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Abstract 
Using real traffic data, we show that neural network-based prediction techniques 
can be used to predict the queuing behaviour of highly bursty traffics typical 
of LAN interconnection in a way accurate enough so as to allow dynamical 
renegotiation of a DBR traffic contract at the edge of an ATM network. 

The performances of predictor-based in service renegotiation are evaluated 
in terms of renegotiation errors and reserved bandwidth for the the DBR traffic 
handling capability and are shown to be very encouraging for the use of con­
nectionist prediction techniques for the management of bursty traffics in ATM 
networks. 

Keywords: neural networks, traffic prediction, leaky bucket, LAN inter­
connection, ATM networks. 

1 Introduction 
In order to realize its promises as the B-ISDN transfer mode, ATM has to fulfill 
two conflicting requirements, namely "Bandwidth on Demand" and "Guaran­
teed Quality of Service {QoS)", for various types of traffic. This is particularly 
challenging in the case of variable bit rate (V BR) traffics, such as compressed 
video or LAN interconnection, where the behaviour of the sources is not well­
defined in terms of bandwidth requirements. 
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In order to fulfill the "Guaranteed QoS" requirement, traffics should not 
be allowed to access the network without control, and such a control (traffic 
policing) is specified in terms of continuous state leaky buckets (also known 
as generic cell rate algorithm or virtual scheduling algorithm) at the network 
edges (1, 11]. This implementation supposes a traffic contract between the 
source and the network which defines the behaviour of the source in terms of 
mean cell inter-arrival time and cell delay variation tolerance. The enforce­
ment of this traffic contract at the User-Network Interface (UNI) protects the 
network against bursts of uncontrolled length and intensity and such a traffic 
characterization allows to reserve necessary resources inside the network so as 
to guarantee the required QoS. Various schemes can be used to reserve those 
necessary resources and one of them, namely the Deterministic Bit Rate (DBR) 
traffic handling capability, will be studied below. In the following, we shall be 
concerned with a restrictive definition of the quality of service in terms of cell 
loss mainly as we only address the problem of data traffic. 

The "Bandwidth on Demand" requirement can then be implemented by 
renegotiating (periodically or upon request from the source) the traffic con­
tract and using, for instance, a Fast Reservation Protocol (FRP) (2]. However 
fast they can be, resource reservation protocols cannot be based on the instan­
taneous characteristics of the traffic to be carried: reservation of the resources 
involves a latency of the order of the network round trip time at least and, 
moreover, the operation of these protocols should not overload the network in 
terms of processing time. This points out the need for the source to be able to 
efficiently predict its traffic descriptor over a typical inter-negotiation period. 

Although this access control scheme based on both resource reservation 
and enforcement of the declared traffic descriptors allows an efficient use of 
the network resources, it may be quite difficult to implement from a source 
point of view, specially in the case of very bursty traffics as is the case for LAN 
interconnection: such bursty sources cannot efficiently negotiate their traffic 
contract for the next period without being able to accurately predict their own 
behaviour during this period. Such a prediction capability is indeed an essential 
requirement to the realization of ATM promises. 

Although predicting traffic with neural networks has been advocated for 
compressed video (5], we are not aware of such a study for data traffics or for 
the time-scales considered below. In this contribution, we shall show, using 
real bursty traffic data, that such a prediction of the queuing behaviour of such 
traffics is indeed possible with neural networks. 

This may seem in disagreement with the conclusions of recent studies of 
LAN and WAN traffic which have evidenced the wide intensity variations and 
long term correlations existing in such traffics (14, 16]. It should be recalled 
that we are not in any way trying to predict the behaviour of the traffic itself, 
but we rather try to predict the extreme behaviour of a queue driven by the 
traffic so as to define an appropriate traffic descriptor in the ATM framework 
for the next period. In this respect, while leaving the question of modeling 
data traffic open, this study aims at giving a pragmatic answer to the problem 
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of "fitting" such traffic into the rather rigid requirements of traffic policing at 
the edge of an ATM network. 

