -x + y- z
; y :=-X+ y- Z

; X:= X+ y +z
{x=y. 1\ y=x. 1\ z=x.}.

4 DERIVATIONS CONTAINING COERCION STATEMENTS

For every predicate B, a program statement S is defined by the condition that, for
every predicate R,

[wp.S.R = (R {= B)].

Such a statementS is called a coercion statement in Morgan (1990). We shall denote
the coercion statement corresponding to a boolean expression B by B as well, as no
confusion threatens. The coercion statement behaves like magic in case -.B holds,
and hence it is not implementable; its value lies in the fact that Hoare triples like

{P} B; S {Q}

and

{P} -.B; T {Q}

can be combined into

{P}

172

ifB-+ S
~ -.B -+ T
fi
{Q} 0

Programming Concepts and Methods

We shall see several cases of this use of coercion statements to produce selection state­
ments in the next sections. In the present section, however, we concentrate on deriva­
tions that contain only coercion statements, i.e. no statements of other kinds. It will
be seen that these can be used as a way to introduce local hypotheses into proofs that
may have nothing to do with programming at all.

An important ingredient of natural deduction systems is their ability to introduce
local hypotheses into a proof. Equational reasoning, as commonly understood, lacks a
facility for doing this- possibly the most important cause of the continued popularity
of otherwise awkward and unwieldy proof systems based on natural deduction.

Consider a proof step where a coercion statement B is introduced, say

p
{== <lBr>

{explanation of [(P {== B) {== Q]}
Q.

Here the hint can be simplified to [P {== B 1\ Q]. As to the composition of such
steps, observe that

p

{== <lBr>
{explanation of [P {== B 1\ Q]}

Q
{== <lCr>

{explanation of [Q {== C 1\ R]}
R

admits conclusion

[P {== B 1\ C 1\ R]

Using this technique to prove an implication gives us the opportunity to choose among
several different calculations that differ in the way the antecedent is distributed over
the hints. Conversely, to draw a conclusion from such a derivation, one has to gather
the conjuncts of the antecedent from the proof steps in which a hypothesis was intro­
duced. This is made easy by the use of the conspicuous symbols <l ... r>.

Remark This method of introducing hypotheses into a transformational proof has
aims similar to the generalized window inference proposed by Grundy (1996); how-

An extension of the program derivation format 173

ever, our method requires much less of a departure from normal practice. Some other
authors, e.g. Gries et al. (1993, sec. 4.2), use a notation like

p

{Assumption X}
Q,

which requires the validity of

[(P = Q) ¢= X] .

This is not the same as a step of the form

p

Q

<lXr>

{explanation}

which requires the stronger

[(P ¢=X) = Q] .

This stronger property has the advantage that Q is precisely the weakest precondi­
tion of the program obtained: there is no 'slack' in the calculation. If, however, the
operator is a consequence (¢=) rather than an equivalence (=), the proof obligations
in both styles coincide.
D

When using coercion statements in combination with other statements, one must be
careful to remember that sequential composition is not commutative. For instance, a
calculation like

false
<lbr>

{ (b =>false) -
-.b

<l b := -.b [>

-.b}

{axiom of assignment}
b

does not imply the validity of

{b} b:=-.b {false}.

174 Programming Concepts and Methods

One situation in which the successive introduction of coercions is particularly use­

ful is in the invention of the right way to strengthen the invariant of a repetition. This
is illustrated in the following example*

Example 2 Given is an integer array a[O .. N), where N ::: 0. We are to determine

the number of unordered pairs of distinct indices whose array values have a nonneg­

ative product. Formally, we are to establish the postcondition

r = (#p, q: 0::::; p < q < N: a.p * a.q::: 0) .

