
2

Agendas -A concept to guide
software development activities

M. Heisel
Otto-von-Guericke-Universitiit Magdeburg
F akultiit for /nformatik, D-390 16 Magdeburg
email: heisel@cs.uni-magdeburg.de, fax: +49-391-67-2810

Abstract
We present the concept of an agenda. This concept represents process knowledge in
the area of software development. An agenda consists of a list of steps to be performed
when developing a software artifact. Each activity may have associated a schematic
expression of the language in which the artifact is expressed and some validation con­
ditions that help detect errors. Agendas provide methodological support to their users,
make development knowledge explicit and thus comprehensible, and contribute to a
standardization of software development activities and products.

Keywords
Software engineering methodology, process modeling, formal methods

1 RE-USE OF DEVELOPMENT KNOWLEDGE

Software development comprises a number of development activities, the result of
each of which is an artifact, such as a requirements document, a formal specifica­
tion, program code, and test cases. Experienced software engineers have over time
acquired problem-related fine-grained knowledge how to perform the various devel­
opment activities.

To date, such expert knowledge is rarely made explicit. This forces each software
engineer to gain experience from scratch. Previously acquired knowledge is not re­
used to support software processes and not employed to educate novices.

Making development knowledge explicit, on the other hand, would
• support re-use of this knowledge
• improve and speed up the education of novice software engineers
• lead to better structured and more comprehensible software processes
• make the developed artifacts more comprehensible for persons who have not de­

veloped them
• allow for more powerful machine support of development processes.

Recently, efforts have been made to support re-use of special kinds of software de­
velopment knowledge: Design patterns [5] have had much success in object-oriented

Systems Implementation 2000 R. Nigel Horspool (Ed.)
C 1998 lAP. Poblished by Chapman & Hall

20 Systems Implementation 2000

software construction. They represent frequently used ways to combine classes or as­
socia~e objects to achieve a certain purpose. Furthermore, in the field of software ar­
chitecture [16], architectural styles have been defined that capture frequently used
design principles for software systems.

This work presents the concept of an agenda. An agenda gives guidance on how
to perform a specific software development activity. Whereas concrete agendas are
very much oriented on the activity to be supported, the general concept of an agenda is
not specialized to a programming paradigm such as object -orientedness or an activity
such as software design, as is the case for design patterns and architectural styles.
Agendas can be used for structuring quite different activities and in different contexts.
We have set up and used agendas that support requirements engineering, specification
acquisition, software design using architectural styles, object-oriented analysis and
design, and developing code from specifications [8].

Agendas are especially suitable to support the application of formal techniques in
software engineering. Formal techniques have the advantage that one can positively
guarantee that the product of a development step enjoys certain semantic properties.
In this respect, formal techniques can lead to an improvement in software quality that
cannot be achieved by traditional techniques alone. Moreover, when the semantics of
the developed artifact is taken into account, stronger machine support, e.g., by theo­
rem provers, becomes possible.

In the following, we introduce the concept of an agenda in more detail and give ex­
amples of concrete agendas (Section 2). Then we discuss the distinguishing features
of agendas in Section 3. Related work is discussed in Section 4, and a summary of
what has been achieved concludes the paper (Section 5).

2 AGENDAS

We first introduce the concept of an agenda in general and then present as examples
two agendas that support the development of formal specifications for safety-critical
software.

2.1 General Concept

An agenda is a list of steps to be performed when carrying out some task in the con­
text of software engineering. The result of the task will be a document expressed in a
certain language. Agendas contain informal descriptions of the steps. With each step,
schematic expressions of the language in which the result of the activity is expressed
can be associated. The schematic expressions are instantiated when the step is per­
formed. The steps listed in an agenda may depend on each other. Usually, they will
have to be repeated to achieve the goal, similar to the general process proposed by
the spiral model of software engineering. Agendas are presented as tables, see e.g.
Tables 1 and 2, together with a dependency graph of the steps, see e.g. Figure 2.