The framework of this study is summed up in Figure 1: a pair of LANs is 
interconnected through a pair of VCs inside an ATM WAN; note that individual 
sources belonging to a LAN are multiplexed at the VC level. The prediction 
function is implemented on this multiplexed trafic, at the ingress of the ATM­
WAN only (on the LAN side of the UNI) and is used to periodically renegotiate 
the usage parameters of the outgoing VC with the CAC (Call Acceptance 
Control). The conformance of the traffic to the negotiated usage parameters is 
enforced on the WAN side of the UNI by the UPC (Usage Parameter Control). 

Call Admission 
Control 

Traffic contract I 
Renegotiation I 

Current Traffic Descriptor 

I 
I 

Traffic I Conformity 

I ""=·o ) WAN 

I 
UNI 

Figure 1: Framework of this study: the LAN traffic is multiplexed on a single 
VC and the prediction function is implemented at the ingress of the ATM-WAN 

In this study we shall not address the problem of the influence of rejected 
renegotiations at the CAC level (i.e. we assume that predicted usage parame­
ters are always accepted by the CAC) and confine ourselves to the prediction 
problem. 

We note here that the usefulness of traffic prediction is not restricted at the 
UNI as described above; as a matter of fact, renegotiation of resources, either 
using signalling protocols or in band reservation schemes is also performed at 
other interfaces (typically NNis), so that traffic prediction, if indeed efficient, 
could be implemented ubiquitously in ATM networks. 

The paper is organized as follows: after a presentation of the DBR traffic 
handling capability, we shall shortly discuss the possible benefits of periodically 
renegotiating the resources needed in the case of a bursty traffic; we shall 
then present the connectionist models for time series prediction, describe our 
predictor implementation and discuss the results. 
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2 Ressource Allocation Overview 

Among the various ways of allocating resources in an ATM network while 
protecting the QoS defined by the ITU-T (DBR, SBR, ABR, ABT, see [15, 11] 
for more details), we shall concentrate on DBR (Deterministic Bit Rate) and 
on the implementation of in-service parameter renegotiation for this capability. 

2.1 Description of the DBR Capability 

Hereafter, we briefly describe the DBR ATM layer traffic handling capability 
as currently standardized [11], that is without in-service renegotiation of the 
parameters. 

For this capability, the source simply declares a peak cell rate (PCR) and a 
cell delay variation tolerance ( rpcr) for the duration of the call, and reservation 
will be attempted on the basis of PC R. 

The algorithmic definition of the peak cell rate is related to a virtual queue: 
the actual rate of a source is considered to be below the negotiated PC R as 
long as the buffer level of a (virtual) queue that is emptied at PCR is below a 
threshold Lmarc which is related to the negotiated cell delay variation ( C DV) 
tolerance rpcr by 

Lmarc = PC R X 'rpcr 

This definition is summed up in Figure 2. 

Leaky Bucket incoming 
tmffic 

(PCR, tPCR ) 

Virtual Queue 

__ _,1§-

Lmax<PCRx t 
PCR 

Figure 2: Definition of the DBR traffic descriptor parameters 

The algorithm used at the UPC so as to enforce the conformity of the incom­
ing traffic to the traffic descriptor is known as the generic cell rate algorithm 
(GCRA). 

2.2 In-Service Renegotiation 

Obviously, it may be quite difficult to set the parameters defined above for the 
duration of the call, specially in the case of data traffic. 
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In this contribution, we propose to take advantage of the prediction ability 
of neural networks to renegotiate these parameters during the call (in-service 
renegotiation), so as to follow more closely the needs of the traffic. It should be 
noted that this renegotiation will not be performed in band, as in the ABT-IT 
capability, but will involve signalling automata as being currently standardized 
at the ITU-T [17]. 

We shall only consider periodic renegotiation of the parameters: instead of 
negotiating the parameter PC R for the duration of the call, negotiation will 
be carried for the next period under the assumption that Tpcr is fixed. 

