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1 INTRODUCTION 

In this paper we propose an extension to the proof format commonly used for cal­
culational program derivation. This format, which was invented by W.H.J. Feijen, is 
becoming widely used in the computing community and has proved itself very useful 
for program derivation as well as the construction of mathematical proofs in general. 
In program derivation, it is usually employed together with the axiom of assignment 
to derive program fragments consisting of a single concurrent assignment in a fixed 
context. The extension is intended to facilitate the derivation of programs consisting 
of a sequence of assignments or procedure calls. To this end, we show how program 
statements may be successively embedded in an ongoing derivation, the intended re­
sult of which is the stepwise construction of the program in the course of the calcu­
lation. 

2 REVIEW OF THE PROOF FORMAT 

In the usual version of the proof format we find derivations like 

p 

{explanation of [P = QJ} 
Q 

-<== {explanation of [ Q -<== R]} 
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R ' 

where P, Q, R denote predicates on a fixed space, and the brackets [ ... ] denote uni­
versal quantification over that space, as in Dijkstra et al. (1990). From this we may 
draw the conclusion [P {= R]. More generally, for any structures P, Q, R and rela­
tional binary operators E9 and ® the derivation 

p 

E9 {explanation of [P E9 Q]} 
Q 

® {explanation of [ Q ® R]} 
R 

allows us to conclude [P (ffi)o(®) R], where (ffi)o(®) is the relational composition 
of binary relations E9 and®. This conclusion is only useful if composition (E9)o(®) 
can be simplified, i.e. is equal to or implies a single familiar operator. Composition 
(=> )o( {=),for instance, is decidedly not useful. The most commonly used composi­
tions are composition with equality and continued compositions of a transitive oper-
ator: 

(=)o(E9) = (ffi) 

(ffi)o(=) = (ffi) 

(ffi)o(ffi) => (ffi) for transitive E9 ' 
(ffi)o(ffi) = (ffi) for transitive and reflexive E9 

Here is a simplification that is perhaps less familiar: if we write x =m y for x mod m = 
y mod m, the derivation 

X 

=m {explanation of [x mod m = y mod m]} 
y 

=n {explanation of [y mod n = z mod n]} 
z 

admits the conclusion [x mod (m gcd n) = z mod (m gcd n)]. Another slightly 
unusual simplification is 

(¢')o(¢') = (=) . 

An example of its usefulness is the proof of Theorem 4 ofBijlsma et al. (1996). 
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3 DERNATIONSCONTA~GPROGRAMSTATEMENTS 

For structure transformer f and relational binary operator E9, we propose to admit 
into program derivations steps like 

p 

E9 <Jjt> 

{explanation of [f.P E9 Q]} 
Q 

which, as the hint suggests, will signify the validity of [f. P E9 Q]. We propose to 
pronounce the above step, in the case where E9 is {::::, as "P follows by f from Q", 
and similarly in other cases. As to the combination of such steps, 

p 

E9 <Jjt> 

{explanation of [f. P E9 Q]} 
Q 

® <Jgt> 

{explanation of [g. Q ® · R]} 
R 

admits only the conclusion [f.P E9 Q] A [g.Q ® R], which cannot be simplified 
any further without knowledge of the properties of the operators and structure trans­
formers involved. However, if the operators are=, it follows that [g.(f.P) = R]; if 
the operators are{:::: and g is monotonic, it follows that [g.(f.P) {:::: R]. 

In this paper, we limit ourselves to a special case where the insertion of structure 
transformers yields particularly useful conclusions. From now on f will be a partic­
ular predicate transformer, namely the weakest precondition of a program statement 
S. For this particular purpose, we prefer to write <J S t> rather than <1 wp.S t>. As 
promised in the Introduction, this allows us to write derivations like 

p 

{:::: <1St> 
{explanation of [ wp.S. P {:::: Q]} 

Q 
<lTt> 

{explanation of [ wp. T. Q = R]} 

R ' 

and draw the conclusion 

{R} T; S {P} . 
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Observe that the statements of the program are discovered consecutively in the course 
of a single derivation. Because 

p 

<= {explanation of [P <= Q]} 
Q 

is equivalent to 

p 
<= <1 skip 1> 

{explanation of [P <= Q]} 
Q, 

steps introducing a program statement may be freely intermixed with classical steps 
expressing a strengthening or an equivalence. 