For our first approximation, we replace a constant by a variable and obtain invariants

PO 0::::; n::::; N ,

P1 r = (#p, q: 0::::; p < q < n: a.p * a.q 2: 0)

which is initialized by n, r := 0, 0. In order to decide how we can maintain P 1 under
n := n + 1, we calculate as follows:

P1
<1 n := n + 1 ~

{for progress}
r = (#p, q: 0::::; p < q < n + 1 : a.p * a.q::: 0)

<1 r := r' ~
{to reestablish P 1}

r' = (#p, q : 0 ::::; p < q < n + 1 : a.p * a.q ::: 0)
¢= <1 PO 1\ n =/= N ~

{split off q = n}
r' = (#p,q:O::;p <q <n :a.p*a.q :::O)+(#p:O::;p <n :a.p*a.n 2::0)

¢= <1 Pl ~
{we now start leaving out the domain 0 ::::; p < n}

r' = r + (#p :: a.p * a.n::: 0)
{case analysis}

(a.n > 0 1\ r' = r + (#p :: a.p::: 0))

v (a.n = 0 1\ r' = r + n)
v (a.n < 0 1\ r' = r + (#p :: a.p::::; 0))

¢= <1 s = (#p :: a.p::: 0) 1\ t = (#p :: a.p::::; 0) ~
{}

(a.n > 0 1\ r' = r + s) V (a.n = 0 1\ r' = r + n) V (a.n < 0 1\ r' = r + t)

The predicate following the final ¢= is a good candidate for a strengthening of the in­

variant; notice that this predicate forms a context for the above calculation as a whole,

*The example given is, in fact, exercise 4.3.3 of Kaldewaij (1990).

An extension of the program derivation format 175

but is produced by the calculation itself, making it impractical to insist upon stating
such conditions in advance.
0

5 DERIVATIONS CONTAINING METHOD CALLS

In object-oriented programs, one uses abstract classes or interfaces that are essentially
abstract data types whose implementation is not statically known. The only way to
derive programs using such interfaces is by agreeing on a specification that future
implementers must respect. There are several ways to specify a class; here we follow
Morgan (1990) in associating with every object one or more thought variables, taken
from some mathematically tractable domain, and specifying the methods in the in­
terface by pre- and postconditions expressed in the thought variables. The relation of
these abstract specifications to the implementing code is that the latter must be a data
refinement of the former.

Example 3 Consider the abstract data type queue, given by the following interface.
An object q of type queue is described by a thought variable q .s denoting a finite
list of values of some component type. For a queue q, boolean function q .empty is
specified in terms of q .s by

q.empty = q.s = [] .

Function q .head, returning a value of the component type, is specified by

q .s =I= [] => q .head= hd.(q .s) ,

where hd denotes the standard list -processing function that, when applied to a nonempty
list, returns the value of its first term. Procedure call q .add(a) can be specified by a
Hoare triple

{true} q.add(a) {q.s = q.s.-++[a]} ,

but it is more convenient, and semantically equivalent, to think of it as an assignment
to the abstract variable

q.s := q.s-++[a] .

It is often the case that procedure calls can be viewed as abstract assignments; for
nondeterministic specifications, however, this point of view presents difficulties and

176 Programming Concepts and Methods

we need the power of a general procedure call proof rule (e.g. Bijlsma et al. (1989)).
Finally, procedure call q .remove can be specified by a Hoare triple

{q.s =1- []} q.remove {q.s = tl.(q.s.)}

or by the abstract assignment

q.s := tl.(q.s)

where tl is the standard list-processing function that applies to a nonempty list and
returns that list minus its first term. Because tl is a partial function, the weakest pre­
condition of the abstract assignment contains a conjunct q .s =1- [] .

The problem we now address is how to merge two given ascending queues into a
single one. Formally, this may be specified by

{ asc.(p.s) 1\ asc.(q .s)}
merge.p.q.r
{R: r.s = sort.(p.s.++q.s.)}

We achieve our purpose by a repetition with a tail invariant, viz.

PO: sort.(p.s.++q.s.) = r.s++sort.(p.s++q.s) .