Agendas are not only a means to guide software development activities. They also
support quality assurance because the steps of an agenda may have validation condi-

A concept to guide software development activities 21

tions associated with them. These validation conditions state necessary semantic con­
ditions that the artifact must fulfill in order to serve its purpose properly. The purpose
of the artifact is always clear in the context of an agenda, because agendas represent
specific development knowledge. When formal techniques are applied, the validation
conditions can be expressed and proven in a formal way. Since the validation con­
ditions that can be stated in an agenda are necessarily application independent, the
developed artifact should be further validated with respect to application dependent
needs.

Working with agendas proceeds as follows: first, the software engineer selects an
appropriate agenda for the task at hand. Usually, several agendas will be available for
the same development activity, which capture different approaches to perform the ac­
tivity. This first step requires a deep understanding of the problem to be solved. Once
the appropriate agenda is selected, the further procedure is fixed to a large extent.
Each step of the agenda must be performed, in an order that respects the dependen­
cies of steps. The informal description of the step informs the software engineer about
the purpose of the step. The schematic language expressions associated with the step
provide the software engineer with templates that can just be filled in or modified ac­
cording to the needs of the application at hand. The result of each step is a concrete
expression of the language that is used to express the artifact. If validation conditions
are associated with a step, these should be checked immediately to avoid unnecessary
dead ends in the development. When all steps of the agenda have been performed,
a product has been developed that can be guaranteed to fulfill certain application­
independent quality criteria.

Agendas do not aim at replacing creativity, but they tell the software engineer what
needs to be done and help avoid omissions and inconsistencies. Their use lies in an
improvement of the quality of the developed products and the possibility for reusing
the knowledge incorporated in an agenda.

2.2 Agendas for Formally Specifying Safety-Critical Software

In this section, we present two concrete agendas that support the formal specifica­
tion of software for safety-critical applications. Because we want to give the readers
a realistic impression of agendas, we present the agendas unabridged and give a brief
explanation of the important aspects of software system safety and the language and
methodology we use to specify safety-critical software. To understand the main points
of this paper, however, it is not necessary to understand every detail of this section.
We will refer to the agendas presented here to illustrate the specific features of agen­
das discussed in Section 3.

The systems we consider in the following consist of a technical process that is con­
trolled by dedicated system components being at least partially realized by software.
Such a system consists of four parts: the technical process, the control component,
sensors to communicate information about the current state of the technical process
to the control component, and actuators that can be used by the control component to
influence the behavior of the technical process.

Most safety-critical systems are reactive. Hence, two aspects are important for the

22 Systems Implementation 2000

specification of software for safety-critical systems. First, it must be possible to spec­
ify behavior, i.e. how the system reacts to incoming events. Second, the structure of
the system's data state and the operations that change this state must be specified.
These requirements lead us to use a combination of the process algebra real-time CSP
(3] and the model-based specification language Z [21].

In [8, 11] we have described the following principles of the combination of both
languages in detail: For each system operation Op specified in the Z part of a speci­
fication, the CSP part is able to refer to the events Oplnvocation and OpTermination.
For each input or output of a system operation defined in Z, there is a communica­
tion channel within the CSP part onto which an input value is written or an output
value is read from. The dynamic behavior of a software component may depend on
the current internal system state. To take this requirement into account, a process of
the CSP part is able to refer to the current internal system state via predicates which
are specified in the Z part by schemas.

There are several ways to design safety-critical systems, according to the manner
in which activities of the control component take place, and the manner in which sys­
tem components trigger these activities. These different approaches to the design of
safety-critical systems can be expressed as reference architectures.

We present agendas for two such reference architectures which cover frequently
used design principles of safety-critical systems. The first architecture assumes that
sensors are passive measuring devices. The second architecture assumes that sensors
can cause interrupts in the control component. For both architectures, we assume that
it is appropriate to distinguish several operational modes of the system. Within dis­
tinct modes, which can model different environmental or internal conditions, the be­
havior of the system- and thus of the control component- may be totally different.

(a) Agenda for Passive Sensors Architecture
In the passive sensors architecture, all sensors are passive, i.e., they cannot trigger ac­
tivities of the control component, and their measurements are permanently available.
This architecture is often used for monitoring systems, i.e., for systems whose pri­
mary function is to guarantee safety. Examples are the control component of a steam
boiler whose purpose it is to ensure that the water level in the steam boiler never
leaves certain safety limits, and an inert gas release system, whose purpose is to detect
and extinguish fire.