Example 1 The task is to write a program that cyclically rotates the values of in­
teger variables x, y, z and uses neither auxiliary variables nor multiple assignments. 
The analogous program with two variables occurs in many textbooks of programming 
(e.g. Dijkstraet al. (1984)) as an example of how to use the semantics of assignment, 
but it is always given as a task for a posteriori verification, never derived. The speci­
fication of the problem is 

{true} 
rot.x.y.z 
{x = y. 1\ y = z. 1\ z = x.} , 

where we have followed the convention of denoting the original value of x by x. (pro­
nounce 'x old'). (This can be seen as an application of the traditional 'specification 
variable' or 'logical constant' approach where the precondition is implicitly extended 
with terms like x = x •. ) 

Without introducing statements into derivations there is really no good way to tackle 
this. With statements, however, we may derive 

X = Ye 1\ y = Ze 1\ Z = Xe 

<I X := X + y + Z I> 

{to bring y and y. together in a single conjunct} 
X + y + Z = Ye 1\ y = Ze 1\ Z = Xe 

<1 y := -x + y - z 1> 

{to create a term y = y.} 
y = y. 1\ -X+ y- Z = Ze 1\ Z = Xe 

<1 z := -x + y - z 1> 

{to create a term z = z.} 
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y = y. 1\ z = z. 1\ -x + y- z = x • 
.q x := -x + y- z 1> 

{to create a term x = x.} 
y = Y• 1\ Z = z. 1\ X = x. . 

171 

(Note that the first step in this derivation is rather arbitrary: it should satisfy the criteria 
that it introduces y into the first conjunct and does not remove x from it, but apart 
from these we have a lot of choice. After the first step, however, there is no more 
choice and the calculation is guided entirely by the wish to create the conjuncts of 
the precondition one by one.) 

0 

We conclude that the specification is satisfied by the program 

{true} 
x := -x + y -z 

; z := -x + y- z 
; y :=-X+ y- Z 

; X:= X+ y +z 
{x=y. 1\ y=x. 1\ z=x.}. 

4 DERIVATIONS CONTAINING COERCION STATEMENTS 

For every predicate B, a program statement S is defined by the condition that, for 
every predicate R, 

[wp.S.R = (R {= B)]. 

Such a statementS is called a coercion statement in Morgan (1990). We shall denote 
the coercion statement corresponding to a boolean expression B by B as well, as no 
confusion threatens. The coercion statement behaves like magic in case -.B holds, 
and hence it is not implementable; its value lies in the fact that Hoare triples like 

{P} B; S {Q} 

and 

{P} -.B; T {Q} 

can be combined into 

{P} 
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ifB-+ S 
~ -.B -+ T 
fi 
{Q} 0 

Programming Concepts and Methods 

We shall see several cases of this use of coercion statements to produce selection state­
ments in the next sections. In the present section, however, we concentrate on deriva­
tions that contain only coercion statements, i.e. no statements of other kinds. It will 
be seen that these can be used as a way to introduce local hypotheses into proofs that 
may have nothing to do with programming at all. 

An important ingredient of natural deduction systems is their ability to introduce 
local hypotheses into a proof. Equational reasoning, as commonly understood, lacks a 
facility for doing this- possibly the most important cause of the continued popularity 
of otherwise awkward and unwieldy proof systems based on natural deduction. 

Consider a proof step where a coercion statement B is introduced, say 

p 
{== <lBr> 

{explanation of [(P {== B) {== Q]} 
Q. 