Hereafter, we shall use for the peak cell rate the minimum value satisfying 
the conditions imposed by the GCRA, hence requiring the maximum precision 
from our predictor. In a real situation, some kind of safety margin might be 
allowed of course but, even under this most stringent requirement, we shall see 
that our predictor behaves very well since the notion of safety margin can be 
included in the construction of the predictor. 

We present below the traffic trace which has been used for this study. 

3 Description of the Traffic Traces 

As explained below, in order to get reliable results about the prediction capa­
bilities of neural networks, it is necessary to use large real traces. The traces we 
have used are made TCP traffic recorded at the Berkeley and CNET Lannion 
gateways to the Internet. The traces are recorded on a packet per packet basis, 
each packet being characterized by its arrival time and the amount of TCP 
data transferred. 

One should be careful when using traffic traces recorded on existing net­
works for studies of mechanisms to be implemented in future networks: obvi­
ously, using real traffic traces to design and test new congestion management 
mechanisms for instance may be misleading since the characteristics of the 
trace itself can be strongly dependent on already existing protocols (TCP in 
our trace, for instance). The present situation is different: the trace we use 
certainly includes inter-network TCP dynamics but as the application we are 
aiming at is mainly private networks interconnection by ATM links this is not 
a drawback since traffic originating from such networks (which often are inter­
networks themselves) will also contain such dynamics, TCP /IP being likely to 
stay as the main protocol stack for the next future in the area of data commu­
nications. 

The Berkeley trace, hereafter referred as the LBL-PKT3 trace, has been 
thoroughly studied by other groups [16, 20] and has been shown to exhibit a 
very high variability (the average rate of the trace is 0.35 Mb/s with peak rates 
up to 1.7Mb/seven when the rates are averaged on a time window as large as 
10 s) and strong long-range correlations or non-stationary behaviour (see [20] 
for a. discussion of this issue). 

The traces recorded at the CNET Lannion gateway exhibit similar cha.rac-
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teristics and consist of 12 hours of TCP traffic. 
Such traces should be representative of data traffic which ATM shall have 

to carry so as to support virtual private networks and "wide area LANs". 
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Figure 3: Evolution of the LBL-PKT3 trace. Each dot represents the mean 
input rate (in Mb/s) during a period of lOs. The whole trace last 2 hours and 
has a mean input rate of 0.351Mb/s. 

As intuitive from Figure 3, the resources needed by the traffic wildly vary 
in time (even when averaged on a lOs time scale), indicating potential resource 
savings if such variations can be predicted. We shall now turn to connectionist 
models for time series prediction. 

4 Connectionist Models for Time Series Pre­
diction 

Let a given one-variable time series be represented by the N values {x1 , x 2 , 

· · ·, XN }. Prediction then consists to find the future values {xN+l, XN+2, · · ·}. 

Takens [19] has shown that if the series is obtained from a deterministic dynam­
ical system, there exists a scalar d (which is called the embedding dimension), 
a scalar r (which is an arbitrary delay) and a function f such that for every 
t > d · r: 

Xt = f(Xt-r, Xt-2r, · · ·, Xt-dr) (1) 

The prediction problem consists, given the first N values of a time series, 
to find the appropriate d, r and f. Of course one usually cannot be sure that a 
given series is deterministic. Actually, statistical methods do exist to verify if a 
series is deterministic and to find d as well as r but they require the size of the 
series to be on the order of lOd which is rarely the case in practical problems. 
For the moment, let us assume that we know d and rand that we want to find 
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f. This is where neuml networks come in: it is a well known fact that they can 
be used as universal function approximators (10]. 

The time series is cut into three non-overlapping sets: a tmining set, a 
validation set and a test set. The training set is used to find the weights of 
the neural network by minimizing a cost function using an iterative learning 
algorithm such as the backpropagation algorithm [18], the validation set is used 
to monitor the learning process (by cross-validation) and the test set is used 
to verify the real prediction performance of the network (that is, an estimated 
prediction error on future time series values). 