Figure 1 shows the structure of a software control component associated with the
passive sensors architecture. Such a control component contains a single control op­
eration, which is specified in Z, and which is executed at equidistant points of time.
The sensor values ~ coming from the environment are read by the CSP control pro­
cess and passed on to the Z control operation as inputs. The Z control operation is
then invoked by the CSP process, and after it has terminated, the CSP control pro­
cess reads the outputs of the Z control operation, which form the commands f to the
actuators. Finally, the CSP control process passes the commands on to the actuators.

The agenda for the passive sensors architecture is summarized in Tables 1 and 2,
where informal validation conditions are marked "o", and formal validation condi­
tions are marked "f-". The dependencies between the steps are shown in Figure 2. The

A concept to guide software development activities 23

sensor values

Contro!Operationlnvocation

Control()perationTerminalion

aclualor commands

Figure 1 Software Control Component for Passive Sensors Architecture

agenda gives instructions on how to proceed in the specification of a software-based
control component according to the chosen reference architecture.

Figure 2 Dependencies of steps of agenda for passive sensors architecture

Since the specification of safety-critical software is not the main subject of this pa­
per, we do not explain the steps, the schematic expressions, and the validation con­
ditions in detail. Some aspects of the agenda will be discussed in Section 3. We only
note that
• the agenda is fairly detailed,
• the structure of the specification need not be developed by the specifier but is de­

termined by the agenda,
• the schematic expressions proposed are quite detailed,
• the verification conditions that help avoid common errors are tailored for the ref­

erence architecture and the structure of its corresponding specification.

(b) Agenda for Active Sensors Architecture
In this architecture, active sensors control certain variables of the technical process
and independently report certain changes of the controlled variable to the control com­
ponent at arbitrary time instants. Such a report immediately triggers a handling oper­
ation within the control component.

Figure 3 shows the structure of a software control component associated with the
active sensors architecture. The CSP part of such a control component consists of
three parallel processes. A Priority process receives the sensor events from the en­
vironment. If several events occur at the same time, this process defines which of
these events is treated with priority. Depending on the prioritized events passed on
from the Priority process, an lnterfaceControl process invokes a Z operation to up-

N
o.

S

te
p

Sc
he

m
at

ic
 E

xp
re

ss
io

ns

V
al

id
at

io
n

C
on

di
ti

on
s

2 3 4

M
od

el
 t

he
 s

en
so

r
va

lu
es

 a
nd

 a
ct

ua
to

r
co

m
m

an
ds

 a
s

m
em

be
rs

 o
f Z

 ty
pe

s.

Ty
pe

::
=

 v
al

ue
1

I .
..

I v
al

ue
,.

Ty
pe

::
=

 k
 .

. m

D
ec

id
e

on
 t

he
 o

pe
ra

ti
on

al
 m

od
es

 o
f t

he

sy
st

em
.

M
O

D
E

 :
:=

 M
od

el
 I

 ..
. I

 M
od

eK

D
ef

in
e

th
e

in
te

rn
al

 s
ys

­
te

m
 s

ta
te

s
an

d
th

e
in

iti
al

st

at
es

.

Sp
ec

if
y

an

in
te

rn
al

Z

op

er
at

io
n

fo
r

ea
ch

 o
pe

r­
at

io
na

l
m

od
e.

r '"'"na!
Sy

•"
m

St
at

•
D

E

ln
te

rn
a/

Sy
st

em
St

at
el

ni
t _

_

ln
te

rn
a/

Sy
st

em
St

at
e'

Se
ns

or
s;

;
[I

nt
er

na
/S

ys
te

m
St

at
e;

in

 1
?

: S
Ty

pe
 1 ;

 .
 .

.
;

in
N

?
: S

Ty
 pe

N

(c
on

si
st

en
cy

/ r
ed

un
da

nc
y)

]

A
ct

ua
to

rs
 ;

;
[l

nt
er

na
/S

ys
te

m
St

at
e'

;
ou

tl
!

: A
Ty

pe
l;

 .
..