Here the hint can be simplified to [P {== B 1\ Q]. As to the composition of such 
steps, observe that 

p 

{== <lBr> 
{explanation of [P {== B 1\ Q]} 

Q 
{== <lCr> 

{explanation of [ Q {== C 1\ R]} 
R 

admits conclusion 

[P {== B 1\ C 1\ R] 

Using this technique to prove an implication gives us the opportunity to choose among 
several different calculations that differ in the way the antecedent is distributed over 
the hints. Conversely, to draw a conclusion from such a derivation, one has to gather 
the conjuncts of the antecedent from the proof steps in which a hypothesis was intro­
duced. This is made easy by the use of the conspicuous symbols <l ... r>. 

Remark This method of introducing hypotheses into a transformational proof has 
aims similar to the generalized window inference proposed by Grundy (1996); how-
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ever, our method requires much less of a departure from normal practice. Some other 
authors, e.g. Gries et al. (1993, sec. 4.2), use a notation like 

p 

{Assumption X} 
Q, 

which requires the validity of 

[(P = Q) ¢= X] . 

This is not the same as a step of the form 

p 

Q 

<lXr> 

{explanation} 

which requires the stronger 

[(P ¢=X) = Q] . 

This stronger property has the advantage that Q is precisely the weakest precondi­
tion of the program obtained: there is no 'slack' in the calculation. If, however, the 
operator is a consequence ( ¢=) rather than an equivalence ( = ), the proof obligations 
in both styles coincide. 
D 

When using coercion statements in combination with other statements, one must be 
careful to remember that sequential composition is not commutative. For instance, a 
calculation like 

false 
<lbr> 

{ (b =>false) -
-.b 

<l b := -.b [> 

-.b} 

{axiom of assignment} 
b 

does not imply the validity of 

{b} b:=-.b {false}. 
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One situation in which the successive introduction of coercions is particularly use­

ful is in the invention of the right way to strengthen the invariant of a repetition. This 
is illustrated in the following example* 

Example 2 Given is an integer array a[O .. N), where N ::: 0. We are to determine 

the number of unordered pairs of distinct indices whose array values have a nonneg­

ative product. Formally, we are to establish the postcondition 

r = (#p, q: 0::::; p < q < N: a.p * a.q::: 0) . 

For our first approximation, we replace a constant by a variable and obtain invariants 

PO 0::::; n::::; N , 

P1 r = (#p, q: 0::::; p < q < n: a.p * a.q 2: 0) 

which is initialized by n, r := 0, 0. In order to decide how we can maintain P 1 under 
n := n + 1, we calculate as follows: 

P1 
<1 n := n + 1 ~ 

{for progress} 
r = (#p, q: 0::::; p < q < n + 1 : a.p * a.q::: 0) 

<1 r := r' ~ 
{to reestablish P 1} 

r' = (#p, q : 0 ::::; p < q < n + 1 : a.p * a.q ::: 0) 
¢= <1 PO 1\ n =/= N ~ 

{split off q = n} 
r' = (#p,q:O::;p <q <n :a.p*a.q :::O)+(#p:O::;p <n :a.p*a.n 2::0) 

¢= <1 Pl ~ 
{we now start leaving out the domain 0 ::::; p < n} 

r' = r + (#p :: a.p * a.n::: 0) 
{case analysis} 

(a.n > 0 1\ r' = r + (#p :: a.p::: 0)) 

v (a.n = 0 1\ r' = r + n) 
v (a.n < 0 1\ r' = r + (#p :: a.p::::; 0)) 

¢= <1 s = (#p :: a.p::: 0) 1\ t = (#p :: a.p::::; 0) ~ 
{} 

(a.n > 0 1\ r' = r + s) V (a.n = 0 1\ r' = r + n) V (a.n < 0 1\ r' = r + t) 

The predicate following the final ¢= is a good candidate for a strengthening of the in­

variant; notice that this predicate forms a context for the above calculation as a whole, 

*The example given is, in fact, exercise 4.3.3 of Kaldewaij (1990). 
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but is produced by the calculation itself, making it impractical to insist upon stating 
such conditions in advance. 
0 

5 DERIVATIONS CONTAINING METHOD CALLS 

In object-oriented programs, one uses abstract classes or interfaces that are essentially 
abstract data types whose implementation is not statically known. The only way to 
derive programs using such interfaces is by agreeing on a specification that future 
implementers must respect. There are several ways to specify a class; here we follow 
Morgan (1990) in associating with every object one or more thought variables, taken 
from some mathematically tractable domain, and specifying the methods in the in­
terface by pre- and postconditions expressed in the thought variables. The relation of 
these abstract specifications to the implementing code is that the latter must be a data 
refinement of the former. 

