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Abstract 
An analytical model for the performance analysis of a novel input access 
scheme for an ATM switch is developed and presented in this paper. The 
interconnection network of the ATM switch is internally nonblocking and is 
provided with N input queues per each input port for a switch of size N x N. 
That is, each input port maintains a separate queue for each output port 
so as to reduce the head-of-line (HOL) blocking of conventional input queu­
ing switches. Each input is allowed to send just one cell per slot time, and 
each output port is allowed to accept just one cell per slot time. Under sat­
urated conditions the switch was analyzed and a closed-form solution for the 
maximum throughput is derived. Using a tagged input queue approach, an an­
alytical model for evaluating the switch performance under an i.i.d. Bernoulli 
traffic for different offered traffic loads is developed. The switch throughput, 
mean cell delay, and cell loss probability are computed from the analytical 
model. The accuracy of the analytical model is verified using simulation. 

Keywords 
ATM switch, analytical modeling, performance evaluation, computer simula­
tion 

1 INTRODUCTION 

Input queueing is preferred in implementing switching architectures for ATM 
(Awdeh et al. 1995) because of its simplicity. However, they suffer from the 
head-of-line (HOL) blocking problem which limits the throughput of each in­
put port to a maximum of 58.6% under uniform traffic, and much lower for 
bursty traffic (Pattavina et al. 1993). Several approaches have been proposed 
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to overcome this problem: adopting a switch expansion, a windowing tech­
nique, or a channel grouping technique (Awdeh et al. 1995). Of particular in­
terest to us in this paper is a recent technique termed parallel iterative match­
ing (PIM) algorithm and its variants (Anderson et al. 1993, McKeown 1994) 
which uses parallelism, randomness, and iteration to find a maximal matching 
between the inputs that have queued cells for transmission and the outputs 
that have queued cells (at the inputs) destined for them. Each input queue of 
the switch contains a random access buffer consisting of N FIFO queues, each 
of which stores the cells destined for one of the N output ports. The first cell 
in each queue can be selected for transmission across the switch in each time 
slot, with the following constraints: (i)Only one cell from any of the N queues 
in an input port can be transmitted in each time slot. (ii)At most one cell can 
be transmitted from the N input ports to an output port of the switch in any 
given time slot. 

To facilitate mathematical analysis, we modify the original PIM algorithm 
into a logically equivalent algorithm. The modified PIM algorithm iterates 
the following two steps until a maximal matching is found or until a fixed 
number of iterations are performed: 1. Each unmatched input chooses an 
output uniformly over all unmatched outputs for which it has queued cells 
and sends a request to it. 2. If an unmatched output receives any requests, it 
chooses one uniformly over all the requests and notifies each requesting input. 

The remainder of this paper is organized as follows. Section 2 presents 
recursive equations for the maximum throughput of the switch. Section 3 de­
velops an analytical model based on the tagged queuing approach. Equations 
for computing interesting performance measures including throughput, mean 
cell delay, and mean cell loss probability are derived in this section. Numer­
ical results obtained from the analytical model are presented for switches of 
different sizes in Section 4, and compared with the results from simulation. 
Finally conclusions are presented in Section 5. 

2 MAX THROUGHPUT OF MULTIPLE ITERATIONS PIM 

Under saturated conditions, all the queues at each input will have at least one 
cell so that each output will have requests from every unmatched input. An 
output selects one uniformly among the input requests. The throughput of the 
ATM switch with 1 iteration PIM scheduling, p(1), is equal to the probability 
that an output Oj gets matched after the first iteration. The probability of 
an input request being accepted by an output, p = 1/N. Then, 

1 
p(1) = 1- (1- -)N, 

N 
lim p(1) = 1 - e-1 = 0.632. 