 ;
 o

ut
M

!
: A

Ty
pe

M
 I

o
T

he
 i

nt
er

na
l

sy
st

em
 s

ta
te

 m
us

t
be

 a
n

ap
pr

op
ri

at
e

ap
­

pr
ox

im
at

io
n

o
f t

he
 s

ta
te

 o
f t

he
 t

ec
hn

ic
al

 p
ro

ce
ss

.

1--
T

he
 in

te
rn

al
 s

ta
te

 m
us

t c
on

ta
in

 a
 v

ar
ia

bl
e

co
rr

es
po

nd
­

in
g

to
 t

he
 o

pe
ra

ti
on

al
 m

od
e.

o
E

ac
h

le
ga

l
st

at
e

m
us

t b
e

sa
fe

.

1--
T

he
re

 m
us

t e
xi

st
 le

ga
l

in
iti

al
 s

ta
te

s.

o
T

he
 i

ni
tia

l
in

te
rn

al
 s

ta
te

s
m

us
t

ad
eq

ua
te

ly
 r

ef
le

ct
 t

he

in
it

ia
l

ex
te

rn
al

 s
ys

te
m

 s
ta

te
s.

1--
T

he
 o

nl
y

pr
ec

on
di

ti
on

 o
ft

he
 o

pe
ra

ti
on

 c
or

re
sp

on
di

ng

to
 a

 m
od

e
is

 t
ha

t
th

e
sy

st
em

 i
s

in
 t

ha
t

m
od

e.

1--
F

or
 e

ac
h

op
er

at
io

na
l

m
od

e
an

d
ea

ch
 c

om
bi

na
ti

on
 o

f
se

ns
or

 v
al

ue
s

th
er

e
m

us
t b

e
ex

ac
tly

 o
ne

 s
uc

ce
ss

or
 m

od
e.

1--
E

ac
h

op
er

at
io

na
l m

od
e

m
us

t b
e

re
ac

ha
bl

e
fr

om
 a

n
in

i­
tia

l
st

at
e.

(d
er

iv
at

io
n

o
f c

om
m

an
ds

)
]

1--
T

he
re

 m
us

t
be

 n
o

re
du

nd
an

t
m

od
es

.

O
pM

od
eJ

;;
 [

6.
./n

te
rn

al
Sy

st
em

St
at

e;

Se
ns

or
s;

A

ct
ua

to
rs

 I
...

]

T
ab

le
 1

 A
ge

nd
a

fo
r

th
e

pa
ss

iv
e

se
ns

or
s

ar
ch

it
ec

tu
re

, p
ar

t
1

2

A concept to guide software development activities

No. Step Schematic Expressions

5 Define the Z control Control ____________ _

6

7

operation. b..Interna/SystemState
Sensors; Actuators

mode= Model ~ OpModel
1\ ... 1\
mode = ModeK ~ OpModeK

Specify the control Contra/Component ;: SystemlnitExec -+ Contro!CompREADY
process in real-time
CSP. Contro!CompR£ADY ;: J.LX •

((sensorl?valueSl-+ inl!valueSl-+ Skip II ... II
sensorN?valueSN-+ inN!valueSN-+ Skip);
Controllnvocation -+ Contra/Termination -+
(outl ?valueAl -+ actuatorl!valueAl -+Skip II ... II
outM?valueAM-+ actuatorM!valueAM-+ Skip)

/1 Wait!NTERVAL); X

Specify further requirements if necessary.

Table 2 Agenda for the passive sensors architecture, part 2

sensor events

actuator commands

Figure 3 Software Control Component for Active Sensors Architecture

25

date the internal state of the software controller. The Z operations do not correspond
to operational modes, as in the passive sensors architecture, but to events that cause
transitions between internal modes. The lnterfaceControl process is also responsible
for sending actuator commands to the environment. Finally, there may be auxiliary
processes that interact only with the InterfaceControl process, not with the environ­
ment or with the Priority process. The parallel composition of the auxiliary processes
forms the third subprocess of the control component.