Example 3 Consider the abstract data type queue, given by the following interface. 
An object q of type queue is described by a thought variable q .s denoting a finite 
list of values of some component type. For a queue q, boolean function q .empty is 
specified in terms of q .s by 

q.empty = q.s = [] . 

Function q .head, returning a value of the component type, is specified by 

q .s =I= [] => q .head= hd.(q .s) , 

where hd denotes the standard list -processing function that, when applied to a nonempty 
list, returns the value of its first term. Procedure call q .add(a) can be specified by a 
Hoare triple 

{true} q.add(a) {q.s = q.s.-++[a]} , 

but it is more convenient, and semantically equivalent, to think of it as an assignment 
to the abstract variable 

q.s := q.s-++[a] . 

It is often the case that procedure calls can be viewed as abstract assignments; for 
nondeterministic specifications, however, this point of view presents difficulties and 
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we need the power of a general procedure call proof rule (e.g. Bijlsma et al. (1989)). 
Finally, procedure call q .remove can be specified by a Hoare triple 

{q.s =1- []} q.remove {q.s = tl.(q.s.)} 

or by the abstract assignment 

q.s := tl.(q.s) 

where tl is the standard list-processing function that applies to a nonempty list and 
returns that list minus its first term. Because tl is a partial function, the weakest pre­
condition of the abstract assignment contains a conjunct q .s =1- [ ] . 

The problem we now address is how to merge two given ascending queues into a 
single one. Formally, this may be specified by 

{ asc.(p.s) 1\ asc.(q .s)} 
merge.p.q.r 
{R: r.s = sort.(p.s.++q.s.)} 

We achieve our purpose by a repetition with a tail invariant, viz. 

PO: sort.(p.s.++q.s.) = r.s++sort.(p.s++q.s) . 

The choice of PO is guided by the considerations that, first, PO is easy to establish 
since 

p.s = p.s. 1\ q.s = q.s. ==? (r.s := []).PO , 

and, secondly, PO helps to attain the required postcondition since 

PO 1\ p.s++q.s = [] ==? R . 

As a further constraint on the design, we decide to add the precondition as an invari­
ant, viz. 

PI : asc.(p.s) 1\ asc.(q.s) . 

The rationale behind this is that, the given queues being already sorted, it would be a 
waste not to exploit this fact. Progress will consist in extending r until it is as long as 
p .s. ++q .s. under invariance of PO .. 1. We calculate as follows: 

PO 
{definition of PO} 
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sort.(p.s.-++q.s.) = r.s-++ sort.(p.s-++q.s) 
- <1 r.add(a) t> 

{for progress} 
sort.(p.s.-++q .s.) = r.s-++[a]-t+sort.(p.s-++q .s) 

<= {property of sort, see (1) below} 
sort.(p.s.-++q.s.) = r.s-++sort.([a]-++p.s-++q.s) 1\ a= min.([a]-++p.s-++q.s) 

- <1 p.remove t> 

{preparing to get rid of [a)} 
sort.(p.s.-++q .s.) = r.s-++sort.([a]-++tl.(p.s)-++q .s) 
A a = min.([a]-++tl.(p.s)-++q .s) A p.s =f. [ 1 

{to combine [a] with tl.(p.s), heading for PO} 
sort.(p.s.-++q.s.) = r.s-++sort.(p.s-t+q.s) 
1\ a = min.(p.s-++q .s) A p.s =f. [] A hd.(p.s) =a 