N-+oo 
(1) 

Let Pr{m(1)} and Pr{n(1)} respectively be the probabilities that m(1) 
inputs (outputs) get matched or remain unmatched and output Oj remains 
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unmatched after the first iteration. Then, Pr{n(1)} = Pr{m(1) = N- n(1)} 
and Pr{m(1)} = jNN, where is the stirling num­
ber of the second kind which gives the number of ways of partitioning a set 
of n elements into m non-empty subsets (Abramowitz et al. 1972): = 

...!... "m (-1)m-k ( m ) kn. 
m! LJk=O k 

The throughput of two iterations PIM scheduling is equal to the sum of 
p(1) and the probability that output Oj gets matched in the second iteration, 
that is 

p(2) p(1) + Pr{Oj gets matched in the second iteration I 

Pr{n(i)} = 

Oj wasn't matched in the first iteration} 
N-1 

p(1) + L (1- (1- nt1))n(1l)Pr{n(1)} 
n(1)=1 

N-(i-1) 

L Pr{m(i) = n(i- 1)- n(i)}Pr{n(i- 1)} 
n(i-1)=n(i)+l 

(2) 

h P { ( ")} (n(i-1)-1) m' · n(i- 1 ) U · E (2) th th h t f. w ere r m z = m(i) (n(i-1))n<• 1 ). smg q , e roug pu o z 
iterations PIM scheduling p( i) is 

N-(i-1) 

p(i) = p(i -1) + L (1- (1- n(i 1))n(i-1l)Pr{n(i -1)} 
n(i-1)=1 

Figure 1 shows the results for maximum throughput as function of switch 
size and number of iterations. As shown in this figure, the maximum through­
put of a ATM switch with 1 iteration PIM scheduling converges to 0.63 (which 
corresponds to Eq (1)) when the switch size grows. Furthermore, the through­
put increases significantly after each iteration of PIM scheduling. Four iter­
ations are sufficient for achieving maximum throughput of about 99% for a 
switch of any size. 

3 QUEUEING MODEL AND ANALYSIS OF MULTIPLE 
ITERATIONS PIM 

In this section, we model the ATM switch with PIM scheduling using queue­
ing theory and analyze the underlying Markov chain. Our method uses the 
concept of tagged queues in modeling the PIM switch leading to a smaller 
state space. The concept of tagged input queue has been successfully used to 
evaluate the FIFO input-queued switch model (Pattavina et al. 1993, Youn et 
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Figure 1 Maximum throughput as function of switch size and number of 
iterations. 

al. 1994). These switches involve a single stage of contention resolution. On 
the other hand, for the switch with PIM scheduling, the contention resolution 
process consists of two stages. As observed from the algorithm descriptions 
of PIM, a HOL cell in an input queue will contend for transmission not only 
with the HOL cells of the same input, but also the HOL cells destined for 
the same output. As a result, the corresponding model is more complicated 
than for the FIFO input-queued switch. We make the following assumptions 
in developing the PIM switch model: 1. The switch operates synchronously. 
2. Every input queue has the same buffer size, namely bi. 3. Cells arrive at 
every input queue according to an i.i.d. Bernoulli process with probability .X. 
4. New cells arrive only at the beginning of the time slots, and cells depart 
only at the end of the time slots. 

'---------- ---' 0\lit;pi,IU 

Figure 2 An example of the queueing model for the PIM switch. 

Under the above assumptions, all the input queues will exhibit the same 
behavior when the system attains steady state. A queue at input i with output 
j as the destination is denoted by Q(i,j). Figure 2 shows an example of 
the queueing model for the PIM switch. In this example, the occupancy of 
Q(1, 1) is taken as the tagged input queue, the number of HOL cells at input 
1 is represented by the 1st HOL input queue, and the number of HOL cells 
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addressed for output 1 is denoted by the 1st HOL output queue. Both the 
HOL input queue and the HOL output queue are virtual queues which don't 
exist in a real PIM switch but are useful for our mathematical analysis. 

3.1 Markov model 

Analyzing the queueing model of the PIM switch requires the construction of 
the underlying Markov chain Z. The states of the Markov chain Z are sampled 
at the end of the time slots and can be expressed as a triplet (l, Wi, w 0 ), where 
l, wi, and w0 refer to the lengths of the tagged input queue, virtual HOL input 
queue, and virtual HOL output queue, respectively. The state-space of this 
three-dimensional Markov chain is 

and are ordered in a lexicographic order, that is, (0, 0, 0), (1, 1, 1), ... (bi, N, N). 
The set of states {(l, 1, 1), (l, 1, 2), ... (l, 2, 1), ... (l, N, N)} will be labelled as 
states in levell of the Markov chain. This Markov chain is a Quasi Birth and 
Death (QED) process with block-partitioned form of transition probability 
matrix T as 