The choice of PO is guided by the considerations that, first, PO is easy to establish
since

p.s = p.s. 1\ q.s = q.s. ==? (r.s := []).PO ,

and, secondly, PO helps to attain the required postcondition since

PO 1\ p.s++q.s = [] ==? R .

As a further constraint on the design, we decide to add the precondition as an invari­
ant, viz.

PI : asc.(p.s) 1\ asc.(q.s) .

The rationale behind this is that, the given queues being already sorted, it would be a
waste not to exploit this fact. Progress will consist in extending r until it is as long as
p .s. ++q .s. under invariance of PO .. 1. We calculate as follows:

PO
{definition of PO}

An extension of the program derivation format

sort.(p.s.-++q.s.) = r.s-++ sort.(p.s-++q.s)
- <1 r.add(a) t>

{for progress}
sort.(p.s.-++q .s.) = r.s-++[a]-t+sort.(p.s-++q .s)

<= {property of sort, see (1) below}
sort.(p.s.-++q.s.) = r.s-++sort.([a]-++p.s-++q.s) 1\ a= min.([a]-++p.s-++q.s)

- <1 p.remove t>

{preparing to get rid of [a)}
sort.(p.s.-++q .s.) = r.s-++sort.([a]-++tl.(p.s)-++q .s)
A a = min.([a]-++tl.(p.s)-++q .s) A p.s =f. [1

{to combine [a] with tl.(p.s), heading for PO}
sort.(p.s.-++q.s.) = r.s-++sort.(p.s-t+q.s)
1\ a = min.(p.s-++q .s) A p.s =f. [] A hd.(p.s) =a

{definition of PO}
PO 1\ a= min.(p.s-++q.s) 1\ p.s =f. [] 1\ hd.(p.s) =a

{property of min, see (3) below}
PO 1\ a= min.(p.s) .J.. min.(q.s) 1\ p.s =f. [] 1\ hd.(p.s) =a

<= {property of min, see (2) below}

177

PO .. l A a= a .J.. b 1\ p.s =f. [] A hd.(p.s) =a A q.s =f. [] A hd.(q.s) = b
{property of .J..}

PO .. l 1\ a :S b 1\ p.s =f. [] A hd.(p.s) =a A q.s =f. [] A hd.(q.s) = b
<= <1a::Sbt>

{can be checked in constant time}
PO .. l 1\ p.s =f. [] 1\ hd.(p.s) =a 1\ q .s =f. [] A hd.(q .s) = b

¢::: <1 a, b := p.head, q.head t>

{}
PO .. l 1\ p.s =f. [] 1\ q.s =f. [1

Thus we have proved

{PO .. l 1\ p.s =f. [] A q.s =f. [1}
a, b := p.head, q.head

; a :S b
; p.remove
; r.add(a)

{PO .. l} .

By symmetry, this gives

{ PO .. l A p.s =f. [] A q .s =f. [1}
a, b := p.head, q.head

; if a :S b -+ p.remove; r.add(a)
~ b :Sa -+ q.remove; r.add(b)
fi

178 Programming Concepts and Methods

{PO .. l} .

This is the heart of the merge algorithm. The only ingredient still missing, the case
where one of the queues has become empty, is treated the same way. In the derivation,
some elementary properties of list calculus were used. These are

sort.([a]-H-a) = [a]-H-sort.a

a =/:. [] 1\ asc.(a)

min.(a-H-T)

0

=>
a = min.([a]-H-a)

hd.a = min.a ,

min.a .j, min. T

6 APPLICATION: SIMULATING FILE OPERATIONS

6.1 Specification of the ISO Pascal file type

(1)

(2)

(3)