{definition of PO} 
PO 1\ a= min.(p.s-++q.s) 1\ p.s =f. [] 1\ hd.(p.s) =a 

{property of min, see (3) below} 
PO 1\ a= min.(p.s) .J.. min.(q.s) 1\ p.s =f. [] 1\ hd.(p.s) =a 

<= {property of min, see (2) below} 
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PO .. l A a= a .J.. b 1\ p.s =f. [] A hd.(p.s) =a A q.s =f. [] A hd.(q.s) = b 
{property of .J..} 

PO .. l 1\ a :S b 1\ p.s =f. [] A hd.(p.s) =a A q.s =f. [] A hd.(q.s) = b 
<= <1a::Sbt> 

{can be checked in constant time} 
PO .. l 1\ p.s =f. [ ] 1\ hd.(p.s) =a 1\ q .s =f. [ ] A hd.(q .s) = b 

¢::: <1 a, b := p.head, q.head t> 

{} 
PO .. l 1\ p.s =f. [] 1\ q.s =f. [ 1 

Thus we have proved 

{PO .. l 1\ p.s =f. [] A q.s =f. [ 1} 
a, b := p.head, q.head 

; a :S b 
; p.remove 
; r.add(a) 

{PO .. l} . 

By symmetry, this gives 

{ PO .. l A p.s =f. [ ] A q .s =f. [ 1} 
a, b := p.head, q.head 

; if a :S b -+ p.remove; r.add(a) 
~ b :Sa -+ q.remove; r.add(b) 
fi 
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{PO .. l} . 

This is the heart of the merge algorithm. The only ingredient still missing, the case 
where one of the queues has become empty, is treated the same way. In the derivation, 
some elementary properties of list calculus were used. These are 

sort.([a]-H-a) = [a]-H-sort.a 

a =/:. [ ] 1\ asc.(a) 

min.(a-H-T) 

0 

=> 
a = min.([a]-H-a) 

hd.a = min.a , 

min.a .j, min. T 

6 APPLICATION: SIMULATING FILE OPERATIONS 

6.1 Specification of the ISO Pascal file type 

(1) 

(2) 

(3) 

In this section, we apply the techniques developed earlier in the context of a realis­
tic example. Indeed, we have chosen an example that is well-known to anyone who 
has ever struggled to convert programs involving ISO Pascal file operations to some 
nonstandard Pascal version - an experience by now familiar to a sizable proportion 
of the earth's population. In order to derive a solution to this problem, we regard ISO 
Pascal files as an abstract data type, disregarding the fact that Pascal compilers will 
not support this. We specify this abstract data type by giving a model, i.e. we define 
a number of thought variables of mathematically well-understood types in terms of 
which the operations on ISO Pascal files can be described. Let a component type T 
be given. Our model consists of four thought variables, namely 

p: T* 

S: T* 

Q : {in, out} 

B: T U {l_} 

(the file prefix, consisting of the items already read) 

(the file suffix, consisting of the items not yet read) 

(whether the file is opened for input or for output) 

(the file buffer) 

The values of these four variables are not quite independent: they are linked by the 
type invariant 

Q = out => S = [ ] (4) 

The value j_ (pronounced 'bottom') is added because the ISO Pascal standard some­
times requires the buffer to become undefined. 

The abstract data type for ISO Pascal files is defined by listing its operations and 
specifying these by pre- and postconditions in terms of the four variables P, S, Q, B. 
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Here we shall concentrate on specifying and implementing a single operation, Reset. 
Readers wishing to see the specification and implementation of the full ISO Pascal 
type may consult Bijlsma (1997). The specification of Reset reads as follows: 

pre: true 
post: P = [] 1\ S = P.-++S. 1\ Q =in 1\ B = Hd.S 

Function Hd is similar to, but slightly more general than, the function hd usually pro­
vided in functional programming languages. It is defined inductively by 

Hd.[] ..l 

Hd.([a]-++as) a 

The proof obligation that this specification is compatible with type invariant ( 4) is left 
to the reader. 