A' 1 A' 2 0 
A' 0 A1 A2 0 
0 Ao A1 A2 0 

T= 

0 0 0 Ao A1 A2 
0 0 0 0 s B 

where + A2e = 1 and + A1e + A2e = (Ao + A1 + A2)e = e with 
e = [1, 1, 1, ... , 1]T. Let denote the probability that 
the HOL cell of the tagged queue is blocked, and 
denote the probability that the HOL cell of the tagged queue is transmit­
ted given that the remaining HOL cells at the end of the last time slot is 
(wi,wo) and the remaining HOL cells at the end of the current time slot is 

Define the matrice B, Bo and So as B = 
Bo = and s = where 
0:::; N. 

Let So be the probability that the HOL cell of the tagged input queue gets 
matched given that the tagged input queue is empty at the end of last time 
slot. From the definitions of Bo, S0 , S, and B, we can show that: 

So+ Boe = 1 (3) 
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Be +Be =e (4) 

where Be= Se, Be =Be. As illustrated in the appendix of this paper, Eq (3) 
and Eq (4) help us solve the Markov chain using the Matrix-Geometric ap­
proach by simply focusing the computation on matrix Band vector B0 • By 
using the above equations, the element matrices in the transition probability 
matrix T can be computed as: 

= (1 - >.)Se 
Ao = (1- >.)S 

= (1 - >.) + >.So 
A1 = >.S + (1 - >.)B 

The remaining subsections will cover the computation of the success and 
blocking probabilities, and 
respectively. Once these probabilities are computed, the transition probabil­
ity matrix T can be constructed. Once the transition probability matrix is 
known, it is a routine matter to derive the steady state equations by uti­
lizing the properties of Markov chains, and solving the equations to obtain 
the steady-state probability vector. Detailed procedures are presented in the 
appendix of this paper. 

3.2 Computing the blocking and success probabilities 

We now derive the equations for computing the blocking and success proba­
bilities. The transition of the state of the virtual HOL input/output queues 
from the state (wi, w0 ) to state (wi, is a two step process illustrated in Fig­
ure 3: First, we account for the newly arriving HOL cells to the virtual HOL 
input/output queues. Then, we consider the transition from the intermediate 
state to the final state after applying the PIM algorithm. 

(w;,w0 ) ----•(h;.h,} 

Arriving HOL 
cells (k;.k,J 

PIM algorithm 
to find maxintal 
matching 

Figure 3 Transition of the virtual HOL queues. 

(a) Arriving cells at the virtual HOL queues 
Let Kt(ki, k0 ) denote the number of newly arriving HOL cells at the virtual 
HOL inputjoutput queues (ki/ko new arrivals to the virtual HOL inputjoutput 
queue), at the beginning of current time slot t. Wt-1 (wi, w0 ) denotes the num­
bers of remaining HOL cells at the virtual HOL inputjoutput queue (wi/wo is 
length of virtual HOL input/output queue), at the end of the previous time slot 

194 



t -1. Let Ht(hi, ho) = Kt(ki, ko) + Wt-l (wi, Wo)· Define aK(k;,k.)IW(w;,w.) = 
Prob{Kt(ki, ko)IWt-l (wi, Wo)). Let Po be the probability that a queue is empty 
in a time slot, and PI = 1- Po· A cell that arrives at Q(i,j) when Q(i,j) is 
empty, will observe that another queue is non-empty with probability p1 • If 
the current state is (l, wi, w0 ), (N- wi) queues of input i and (N- w0 ) jth 
queues of inputs will be non-empty with probability Pl· Hence, 

(b) Transition to Wt(wL 
Having determined the number of cell arrivals to the virtual HOL queues, 
we now consider the transition from the intermediate state to the final state 
after applying the PIM algorithm. Given the tagged input queue Q(i,j), the 
inputs excluding input i are divided into two subsets E and F according to 
whether the jth queue of the inputs is empty or not. The cardinality of these 
sets are (N- w0 ) and (w0 - 1) respectively. The state of set E and set F 
will affect the transitions of virtual HOL input queue and virtual HOL output 
queue. For the HOL cell of the tagged input queue, its contention process can 
be split into two stages. In the first stage, the tagged input queue contends 
with other non-empty queues at the same input. If it succeeds in the first 
stage contention, it joins the second stage contention with all successful jth 
queues from other inputs. Let Q(i, k)(k =f. j) be the successful queue at input 
i if Q(i,j) is blocked in the first contention stage. We define the following 
probabilities associated with the second transition step in Figure 3: 