In this section, we apply the techniques developed earlier in the context of a realis­
tic example. Indeed, we have chosen an example that is well-known to anyone who
has ever struggled to convert programs involving ISO Pascal file operations to some
nonstandard Pascal version - an experience by now familiar to a sizable proportion
of the earth's population. In order to derive a solution to this problem, we regard ISO
Pascal files as an abstract data type, disregarding the fact that Pascal compilers will
not support this. We specify this abstract data type by giving a model, i.e. we define
a number of thought variables of mathematically well-understood types in terms of
which the operations on ISO Pascal files can be described. Let a component type T
be given. Our model consists of four thought variables, namely

p: T*

S: T*

Q : {in, out}

B: T U {l_}

(the file prefix, consisting of the items already read)

(the file suffix, consisting of the items not yet read)

(whether the file is opened for input or for output)

(the file buffer)

The values of these four variables are not quite independent: they are linked by the
type invariant

Q = out => S = [] (4)

The value j_ (pronounced 'bottom') is added because the ISO Pascal standard some­
times requires the buffer to become undefined.

The abstract data type for ISO Pascal files is defined by listing its operations and
specifying these by pre- and postconditions in terms of the four variables P, S, Q, B.

An extension of the program derivation format 179

Here we shall concentrate on specifying and implementing a single operation, Reset.
Readers wishing to see the specification and implementation of the full ISO Pascal
type may consult Bijlsma (1997). The specification of Reset reads as follows:

pre: true
post: P = [] 1\ S = P.-++S. 1\ Q =in 1\ B = Hd.S

Function Hd is similar to, but slightly more general than, the function hd usually pro­
vided in functional programming languages. It is defined inductively by

Hd.[] ..l

Hd.([a]-++as) a

The proof obligation that this specification is compatible with type invariant (4) is left
to the reader.

6.2 Specification of a simple file type

In this section, we specify a simpler file type that can be regarded as a greatest com­
mon divisor of several commercial implementations of Pascal. Here the model con­
sists of only two variables, namely

p: T*

s: T*

(the file prefix, consisting of the items already read)

(the file suffix, consisting of the items not yet read)

In the same notation as the previous section, the relevant operations can be specified
as follows:

reset pre: true
post: p = [] 1\ s = p.-++s.

read(x) pre: s =I= []
post: p = p.-++[Hd.s.] 1\ s = Tl.s. 1\ x = Hd.s.

eof pre: true
ret: s = []

However, we are not yet quite satisfied with this form. The reason is that specifying
a relation by means of a precondition/postcondition pair is the easiest way if we are

180 Programming Concepts and Methods

asked to implement that relation; however, if we are to use the procedure described
by a relation as a given building block to be used in programming some higher-level
module, it is far more convenient to have the specification in a predicate-transformer
form. This is why, traditionally, programming exercises are specified by a pair of pred­
icates, while programming constructs are specified by a predicate transformer. Now
in a state space with coordinate vectors x, y, any specification of the form

pre: def.E
post: x = x. 1\ y = E.

has the same weakest precondition as, hence can be identified with, the assignment
y :=E.

Therefore we may reformulate our specification as follows:

reset

read(x)

eof

=

=

p, s := [], p-++s

{s =F []}; p, s, x := p-++[Hd.s], Tl.s, Hd.s

s = []

(5)

(6)

(7)

The statement {s =F []} is a so-called assertion statement, whose semantics is defined
by

wp.{Q}.R = Q 1\ R .

In other words, assertion statement {Q} behaves like skip when boolean condition
Q is satisfied, and aborts otherwise. See Morgan (1990), Morris (1989) for further
discussion. This is not to be confused with the coercion statement introduced in an
earlier section, whose semantics is defined by

wp.Q.R = (Q =? R) .