6.2 Specification of a simple file type 

In this section, we specify a simpler file type that can be regarded as a greatest com­
mon divisor of several commercial implementations of Pascal. Here the model con­
sists of only two variables, namely 

p: T* 

s: T* 

(the file prefix, consisting of the items already read) 

(the file suffix, consisting of the items not yet read) 

In the same notation as the previous section, the relevant operations can be specified 
as follows: 

reset pre: true 
post: p = [] 1\ s = p.-++s. 

read(x) pre: s =I= [] 
post: p = p.-++[Hd.s.] 1\ s = Tl.s. 1\ x = Hd.s. 

eof pre: true 
ret: s = [] 

However, we are not yet quite satisfied with this form. The reason is that specifying 
a relation by means of a precondition/postcondition pair is the easiest way if we are 
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asked to implement that relation; however, if we are to use the procedure described 
by a relation as a given building block to be used in programming some higher-level 
module, it is far more convenient to have the specification in a predicate-transformer 
form. This is why, traditionally, programming exercises are specified by a pair of pred­
icates, while programming constructs are specified by a predicate transformer. Now 
in a state space with coordinate vectors x, y, any specification of the form 

pre: def.E 
post: x = x. 1\ y = E. 

has the same weakest precondition as, hence can be identified with, the assignment 
y :=E. 

Therefore we may reformulate our specification as follows: 

reset 

read(x) 

eof 

= 

= 

p, s := [ ], p-++s 

{s =F [ ]}; p, s, x := p-++[Hd.s], Tl.s, Hd.s 

s = [] 

(5) 

(6) 

(7) 

The statement {s =F [ ]} is a so-called assertion statement, whose semantics is defined 
by 

wp.{Q}.R = Q 1\ R . 

In other words, assertion statement {Q} behaves like skip when boolean condition 
Q is satisfied, and aborts otherwise. See Morgan (1990), Morris (1989) for further 
discussion. This is not to be confused with the coercion statement introduced in an 
earlier section, whose semantics is defined by 

wp.Q.R = (Q =? R) . 

6.3 Derivation of the implementation code 

It is our goal to implement the specification of the ISO file operations in terms of 
the simpler operations of the previous section. Now the theory of data refinement 
(Morgan 1990) (Morgan et al. 1990) (Morris 1989) states that data refining an ab­
stract specification 

pre: U, post: V 
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is achieved by choosing an abstraction invariant A linking the abstract variables a 
and the concrete variables c, and then constructing codeS that does not mention a 
and satisfies 

{(3a :: U 1\ A)} S {(3a :: V 1\ A)} . (8) 

As a practical observation, we prefer to work without the quantifiers and just construct 
some code S satisfying 

{U 1\ A} S {V 1\ A} , 

where S may mention a but only as a ghost variable, that is to say that inS, the vari­
ables from a may not occur in statements that change the value of any other variables. 
If we have constructed an S satisfying these restrictions, it can be turned into a pro­
gram fragment satisfying (8) by simply leaving out all statements that mention a. For 
the problem at hand, we take as concrete variables the sequences p and s from the 
preceding section, augmented by the following variables: 

d, e : Boolean 

f,g: T 

Now we propose the following abstraction invariant: 

AO : d => P = p 1\ S = s = [ ] 

AI : -.d => p = P++[f] 1\ S = [f]++s 

A2: e => B = g 

A3 : -.e => B = ..l 

We shall use A as an abbreviation for AO 1\ AI 1\ A2 1\ A3. The heuristics behind 
the choice of A are as follows: in the first place, in our simple file type there is no 
equivalent of the file buffer B. In order to simulate B, we introduce variable g. We 
assume that value ..l is not actually implemented, so we simulate that by letting g be 
of type T rather than TU{..l}, and letting-.e signal* when B should have the value ..l. 
Now a straightforward simulation would simulate P and S by p and s respectively, 
but the difficulty with this is that the semantics of Reset requires setting the file buffer 
to the first unread element. Our simple file system affords no knowledge of unread 
elements, so the only recourse is reading one extra element and preserving its value 
in f. This strategy implies eof may become true one step sooner than its ISO file 
analogue Eof, so we add another boolean d to simulate Eof. 