• Pbto..OOIH(h;,h.) = Prob{ the HOL cell at the tagged input queue gets blocked, 
and = Ht(hi, h0 ) given Ht(hi, h0 )} 

• Pbto_OliH(h;,h.) = Prob{ the HOL cell at the tagged input queue gets blocked, 
and = Ht(hi, ho- 1) given Ht(hi, h0 )} 

• Pblo-lOIH(h; ,h.) = Prob{ the HOL cell at the tagged input queue gets blocked, 
and = Ht(hi -1,ho) given Ht(hi,ho)} 

• Pbto_lliH(h; ,h.) = Prob{ the HOL cell at the tagged input queue gets blocked, 
and = Ht(hi- 1, h0 - 1) given Ht(hi, h0 )} 

• PsuciH(h; ,h.) = Prob{ the HOL cell at the tagged input queue gets transmit­
ted, and = Ht(hi- 1, ho- 1) given Ht(hi, h0 )} 
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Given Ti = Wi and T0 = w 0 , the blocking probability 
is computed as: 

0, forTi< -1 or T0 < -1 

+ p, (1 lo(r.-1)) 
aK(r;,r.)IW(w;,w.) - w'-1 

+ p, (1 lo(r;-1)) 
aK(r;,r.)IW(w;,w.) -

+ p, ' lo(r;)lo(ro) 
aK(r;+l,ro+l)iW(w;,w.) 

p, lo(r;){r.-1-lo(r.-1)) 
+aK(r;+l,ro)IW(w;,w.) 

p, (r;-1-lo(r;-1))1o(ro) 
+aK(r;,r0 +l)IW(w;,wo) (w; 

+ p, 
aK(r;,r.)iW(w;,w.) 

, forTi 2: 1 and T0 2: 1 and Wi = 0 and W0 = 0 

+ 1 + lo(wo 

-1-lo(wo -1) 
+ 1 + lo(Wi 

-1-lo(Wi -1) 
p, (r;+l+lo(w;-1))(r.+l+lo(w.-1)) 

+aK(r;+l,ro+l)IW(w;,w.) 
p, ' (r;+l+lo(w;-1)){w • ....:1-lo(w.-1)) 

+aK(r;+l,ro)IW(w;,w.) 
p, (w;-1-lo(w;-1))(r.+l+lo(w0 -1)) 

+aK(r;,r.+l)IW(w;,w.) 
p, ' (w;-1-lo(w;-1))(w;-1-lo(w.-1)) 

+aK(r;,ro)IW(w;,w.) 

forTi 2: -1 and T0 2: -1 and Wi > 0 and W0 > 0 

in which 

{ 0 for w = 0 
lo(w) = (:)P11(1- lh)w-u for w > 0 (6) 

(5) 

represents the number of input queues that contain only one buffered cell, 
and P11 in Eq (6) is the probability that an input queue length is equal to one 
(there is only one buffered cell in this input queue) during a time slot, and is 
given by ll1 = (1- A)7rle/(1-7ro). 

For Wt-l(wi,Wo) = (0,0), the blocking probability 
can be computed by Eq (5) provided that the function Pn in Eq (6) is replaced 
by P/1 = (A7ro + (1- A)7rle)/P1· 
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We can compute the probability as: 

(c) Applying the PIM algorithm 
We now compute the probabilities in Figure 3 by considering each iteration of 
the PIM scheduling algorithm. The state of the switch at the beginning and 
end of each iteration ¢ is characterized by the following parameters: 

• n{¢): the number of unmatched inputs/outputs at the beginning of ¢th 
iteration. 

• hi(¢): the number of non-empty queues in input i at the beginning of ¢th 
iteration, whose outputs are still unmatched. 

• h0 (¢): the number of non-empty jth queues inn(¢) inputs (including input 
i) at the beginning of ¢th iteration matching. 

• m(¢): the number of inputs/outputs that get matched at the end of ¢th 
iteration, m(¢) = n(¢)- n(¢ + 1). 