6.3 Derivation of the implementation code

It is our goal to implement the specification of the ISO file operations in terms of
the simpler operations of the previous section. Now the theory of data refinement
(Morgan 1990) (Morgan et al. 1990) (Morris 1989) states that data refining an ab­
stract specification

pre: U, post: V

An extension of the program derivation format 181

is achieved by choosing an abstraction invariant A linking the abstract variables a
and the concrete variables c, and then constructing codeS that does not mention a
and satisfies

{(3a :: U 1\ A)} S {(3a :: V 1\ A)} . (8)

As a practical observation, we prefer to work without the quantifiers and just construct
some code S satisfying

{U 1\ A} S {V 1\ A} ,

where S may mention a but only as a ghost variable, that is to say that inS, the vari­
ables from a may not occur in statements that change the value of any other variables.
If we have constructed an S satisfying these restrictions, it can be turned into a pro­
gram fragment satisfying (8) by simply leaving out all statements that mention a. For
the problem at hand, we take as concrete variables the sequences p and s from the
preceding section, augmented by the following variables:

d, e : Boolean

f,g: T

Now we propose the following abstraction invariant:

AO : d => P = p 1\ S = s = []

AI : -.d => p = P++[f] 1\ S = [f]++s

A2: e => B = g

A3 : -.e => B = ..l

We shall use A as an abbreviation for AO 1\ AI 1\ A2 1\ A3. The heuristics behind
the choice of A are as follows: in the first place, in our simple file type there is no
equivalent of the file buffer B. In order to simulate B, we introduce variable g. We
assume that value ..l is not actually implemented, so we simulate that by letting g be
of type T rather than TU{..l}, and letting-.e signal* when B should have the value ..l.
Now a straightforward simulation would simulate P and S by p and s respectively,
but the difficulty with this is that the semantics of Reset requires setting the file buffer
to the first unread element. Our simple file system affords no knowledge of unread
elements, so the only recourse is reading one extra element and preserving its value
in f. This strategy implies eof may become true one step sooner than its ISO file
analogue Eof, so we add another boolean d to simulate Eof.

• Actually, it turns out that e is superfluous, as we shall see at the end of this section. It is not necessary to
observe this at the present stage of development.

182 Programming Concepts and Methods

Observe that A nowhere mentions Q, so the abstract state is not determined by the
concrete state. Therefore this abstraction invariant cannot be replaced by the better­
known technique of abstraction functions.

Now we are ready to derive the implementation of the ISO file operation Reset. Let
R denote the postcondition given for Reset, i.e.

R : P = [] A S = P.-++S. A Q = in A B = Hd.S

Code is derived separately for postconditions R A S=[] and R A S#[], as we are
more or less forced to do on account of the shape of AO and A 1. As both derivations
are similar, we give only the derivation for the case R A S # [] and refer the reader
to Bijlsma (1997) for the other case.

RAS#[]AA
{definitions of R, A, and Hd}

P = [] A p = [f) 1\ S = [f)-t+s = P.-++S. A ..,d A Q =in A e A B = f =
<J P, S, Q, B := [], [f]-++s, in, f 1>

{eliminate abstract variables by explicit assignment}
p = [f) A [f]-++s = P.-++s. A ..,d A e A f = g

<J d, e, g :=false, true, f 1>

{eliminate boo leans and pseudo-buffer g by explicit assignment}
p = [f) A [f]-t+s = P.-++S.

<J read(/) 1>

{applying (6) eliminates f}
s # [] A p = [] A s = P.-++S.

_ <J ..,eof 1>

{applying (7) moves s to antecedent}
s # [J =* p = [J " s = P.-++s.

<== {just predicate calculus ... we're lucky if we get away with this strenghtening}
p = [J " s = P.-++s.

_ <J reset 1>

{applying (5) gives a formally weaker single identity}
p-t+s = P.-++S.

<== {separating initial values}
p-++s = P-t+S A P = P. A S = S.

<== {definition of AO and A 1}
A A P = P. A S = S. ,

which gives

{A}
reset

; _,eof
; read(/)

An extension of the program derivation format

; d, e, g :=false, true, f
; P, S, Q, B; = [], [f]++s, in, f
{R AS#[) A A}.