• Actually, it turns out that e is superfluous, as we shall see at the end of this section. It is not necessary to 
observe this at the present stage of development. 
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Observe that A nowhere mentions Q, so the abstract state is not determined by the 
concrete state. Therefore this abstraction invariant cannot be replaced by the better­
known technique of abstraction functions. 

Now we are ready to derive the implementation of the ISO file operation Reset. Let 
R denote the postcondition given for Reset, i.e. 

R : P = [] A S = P.-++S. A Q = in A B = Hd.S 

Code is derived separately for postconditions R A S=[ ] and R A S#[ ], as we are 
more or less forced to do on account of the shape of AO and A 1. As both derivations 
are similar, we give only the derivation for the case R A S # [ ] and refer the reader 
to Bijlsma (1997) for the other case. 

RAS#[]AA 
{definitions of R, A, and Hd} 

P = [] A p = [f) 1\ S = [f)-t+s = P.-++S. A ..,d A Q =in A e A B = f = 
<J P, S, Q, B := [ ], [f]-++s, in, f 1> 

{eliminate abstract variables by explicit assignment} 
p = [f) A [f]-++s = P.-++s. A ..,d A e A f = g 

<J d, e, g :=false, true, f 1> 

{eliminate boo leans and pseudo-buffer g by explicit assignment} 
p = [f) A [f]-t+s = P.-++S. 

<J read(/) 1> 

{applying (6) eliminates f} 
s # [] A p = [] A s = P.-++S. 

_ <J ..,eof 1> 

{applying (7) moves s to antecedent} 
s # [ J =* p = [ J " s = P.-++s. 

<== {just predicate calculus ... we're lucky if we get away with this strenghtening} 
p = [ J " s = P.-++s. 

_ <J reset 1> 

{applying (5) gives a formally weaker single identity} 
p-t+s = P.-++S. 

<== {separating initial values} 
p-++s = P-t+S A P = P. A S = S. 

<== {definition of AO and A 1} 
A A P = P. A S = S. , 

which gives 

{A} 
reset 

; _,eof 
; read(/) 
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; d, e, g :=false, true, f 
; P, S, Q, B; = [], [f]++s, in, f 
{R AS#[) A A}. 

Combining this with the result for the other case gives 

{A} 
reset 

; if eof -+ d, e :=true ,false 
; P, S, Q, B := [], [],in, ..l 

~ ~eof -+ read(!) 
; d, e, g :=false, true, f 
; P, S, Q, B := [], [f]++s, in, f 

fi 
{R A A} , 
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in which no miraculous coercion statements occur any more. Finally, by omitting the 
abstract ghost variables, we get 

reset 
; if eof -+ e :=false 
~ ~eof -+ read(!) 

; d, e, g :=false, true, f 
fi, 

and this is the code for Reset that our derivation produces. 
Observing the code we have produced, it may strike us that variable e is inspected 

neither in Reset nor in any of the other operations that have not been reproduced here. 
Therefore e too can be regarded as a ghost variable and left out. With sufficient fore­
sight, we might have seen this already in the specifications of the ISO operations: none 
of these require the definedness of the file buffer to be tested. From this observation, 
we might then have decided to replace A2 and A3 by the weaker 

B=g v B=..l. 

Leaving out e produces the final version of our implementation: 

reset 
; if eof -+ 
~ ~eof -+ 

fi 

skip 
read (f) 

; d, g :=false, f 
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7 CONCLUSION 

The extension we propose in this paper has been demonstrated to be practically use­
ful in situations where either hypotheses or program statements are discovered one 
at a time as the calculation progresses, since it does away with the need to restart the 
calculation in a slightly different context every time such an ingredient is produced. 
Thus, it serves to make Dijkstra-style program derivation feasible for a wider class of 
programming problems. 
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