• llhi(¢): the number of outputs whose corresponding non-empty queues in 
input i that get matched at the end of ¢th iteration, llhi(¢) = hi(¢) -
hi(¢+ 1). 

• flho{¢): the number of inputs in set F that get matched at the end of ¢th 
iteration, flh 0 (¢) = h0 (¢)- h0 (¢ + 1). 

For the sake of simplicity, we do not mention the iteration number in the 
following discussion. If no iteration number is mentioned, then the current 
iteration ¢ is implied. 

Let XiXj represent the state of the matching process for input i and output j 
of the switch, where Xi, Xj E {0, 1} with 0 representing that the input/output 
is unmatched and 1 representing that the input/output is matched at the 
end of the current iteration. The possible states of the matching process are 
00, 01, 10, and 11. However, the state 11 should explicitly consider if the 
tagged input queue Q(i,j) at input i is matched. Thus the state 11 is split 
into two: 11suc and 11blo respectively. Given the current state of the switch 
(n(¢), hi(¢), h0 (rp)) and the current state of the matching process XiXj, the 
resulting state of the switch (n(¢ + 1), hi(¢+ 1), ho(¢ + 1)) and the resulting 
state of the matching process is controlled by the transition probabilities 
as in Figure 4. These probabilities are functions of the current state of the 
switch (n(¢), hi(¢), h0 (¢)) and are defined as: 

• Pblo..zjzjiz;z;=Prob{ at the end of current itemtion, the HOL cell at the 
tagged input queue Q(i,j) gets blocked; and represent whether 
input i or Xi) and output j (xj or Xj) remain unmatched {represented 
by 0} or get matched (represented by 1} at the end/beginning of the current 
itemtion}. 
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• PsuciOO = Frob{ at the end of current iteration, the HOL cell at the tagged 
input queue Q(i, j) gets matched with output j, given that input i and output 
j were unmatched at the beginning of current iteration}. 

Figure 4 The matching process state transition diagram. 

To derive equations for the transition probabilities, we define the following 
probabilities associated with the first stage of contention for a cell and give 
the computing formulas of them as below: 

• PsucLe = Frob{ the HOL cell at kth(k =f j) queue of an input in set E 
succeeds in the first stage contention}. 

• PsucLft = Frob{ the HOL cell at jth queue of an input in set F succeeds in 
the first stage contention}. 

• PsucLfe = Frob{the HOL cell at kth{k =f j) queue of an input in set F 
succeeds in the first stage contention}. 

P ""n (n-1) (v-1) (n-v)/ 
sucLft = L,.,v=l v-1 P1 Po V 

l n-1 
p sucl_e- n-1 P _ 1-P.ucl [t 

sucLfe- n-1 

Let t (max(m, h0 - 1) ::::; t ::::; n - 1) be the number of queues excluding 
the queue from input i that succeed in the first stage of contention, and 
m is the number of outputs contended for by the t inputs. There are three 
sub-problems to be considered in computing the transition probabilities in 
<f>th iteration given (n(</>), hi(</>), ho(</>)) and (n(</> + 1), hi(</>+ 1), h0 ( </> + 1)): 1. 
What is the probability that t inputs contend for m outputs? 2. What is the 
probability that Llh0 inputs in set F (whose cardinality is h0 -1) get matched? 
and 3. What is the probability that llhi out of hi outputs whose corresponding 
queues in input i are non-empty get matched? The equations below consider 
each of the sub-problems in computing the transition probabilities. 
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Computing Pb!o_OOIOO: In this case both input i and output j remain un­
matched. Given t and m, the probability that the queue that succeeds in the 
first stage of contention at input i gets blocked at its corresponding output is 

Pt--+mlblo-00..00 = (1 - )(m!Sm + (m- 1)!sm-1 )Pt-ho+l t + 1 t t sucLe 

(n-1}{n-1-t)ph0 -1 
'Po sucLfe 

Among the m outputs that get matched, tl.hi of them will see their corre­
sponding queues in input i being non-empty. The number of combinations 
satisfying this condition is CAh;lblo..OO..OO = 

Given that input i is blocked, it is clear that each combination of m out oft 
inputs gets matched with equal probability. The probability that tl.h0 inputs 

(ho-1 t-h0 +1) 
which are elements of the set F get matched is PAholblo..oo..oo = .o." t-.o." . 