In prediction problems, we train the network with past examples (thus, we 
minimize a tmining error) but we really want our network to perform well on 
future examples (thus, have a minimal genemlization e1·ror). We use the vali­
dation set to estimate generalization error (note that the data in the validation 
set are not used to minimize the cost: minimization is only performed for the 
data in the training set). Training is stopped when the generalization error 
estimated on the validation set starts to increase (even if the training error 
is still decreasing), indicating that the training process begins to over-fit the 
training set. 

The best heuristics used to select T are based on the hypothesis that two 
successive values of the input data vector must be the least related in order to 
maximize information. For instance, one can choose the first zero of the auto­
correlation function, or the first minimum of the mutual information function. 
In both cases of course, T must be as small as possible. 

The neural networks used in this study are multilayer perceptrons with one 
hidden layer. The architecture of such multilayer perceptrons is defined by the 
number of neurons in the input layer (i.e. the embedding dimension of the 
data) and in the hidden layer. 

Many heuristics exist to determine these architectural parameters, but this 
is still a hard problem. We also use cross-validation to select the neural network 
arc hi teet ure. 

5 Predicting the traffic descriptor for the next 
period 

We wish to implement a prediction-based renegotiation of the DBR contract. 
We are thus looking for a mapping with the following inputs: 

• the current queue size, the current bit rate, 

• some kind of information characterizing the past traffic, 

and which would give as output the PC R consistent with a given Tpcr (in 
this work, Tpcr is fixed for the whole trace) and the future traffic on the next 
H seconds. 

417 



This is not a simple prediction problem. In fact, the predictor should not 
only predict the future characterization of the traffic (this is the prediction 
part), but also deduce, for a given future traffic characterization and initial 
queue size, what would be the maximum queue size reached in the next period 
(this is the function approximation part). As it is known that neural networks 
are good for prediction and function approximation, they are good candidates 
to solve this problem. 

The information which characterizes the past traffic and the learning strate­
gies are key issues for this prediction problem. They are described below (see 
Section 8). 

6 Framework of the experiments 

The following parameters have been used in our simulations: 

• leaky bucket dimensioning: Tpcr = 0.1s (which is consistent with the fact 
that data transmission are only lightly sensitive to delays); 

• we chose a value of 10 s for the negotiation period. The various ATM 
layer traffic handling capabilities and signalling mechanisms being still 
under discussion inside the standardizing bodies, this figure, although 
reasonable, should only be considered as indicative. We note here that in 
a different context, a renegotiation period of 1 s was estimated to allow 
as much as 40,000 calls [9]; therefore a value of 10 s should not stress 
the signalling mechanisms beyond their limits even for a large number of 
calls. 

Hence, in this experiment, PCR is predicted for the next 10 s period, and 
reservation is carried out on the basis of PC R only. Hereafter, we refer to this 
experiment as DBR-10s. 

We would like to stress here that, as we are trying to predict the behaviour 
of a constrained extremum, the problem is all the more difficult as the prediction 
horizon increases. Therefore, a 10 s horizon represents a significant. challenge. 

The performance of the prediction machine is compared to the performance 
of an "oracle" who perfectly knows the future for the next negotiation period: 
the oracle does not attempt any "prediction" but simply calculates the param­
eters from the data of the next 10 s; it is used to test the performance of the 
predictor, and its performance itself is also interesting since it shows what can 
be expected from optimal renegotiation when applied to a real bursty traffic. 

We shall first use the oracle to show the benefits brought by renegotiation; 
then we shall present the performance of our predictor for DBR using various 
learning strategies. 
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7 Oracle Results 

We first want to illustrate the importance of being able to dynamically negotiate 
the bandwidth in the case of a bursty traffic; Table 1 shows the resources in 
terms of buffer size needed if one aims, while not renegotiating the PCR, at 
getting the same performances than DBR-lOs in terms of mean rate ( Rmean 
fixed, i.e. standard DBR case). Also given are the rates needed to get the same 
performances in terms of mean queue length (Lmean fixed) and maximum queue 
length (Lmax fixed). 