The active sensors architecture is suitable for systems whose purpose is different
from merely ensuring safety of a technical process by monitoring it, but which con­
tinuously have to react to user commands or other stimuli from the environment. Ex­
amples are microwave ovens, gas burners, or railroad crossings.

26 Systems Implementation 2000

An overview of the agenda is given in Table 3. For reasons of simplicity, we do not
show the schematic expressions that are associated with the different steps.

This agenda is even more elaborated than the one for the passive sensors archi­
tecture. Again, it is not intended that the reader understand all details of the agenda.
Instead, we want to give an impression of the kind of guidance offered by agendas
and the preciseness in which the steps can be expressed and validated. In the next
session, we will discuss some aspects of the agendas presented here in more detail.

3 DISCUSSION OF AGENDAS

Agendas have a number of distinguishing features that we discuss and illustrate one
by one, using the examples of Section 2.2.

Selecting an agenda corresponds to a high-level decision. Agendas provide
detailed guidance for performing well-defined tasks in a given context. Once an agenda
is chosen, the process to be followed and its resulting product are clearly structured.
Selecting an appropriate agenda for a given task, however, is a high-level decision
that must be taken according to the needs of the particular application at hand.

For example, when a software controller for a safety-critical system has to be de­
veloped, the decision as to which agenda to apply depends on the technical properties
of the system and the sensors to be used. In Section 2.2, we have informally described
the kinds of systems for which the agendas are suitable.

Another example is the design of a software system following some architectural
style. Agendas to design systems according to the styles repository, pipe/filer, and
event-action are defined in [8]. Before such an agenda can be profitably used, an ap­
propriate architectural style for the system to be implemented must be selected. This
selection depends on the purpose and the features of the system. For each agenda, we
can give rules of thumb when it is suitable.

Agendas provide non-trivial methodological support for software development
activities. The agendas presented in Section 2.2 clearly show that agendas can
have a non-trivial content and provide substantial guidance to developers.

When comparing the agendas for the active and the passive sensors architectures,
we notice that in the passive sensors architecture, one Z operation per operational
mode is developed, see Step 4 of Table 1. In the active sensors architecture, on the
other hand, one Z operation for each possible event is developed, see Step 6 of Table
3. This decision is not obvious, and following an agenda spares specifiers the labor
to reflect this decision over and over again for each new system to be specified.

We have validated the reference architectures and agendas of Section 2.2 by sev­
eral non-trivial case studies, including the specification of a steam boiler, an inert gas
system, a microwave oven, an elevator, a gas burner, and a railway crossing.

Currently, more agendas for the specification of safety-critical embedded software
are developed in the German project ESPRESS [4], which is a joint project with part­
ners from industry, research institutions, and universities.

Validation conditions avoid errors and make reviews cheaper. The validation
conditions are a very important aspect of agendas. Not only do we want to develop

A concept to guide software development activities 27

No Step Validation Conditions

Model the sensors and actuators as sets
of CSP events or Z types.

2 Decide on auxiliary processes.

3 Decide on the operational modes of the
system and the initial modes.

4 Set up a mode transition relation, speci- I- All events identified in Step I and all
fying which events relate which modes. modes defined in Step 3 must occur in the

transition relation.
o The omission of a mode-event pair from
the relation must be justified.
I- All modes must be reachable from an ini-
tial mode.

5 Define the internal system states and the o The internal system state must be an ap-
initial states. propriate approximation of the state of the

technical process.
o Each legal state must be safe.
I- There must exist legal initial states.
I- For each initial internal state, the con-
troller must be in an initial mode.

6 Specify a Z operation for each mode I- These operations must be consistent with
transition contained in the mode transi- the mode transition relation.
tion relation.

7 Define the auxiliary processes identified I- The alphabets of these processes must not
in Step 2. contain external events or events related to

the Z part of the specification.

8 Specify priorities on events (optional). I- The priorities must not be cyclic.

9 Specify the interface control process. I- All prioritized external events and all in-
ternal events must occur as initial events
of the branches of the interface control
process.
I- The preconditions of the invoked Z oper-
ations must be satisfied.

10 Define the overall control process. I- The auxiliary processes must communi-
cate with the interface control process.

II Define further requirements or environ-
mental assumptions if necessary.