Knowing the above probabilities, Pbto..OOIOO can be easily computel as 

n-1 ( h ) 
Pblo..OOIOO = (1- 1/hi) L t: 1 CAh;lb!o..OO..OO 

t=max(m,h0 -1) 

P Aho lblo..Oo_ooPt--+mlblo_oo..oo 

Computing Pb!o_lOIOO: In this case, input i gets matched while output j 
remains unmatched. So we compute only the aggregated probability over the 
set of all possible tl.h0 • The probability that the queue that succeeds in the 
first stage of contention at input i succeeds in getting matched in the second 
stage of contention is 

Pt--+mlblo_lO..OO = (1 - )(m!Sm + (m- 1)!sm-1 )Pt-ho+l t + 1 t t sucLe 

(n-1)(n-1-t)ph0 -1 
'Po sucL/e 

= (1 _ 1/hi)(n-2) ( n-h0 ) 

m-1 L.J t-h0 +1 
t=max(m-1,ho-1) 

p Aho lblo-lO..OOPt--+mlblo_lO..OO 

Computing Pbto_Olloo: In this case, output j gets matched while input i 
remains unmatched. We compute only the aggregated probability over the 
set of all possible tl.hi· There are two cases to be considered here: (i) Q(i,j) 
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fails the first stage of contention, and (ii) Q(i,j) survives the first stage of 
contention. Therefore Pbto_01joo = Pbto_o1..Bjoo + Pblo..OLSjoo, where Pblo_01..Bjoo 

and Pbtoc_OLSIOO are probabilities for the two cases (i) and (ii) respectively. 
Case (i): Q(i,j) fails in the first stage of contention 

Pblo_01..Bjoo = (1-1/h·) ( n- ho ) 
• L...t t- h0 + 1 

t=max(m,ho-1) 

min(ho-l,t-m+l) (h _ 1) 
0 u C 

where 

= (1- t :-:: 1)((m + (m-

P u ph0 -1-upt-ho+l (n-l)(n-1-t) 
suc1_ft sucLfe sucl-e Po 

CAh;jblo..01..B_oo = ( hi- 2 ) ( n- hi ) 
ll.hi - 2 m - ll.hi 

Case (ii): Q(i,j) is successful in the first stage of contention 

where 

min(h0 -l,t-m+l) ( ) 1 
h-+mlblo_OLS-00 = L ! (1- k + 1 )(m- 1)!Sr-:A;1 

k=l 

P k ph0 -l-kpt-h0 +l (n-l)(n-1-t) 
sucl-ft sucl-fe sucl_e Po 

CAh;jblo_OLS_oo = ( hi- 1 ) ( n- hi ) 
ll.hi - 1 m - ll.hi 

Computing PsuciOO: The state llsuc in Figure 3 is an absorbing state, so 
this transition probability is computed without consideration on m. 

1 o - 1 1 u h 0 -1-u ho-1 (h ) 
PsucjOO = h- L U U + 1 Psuc-ft (1 - Psuc_Jt) 

• u=O 

Computing Pblo_HIOO: Then, Pbto_njoo is computed from the boundary 
condition as Pbto_ujoo = 1- (Pblo-OOjOO + Pblo_OljOO + Pblo-lOjoo + Psuctoo). 
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Computing Pblo_OliOl: In this case input i remains unmatched, while out­
put j is already matched. Then, 

where 

n _ ( 1 m )( 13m ( 1)1sm-1)pt n(n-1-t) 
I"t-tmlblo_OL01 - - t + 1 m. t + m - · t suc_oPo 

1-pij 
Psuc_o = -­n 

(hi-1)( n-hi) 
C lblo_OL01 = fj.hi _ 1 m _ fj.hi 

Computing Pblo_lliOl: In this case input i gets matched while output j 
has already been matched at the beginning of the iteration. 