Combining this with the result for the other case gives

{A}
reset

; if eof -+ d, e :=true ,false
; P, S, Q, B := [], [],in, ..l

~ ~eof -+ read(!)
; d, e, g :=false, true, f
; P, S, Q, B := [], [f]++s, in, f

fi
{R A A} ,

183

in which no miraculous coercion statements occur any more. Finally, by omitting the
abstract ghost variables, we get

reset
; if eof -+ e :=false
~ ~eof -+ read(!)

; d, e, g :=false, true, f
fi,

and this is the code for Reset that our derivation produces.
Observing the code we have produced, it may strike us that variable e is inspected

neither in Reset nor in any of the other operations that have not been reproduced here.
Therefore e too can be regarded as a ghost variable and left out. With sufficient fore­
sight, we might have seen this already in the specifications of the ISO operations: none
of these require the definedness of the file buffer to be tested. From this observation,
we might then have decided to replace A2 and A3 by the weaker

B=g v B=..l.

Leaving out e produces the final version of our implementation:

reset
; if eof -+
~ ~eof -+

fi

skip
read (f)

; d, g :=false, f

184 Programming Concepts and Methods

7 CONCLUSION

The extension we propose in this paper has been demonstrated to be practically use­
ful in situations where either hypotheses or program statements are discovered one
at a time as the calculation progresses, since it does away with the need to restart the
calculation in a slightly different context every time such an ingredient is produced.
Thus, it serves to make Dijkstra-style program derivation feasible for a wider class of
programming problems.

REFERENCES

Bijlsma, A. (1997) Simulating file operations: an exercise in cal-
culational data refinement. Memorandum AB66, Eind-
hoven University of Technology, 1997. Available from
http://www.win.tue.nl/inf/staf/secties/st/pm/lexb/ab66.ps

Bijlsma, A., Matthews, P.A., and Wiltink, J.G. (1989) A sharp proof rule for proce­
dures in wp semantics. Acta lnf 26,409-419.

Bijlsma, A. and Scholten, C.S. (1996) Point-free substitution. Sci. Comput. Pro g. 27,
205-214.

Dijkstra, E.W. and Feijen, W.H.J. (1984)Een methodevanprogrammeren. Academic
Service, The Hague. English translation (1988) A method of programming.
Addison-Wesley, Reading (Mass.).

Dijkstra, E.W. and Scholten, C.S. (1990) Predicate calculus and program semantics.
Springer-Verlag, New York.

Gries, D. and Schneider, F.B. (1993) A logical approach to discrete math. Springer­
Verlag, New York.

Grundy, J. (1996) Transformational hierarchical reasoning. Comput. J. 39, 291-302.
Kaldewaij, A (1990) Programming: the derivation of algorithms. Prentice-Hall In­

ternational, London.
Morgan, C.C. (1990) Programming from specifications. Prentice-Hall International,

London.
Morgan, C.C. and Gardiner, P.H.B. (1990) Data refinement by calculation. Acta lnf

27,481-503.
Morris, J.M. (1989) Laws of data refinement. Acta lnf 26, 287-308.

8 BIOGRAPHY

A.J.M. van Gasteren received a master's degree in mathematics, supervised by Edsger
W. Dijkstra.

In 1981 she joined Dijkstra's group as a BP Venture Research Fellow, investigating
the orderly presentation and design of programs and proofs. As a result of this work,
she received a PhD from Eindhoven University of Technology in 1988.

Since then she has taught and investigated programming methodology, getting more

An extension of the program derivation format 185

and more interested and involved in the use of calculational methods. A main driving
force of her work is the quest for ways and methods to achieve clarity of thought and
economy of expression.

A. Bijlsma studied number theory with H. Jager (Amsterdam), P.L. Cijsouw (Eind­
hoven), and M. Waldschmidt (Paris). In 1978 he received a PhD from the University
of Amsterdam.

In 1983 he shifted his attention to computing. At Eindhoven University of Technol­
ogy, he has since worked in the groups ofM. Rem, A. Kaldewaij, and R.C. Backhouse.
His research interest focuses on the interplay between programming language con­
structs and program construction style, in particular with respect to object-oriented
design.