Resources needed using ... 
when DBR-10s Standard DBR 

Rmean = 0.9 Mb/s Lmax = 0.4 Mb Lmax =23.1Mb 
Lmean = 0.09 Mb Rmean = 0.9 Mb/s Rmean = 5.5 Mb/s 
Lmax = 0.4 Mb Rmean = 0.9 Mb/s Rmean = 3.7 Mb/s 

Table 1: Comparisons between the use of DBR-10s with an oracle and standard 
DBR (no renegotiation). 

Obviously, an optimal dynamical negotiation of the bandwidth allows to 
save resources. We shall show below that, although not optimal, prediction­
based dynamical negotiation is indeed possible and also allows to save resources. 

8 Results for DBR-lOs Using the Neural Net­
work Predictor 

In this section we present our results for different learning strategies and char­
acterizations of the past traffic. 

Analysis of the time series characterizing the traffic lead us to choose r = 1 
and, from cross-validation, we determined d = 20 but the precise value ap­
peared not to be crucial (iflarge enough). 

8.1 A first "heavyweight" experiment 

For a first experiment, the characterization of the past traffic was chosen to be 
the traffic means and variances of the volume of data arriving in 0.1 s jumping 
windows, for the last 2 seconds. 

Using LBL-PKT3, we thus generated 72000 points of a time series character­
izing the traffic behaviour, which was cut into three equal and non-overlapping 
sets (training, validation and test). The test set corresponds to the last 40 
minutes of the trace. 

The learning strategy was the following: for each time frame of 10 seconds, 
we furthermore generated 9 fictive initial conditions (3 current queue sizes x 
3 current bit rates), which were chosen around the initial conditions obtained 
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by the oracle for this time frame. We then computed for each situation, given 
we knew the future of the trace, the minimum bit rate consistent with Tpc1• for 
the next time frame of 10 seconds. Hence, a sample is made of 

• the current file length 

• the current bit rate 

• the 20 means and 20 variances characterizing the past traffic 

• the target value of PC R which is used for the training of the neural 
network. 

This finally gave us a training set and a validation set of 216000 samples 
each. 

The results of this learning strategy were reported and discussed in [7]. As 
shown on Figure 4, the reservation made by the neural network are consistent 
with the activity of the source, and the negotiated traffic contract is violated 
only once on the whole trace. See [7] for more details. 

i1 

2 

n 

600 800 1000 1200 1400 

Figure 4: Results of the "heavyweight" learning strategy for the LBL-PKT3 
trace.The solid line shows the bit rate when the oracle is used; the dotted line 
shows the bit rate when our predictor is used. 

The main drawbacks of this approach are; 

1. a very large learning set leading to very long trainings, 
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2. a difficult choice of the correct initial conditions to be generated: for the 
neural network used above, these initial conditions were chosen around 
the values obtained by the oracle, a choice which, post facto, did not 
appear so good since the NN-predictor tends to use systematically greater 
bit rates than the oracle (which is quite natural) and hence generates 
smaller queues, so that the system driven by the NN-predictor evolves in 
a part of the phase space significantly different from the part where it 
was taught (i.e. when the system is driven by the oracle), 

3. a lack of "intuitive" control of the learning process: once the training and 
validation sets are generated, we have no control of what is happening. 

The main conclusion of this expriment is that a "blind and heavyweight" 
approach to our problem is indeed effective; in the following we shall investigate 
learning strategies which avoid the above drawbacks, the main drawback being 
in our opnion the third one. 

Inspecting the weights of the neural network, we also noticed that the vari­
ances we used to characterize the past traffic were given weights so sma.ll that 
they were virtually useless. 

8.2 "Lightweight" learning strategies 

8.2.1 Characterization of the past traffic 

Keeping the same neural network architecture, we modified the characterization 
of the past traffic so that the input layer now receives: 

• the current file length, the current bit rate 

• the quantity of data of the last 2 s agregated 111 100 ms windows (20 
values) 

• the quantity of data of the last 20 s agregated in 1 s windows (20 values) 

It should be noticed that the characterization of the traffic we use does not 
require any fine-grained dynamical information (such as the interarrival times 
statistics for instance), but is only built of agregated quantity of data in fixed 
size windows. As the windows are indeed large, such a characterization should 
be implementable rather easily, without requiring accurate time-stamping. 