Computing Pblo_lOIIO: In this case input i is already matched, while output 
j remains unmatched at the end of the iteration. Then, 

(n -1) (n -h0 + 1) 
Pbzo_10I10 = m L-J t _ ho + 1 

t=max(h.-1,m) 

where 

= tsmpt-h.+l (n-1)(n-t)ph.-1 
m. t sucLe Po sucL/e 

(h.-1) (t-h.+1) 

(!) = 

Computing Pblo_llllO: In this case output j gets matched at the end of the 
iteration. This is feasible only if at least one of j th queues of the h0 - 1 inputs 
in set F succeed in the first stage of contention at their respective inputs. 

The states of the switch at the end of each iteration, (n(¢>), hi(¢>), h0 (¢>), XiXj), 
can be viewed as a weighted tree with the nodes of the tree corresponding 
to the switch states. The root of the tree is the initial state of the switch 
(N, hi, h0 , 00). All states in level ¢> of the tree correspond to the states of 
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the switch at the end of the ifJ th iteration of the PIM algorithm. Weights 
are assigned to the arcs between the states, and are equal to the transition 
probabilities Pbto..z;xjlx;x; or Psucix;x;- Each state (n(r/>),hi(r/>),h0 (r/>),xiXj) is 
assigned a probability Pr(n(r/>), hi(r/>), ho(r/>), XiXj) equal to the product of the 
transition probabilities along the arcs from the root to the state. The prob­
abilities Pbto_OOIH(h;,ho)> pblo_OliH(h;,ho)> pblo_lOIH(h;,ho)> and PsuciH(h;,ho) at 
the end of 4.> iterations of the PIM algorithm can be computed as 

Pblo_x;x;IH(h;,h0 ) = En(4?),h;(4?),ho(41) Pr(n(4.>), hi(4.> ), ho(4.>), XiXj) 
PsuciH(h;,h0 ) = En(4?),h;(4?),h0 (4?) Pr(n(4.>), hi(4.>), ho(4.>), llsuc) 

3.3 Solving the Markov chain 

As can be seen from the above equations, Po, 1ro and 1r1 must be known in 
advance in order to compute the steady state probabilities. From the Appendix 
of this paper, the steady state probabilities are given by: 

Notice that in steady state the following equation holds 

Po= (1- .X)7ro (7) 

This naturally suggests an iterative solution (Youn et al. 1994). Initially, 1ro 

is set to zero, which corresponds to the case of saturated offered loads. Then 
Po can be obtained by using Eq (7). Since Po is known, the next value of 
1ro is computed again. This iterating process continues until both Po and 1ro 

converge, leading to the values of steady state probabilities 1r. 

3.4 Computing the performance metrics 

Once the steady state probabilities are known, then interesting performance 
parameters, such as throughput, mean queue length and mean cell loss prob­
ability can be computed directly by using the known para.."'leters. Let p, Q, fJ 
and Pzoss be the throughput, mean queue length, mean cell delay and mean 
cell loss probability respectively, then 
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(a) 8 x 8 switch (b) 16 x 16 switch 

Figure 5 The throughput of the PIM switch as a function of offered load 
with a buffer size bi=10. 

4 NUMERICAL RESULTS 

Both mathematical analysis and simulation results are presented in this sec­
tion in order to investigate the accuracy of the above queueing model. Fig­
ure 5 shows the switch throughput as function of offered load A for PIM 
switch sizes 8 and 16 with various PIM scheduling iteration numbers 1, 2 
and 3, respectively. It can be seen that when the switch size increases, the 
throughput of the switch decreases under high offered load (greater than 60% 
when maximum iteration is 1). Also from this figure, we can see that the 
saturation throughput will increase as the PIM scheduling iteration increases. 
It is expected that with more iterations, more HOL cells get matched during 
a scheduling iteration. The curves show that 3 iterations are enough to get 
a high throughput > 90%. Comparing Figure 5 with Figure 1, we can see 
that even under saturated traffic loads, our queueing model approximates the 
original system quite well. 

Figure 6 shows the mean cell delay as a function of offered load A for the 
different PIM switch sizes 8 and 16 with various PIM iteration numbers 1, 2, 
and 3. The figures indicate that the mean cell delay increases as the switch 
size increases and also as the offered load increases. But when the number 
of PIM scheduling iterations is increased, even from 1 to 2, the mean delay 
increased slowly with the traffic load as compared with just one iteration. For 
a single iteration PIM scheduling, the mean cell delay increases dramatically 
when the offered load exceeds 60%, which indicates that PIM switches with 
single iteration PIM scheduling will be overloaded when the traffic load is 
greater than 60%. However, for 2 and 3 iteration PIM, this overloaded traffic 
point is about 0.8. This phenomenon can also be observed in Figure 5. Notice 
that when the traffic load is extremely low, such as 0.1, all curves cluster 
into a single point. It isn't difficult to understand that, under low traffic 
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Figure 6 The mean cell delay of the PIM switch as a function of offered load 
with a buffer size bi=10. 