8.2.2 Basic learning algorithm 

For the three learning strategies described below, the learning algorithm is 
made of four steps: the training set is read sequentia.lly and for each new 
renegotiation period (period N + 1) we have 
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Figure 5: Results for Strategy 1 on a trace collected at CNET on June 18th 
1996. The training set is made of the first 2 hours, the validation set of the 
next 2 hours and the rest of the trace (8 hours) is used as the test set. The 
solid line is the maximum file length predicted by the oracle; the dashed line is 
the maximum file length predicted by the neural network. 

1. a prediction step 

calculate the bit rate predicted by the neural network, Dpred 

2. a trace-driven simulation step 

• feed the trace for period N + 1 in a file emptied at Dpred 

• calculate the maximum file length Lma:c in period N + 1 

• note that the initial conditions for period N + 2 are Dpred and the 
file length obtained from the trace-driven simulation at the end of 
period N + 1 

3. an error evaluation step 

• calculate the effective jitter tolerance Te f 1 = =DL 
pred 

• note that Tef 1 > T indicates a violation of the traffic contract 

4. a backpropagation step 

we investigated three different possibilities for backpropagating the error 
( T - Tef 1 )2 ; they are detailled below 
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The main difference with the "heavyweight" learning strategy (Section 8.1) 
is that the initial conditions are now determined on the fly from the dynamics 
of the system driven by the neural network. Hence we can more efficiently 
explore the part of the state space spanned by the system driven by the neural 
network, which should lead to faster training times. 

8.2.3 Learning strategy 1: a simple-minded approach 

As is usually done, we backpropagate the error ( T- TeJ J )2 for every sample in 
the training set until the validation error starts increasing. 

This stategy converges extremely fast (typically less than a hundred iter­
ations on the whole training set; an iteration involves backpropagation on all 
samples of the training set). 

The results of this approach are given on Figure 5. 
The performance of the predictor is obviously quite poor in terms of rene­

gotiation; however, it must be noted that the neural network shows excellent 
generalization properties: in particular, it does react to the burst of activity 
between 13:00 and 14:00, although this burst fully lies in the test set and no 
such level of activity occurs in the training or validation sets. 

8.2.4 Learning strategy 2: a conservative approach 

For this strategy we try to get a conservative behaviour of the predictor by pro­
gressively specializing the learning process on the worst samples of the training 
set. The learning strategy can be described as follows: 

• until no error is made in the training set 

- run the simulation for the whole training and validation sets 

- backpropagate the error ( r - TeJ J) 2 for the worst sample in the 
training set (ie the largest TeJ J) for that run 

• until no error is made in the validation set 

- lower r to r' 

- run the simulation for the whole training and validation sets 

- backpropagate the error ( r' - Te!J )2 for the worst sample in the 
training set (ie the largest TeJ J) for that run 

This strategy also converges extremely fast, typically less than a thousand 
iterations on the training set (note that an iteration involves only one back­
propagation on the worst sample of the training set). 

As can be seen from Figure 6, the results in terms ofrenegotiation are more 
satisfactory; we get only two renegotiation errors, indicated by diamonds, on 
the whole test set (8 hours) and it is clear that specializing the learning process 
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Figure 6: Results for Strategy 2 on a trace collected at CNET on June 18th 
1996. The training set is made of the first 2 hours, the validation set of the 
next 2 hours and the rest of the trace (8 hours) is used as the test set. The 
dashed curve (upper curve) is the maximum file length predicted by the neural 
network, the solid line (middle curve) is the maximum file length predicted by 
the oracle; the dotted curve (bottom curve) is the effective jitter tolerance Tef.f 

obtained by the neural network ( Teff > 0.1 s means a contract violation in the 
considered period). 

on the worst samples of the training set makes the neural network predictions 
conservative. 

The drawback of this approach is that the learning process very fast gets 
specialized to only one sample of the training set; surprisingly, such a strong 
specialization does not lead to a very poor generalization of the network and 
this puzzling result is left for further research (we note here that a somewhat 
similar result was obtained in [3 , 4] in a different context). 

8.2.5 Learning strategy 3: the best of both worlds 

Despite its good results, we felt that Strategy 2lead to a too sharp specialization 
of the training which could be detrimental to the generalization abilities of 
the neural network. We therefore investigated a new strategy which aims at 
combining the avantages of the two strategies above: 

• apply strategy 1, then 
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Figure 7: Results for Strategy 3 on a trace collected at CNET on June 18th 
1996. The training set is made of the first 2 hours, the validation set of the 
next 2 hours and the rest of the trace (8 hours) is used as the test set . The 
dashed curve (upper curve) is the maximum file length predicted by the neural 
network, the solid line (middle curve) is the maximum file length predicted by 
the oracle; the dotted curve (bottom curve) is the effective jitter tolerance Teff 

obtained by the neural network (ref 1 > 0.1 s means a contract violation in the 
considered period). 

• apply strategy 2 

Hence, the neural network is taught the entire phase space before being 
made conservative by specializing on the worst samples of the training set. 

As can seen from Figure 7, we do get the best of both stategies 1 and 2 
with this approach: the system is conservative as was the case for Strategy 2 
and is more adaptive as was the case in Strategy 1. 

The performances in terms of renegotiation are indeed excellent , as there is 
only one contract violation in the whole test set ( 8 hours). This burst can be 
considered as an example of a rare (hence, "unforeseenable") event which may 
lead to a traffic contract violation. Of course, the occurence of such an event 
is unavoidable when predictors are used to renegotiate the traffic contracts. 

If the prediction was to be implemented by the network as a service to 
the sources, the unavoidable occurence of such events means that these traffic 
contracts fall into the category of "predictive services": no "hardcore" QoS 
guarantees are possible (whatever the technique, prediction is indeed a risky 
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Figure 8: Results for Strategy 3 on the LBL-PKT3 trace collected at Berkeley. 
The training set is made of the first half hour, the validation set of the next half 
hour and the rest of the trace ( 1 hour) is used as the test set. The dashed curve 
(upper curve) is the maximum file length predicted by the neural network, the 
solid line (middle curve) is the maximum file length predicted by the oracle; the 
dotted curve (bottom curve) is the effective jitter tolerance TeJJ obtained by 
the neural network (ref! > 0.1 s means a contract violation in the considered 
period). 

business !) , but the QoS should be "almost always" as required by the source 
[13]. 

If the prediction was to be implemented by the source itself, the network 
only guarantees the QoS corresponding to the renegotiated contract and any 
violation of this contract is of the sole source responsability. 

For the sake of completeness, Figure 8 shows the results of Strategy 3 when 
applied to the LBL-PKT3 trace collected at Berkeley. There are no renegotia­
tion errors on the whole test set (last hour of the trace). 

8.2.6 Another experiment with Strategy 3 

In order to test the long-term validity of our predictor, we ran another experi­
ment; we kept the network as it was taught above (i.e. training was performed 
on a trace collected on the 18th June 1996) and used it as a pure predictor on 
a trace collected two days later (i.e. on the 20th June 1996) . The results are 
reported on Figure 9, and we obtain excellent results, with no renegotiation 
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Figure 9: Results for Strategy 3 on a trace collected at CNET on June 20th 
1996. The neural network was trained as described above with a trace collected 
on June 18th 1996. The dashed curve (upper curve) is the maximum file length 
predicted by the neural network, the solid line (middle curve) is the maximum 
file length predicted by the oracle; the dotted curve (bottom curve) is the 
effective jitter tolerance Tef 1 obtained by the neural network ( Tef 1 > 0.1 s 
means a contract violation in the considered period). 

error on the whole trace (12 hours). 
Such a result shows that the characteristics captured in the neural network 

predictor by our training strategy are not strongly dependent on the trace it 
was taught and are still valid on timescales of days. This, combined with our 
fast training process and the simple measurements required for the training 
make the neural network approach to traffic descriptor prediction a perfectly 
viable technique 1 . 