Figure 7 The mean cell loss probability of a PIM switch, as a function of 
offere d load, with a buffer size bi=10. 

load, the opportunity that more than one HOL cell contend for a common 
input/output is small. That is, single iteration PIM scheduling is typically 
enough to find a maximal matching. When the traffic load grows, the chances 
of conflits increase and more iterations are needed using PIM scheduling to 
achieve a maximal matching. In this case, the analysis results diverse from 
the simulation results significantly when compared to the case that the traffic 
load is low. This phenomenon is due to the approximation in computing the 
transition probability of multiple iteration PIM algorithm. 

In Figure 7, the mean cell loss probabilities of PIM switches with queue size 
of 10 cells are given as a function of offered load. It can be seen that, for a 
medium size PIM switch with 3 iterations PIM scheduling (such as 16-by-16) 
with traffic load less than 60%, a buffer size of 10 cells per queue is sufficient 
to guarantee a cell loss probability < w-9 • 
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5 CONCLUSION 

In order to make the original switch model tractable for analysis, a number 
of assumptions have been added. The most important is that the random 
traffic, that is, cells are arriving at each input according to an i.i.d. Bernoulli 
process, and the destinated output of arriving cells are distributed over all 
outputs uniformly. In case of non-random traffic loads, the analysis will be 
more complicated than the one for random traffic loads. In future research 
direction, we will try to apply this method to analyze the same kind of ATM 
switches with bursty and correlated traffic. 

The contribution of this paper is two fold. First, the throughput of an ATM 
switch with multiple iteration PIM scheduling in case of saturated traffic 
load is analyzed mathematically. Second, a theoretical analysis for various 
performance parameters including throughput, mean cell delay, and mean cell 
loss probability, of a ATM switch using a PIM scheduling scheme is presented. 
Such theoretical analysis is lacking in existing literature on ATM switches with 
PIM or variations of PIM scheduling (Anderson et al. 1993, McKeown 1994, 
Mckeown et al. 1994, LaMaire et al. 1994). 

6 APPENDIX: COMPUTATION OF THE STEADY STATE 
PROBABILITIES 

Following the steps given in (Youn et al. 1994), we give the procedures to 
compute the steady state probabilities of the Markov chain. The method pre­
sented in (Youn et al. 1994) is based on the algorithmic approach given in 
(Neuts 1981). From the definition of the transition probability matrix, we 
know that fiT == n. By expanding this equation, we have: 

7ro((1- ..\)+..\So)+ 11"1 (1- ..\)Be == 7ro (8) 

1ro..\Bo + 1r1 (..\S + (1 -..\)B) + 1r2(1 - ..\)S == 1r1 (9) 

11"i-1..\B + 1ri(..\S + (1 -..\)B) + 11"i+l (1 - ..\)S == 1ri , far 1 < i < bi - 1 (10) 

(11) 

(12) 

Multiplying Eq (10) by e results in: 

(13) 
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The solution for 11"i{1 < i < bi) in terms of 11"i-1 can be obtained by multi­
plying Eq {10) by I1 and using Eq {13), where I1 = ee1 and e1 = [1, 0, 0, ... , 0]. 

{14) 

Multiplying Eq (4) by e1 and substitute it into Eq {14), we have a recursive 
formula for 11"i in terms of matrix B. 

{15) 

From Eq {12), we have: 

{16) 

Let a: = >.B0(I- >.J1 - {1 - >.)B)-1 and /3 = >.B((1 ->.)(I- B))-1. Using 
Eq (8), we get: 

{17) 

Using Eq (15, 16, 17), 

Notice that 7ro + 1r1e = 1, we have: 

b;-1 

7ro = 1/(1 +a: L {31- 1e + a:f3b•-2 >.B(I- B)-1e) 
1=1 
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