9 Discussion 

Also given in the top line of the above figures are mean bit rates (in Mb/s) 
characterizing various aspects of the experiments: 

1 There is no "magic" involved in this however ! We also tried this predictor on the LBL­
PKT3 trace and, although the adaptivity was surprisingly good, we got very poor results in 
terms of renegotiation. 
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• mean rate is the mean bit rate of the traffic; 

• mean oracle is the mean bit rate reserved by the oracle for DBR-lOs; 

• static DBR is the minimum bit rate reserved for the whole trace in the 
case of a standard static DBR; 

• mean NN DBR is the mean rate reserved by the neural network predictor 
for DBR-lOs. 

9.1 Comparison with the oracle 

It is clear that the reservation made by the neural network predictor is much 
larger than the reservation made by the oracle. This is easily interpreted since 
the neural network indeed tries to predict the worst future behaviour of the 
queue from the characterization of the past traffic and all the behaviours it 
has seen during the learning phase; the oracle knows perfectly the future, so 
that it makes its reservation on the basis of only one particular instanciation 
of the future behaviour of the queue, which is not necessarily a worst case 
instanciation. 

Hence, the quantitative comparison between the oracle and the predictor 
is not very informative. The main comparison should be a qualitative one as 
we already discussed: the oracle is closely taylored to the needs of the source 
and, at least for our Strategy 3, the comparison between the behaviours of the 
reservation of the oracle and of the neural network predictor shows that the 
neural network predictor indeed follows the big features of the activity of the 
source with some kind of safety margin. 

9.2 Comparison between DBR-lOs and static DBR 

A better quantitative information can be drawn from the comparison between 
the mean reservation made by the neural network predictor and the reservation 
of the best static DBR contract. 

From Figure 9 it can be seen that the mean DBR rate renegotiated by 
the neural network predictor (1.48 Mb/s) is smaller than the best static DBR 
contract (1.67 Mb/s) which could be negotiated for the whole trace (note that in 
order to negotiate such a contract you need to know the whole trace beforehand 
whereas our predictor has never seen this trace during its training process !). 

This indeed shows that neural network-based traffic contract renegotiation 
allows to save bandwidth while maintaining the quality of service. 

9.3 Future work 

Although excellent results have been obtained, our neural network is far from 
being optimal. In particular, it can be seen that the neural network does not 
seem to adapt correctly its behaviour in low activity parts of the trace (see the 
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CNET results in the 18:00-20:00 range). We are planning to use more sophisti­
cated neural network architectures recently developped for pattern recognition 
[12, 8] in order to solve this problem. 

We are also currently extending this study to other traffic traces from dif­
ferent origins and to different sets of parameters. We also plan to extend this 
work to the SBR traffic handling capacity. 

This presentation was restricted to the ATM context but, as the Internet 
evolves towards an Integrated Service Packet Network (ISPN) [6], it has also 
defined "traffic descriptors" based on leaky buckets which are used for the 
resource reservation in the network. Therefore the techniques developped here 
can also find applications in the Internet ISPN context. This may be even more 
natural since the in-service renegotiation capability is included in the signalling 
protocol RSVP [21]. 

10 Conclusion 

In this contribution, we have shown that the use of neural networks indeed 
allows accurate predictions of the extremal behaviour of a queue driven by a 
real traffic trace; we presented fast and intuitively simple learning algorithms 
for this difficult problem and successfully applied them to the dynamic resource 
reservation in an ATM network with a prediction horizon as large as 10 s. 

It has been shown that taking advantage of this prediction capability to pe­
riodically renegotiate the parameters of ATM layer traffic handling capabilities 
was benefitial in terms of reserved resources. 

Such results are extremely encouraging for the use of connectionist predic­
tion techniques for the management of a bursty traffic in B-ISDN networks. 
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