Table 3 Agenda for the Active Sensors Architecture

2

28 Systems Implementation 2000

software artifacts in a structured way, but also should the developed artifacts be of
good quality.

In the case studies we have performed with agendas, the validation conditions have
indeed revealed errors. For example, the specification of a microwave oven was de­
veloped with the agenda for the active sensors architecture shown in Table 3. It turned
out that a validation condition of Step 5 was not satisfied, because the initial state of
the oven was defined in such a way that safety could not be guaranteed.

Clearly, the errors revealed by failing to demonstrate validations conditions of an
agenda can only be of an application-independent nature. Checking the validation
conditions cannot guarantee e.g., that a system is adequately modeled by a developed
specification, but many common errors are can be found and eliminated neverthe­
less. As reported by Heitmeyer et al. [12], in the certification of the Darlington plant
(which cost $ 40M), "the reviewers spent too much of their time and energy checking
for simple, application-independent properties."

Agendas make software processes explicit, comprehensible, and assessable.
Obviously, giving concrete steps to perform an activity and defining the dependencies
between the steps make processes explicit. The process becomes comprehensible for
third parties because the purpose of the various steps is described informally in the
agenda. Moreover, the purpose of all developed parts of the artifact becomes clear,
because they are linked to steps of the agenda. Agendas can be subject to evaluation
by review, i.e. by inspection by domain experts, and by test, i.e. by using the agenda
to develop an artifact and then inspect the result of the development process. If the
result is unsatisfactory, then the agenda should be revised.

For example, the agendas of Section 2.2 emerged from discussions with experts
from software certification authorities and were refined by performing various case
studies.

Agendas standardize processes and products of software development. Agen­
das structure development processes. The development of an artifact following an
agenda always proceeds in a way consistent with the steps of the agenda and their de­
pendencies. Thus, processes supported by agendas are standardized. The same holds
for the products: since applying an agenda results in instantiating the schematic ex­
pressions given in the agenda, all products developed with an agenda have the same
structure.

For example, when developing a specification with the passive sensors agenda of
Tables 1 and 2, all seven steps given there will be carried out in an order consistent
with Figure 2, and the resulting specification will have the form shown in Figure 1.

Agendas support maintenance and evolution of the developed artifacts. Un­
derstanding a document developed by another person is much less difficult when the
document was developed following an agenda than without such information. Each
part of the document can be traced back to a step in the agenda, which reveals its pur­
pose. To change the document, the agenda can be "replayed". The agenda helps focus
attention on the parts that actually are subject to change. In this way, changing doc­
uments is greatly simplified, and it can be expected that maintenance and evolution
are less error-prone when agendas are used.

For example, when a new operational mode must be introduced in a specification

A concept to guide software development activities 29

developed with the passive sensors agenda ofTables 1 and 2, a replay of the agenda re­
veals that the type introduced in Step 2 must be changed, that the integrity constraints
contained in the State schema defined in Step 3 must be considered once more, and
soon.

Agendas are a promising starting point for sophisticated machine support.
Agendas can be formalized and implemented as strategies [8]. A meta-agenda (that
proposes steps how to transform an agenda into a strategy) makes the formalization
of an agenda a routine task. Strategies are complemented with a generic system ar­
chitecture that describes how to implement support systems for strategy-based devel­
opment activities. A prototype system for program synthesis exists that validates the
generic system architecture [10].

If a formal representation of development knowledge is not striven for, agendas
can form the basis of a process-centered software engineering environment (PSEE)
[6]. Such a tool would lead its users through the process described by the agenda. It
would determine the set of steps to be possibly performed next and could contain a
specialized editor that offers the user the schematic language expressions contained
in the agenda. The user would only have to fill in the undefined parts. Furthermore,
an agenda-based PSEE could automatically derive the validation obligations arising
during a development, and theorem provers could be used to discharge them (if they
are expressed formally).

Agendas can be profitably employed for many different activities and using
different languages. We have defined and used agendas for a variety of software
engineering activities that we supported using different formal techniques. These ac­
tivities include (for more details on the various agendas, the reader is referred to [8]):

• Requirements engineering
We have defined two different agendas for this purpose. The first supports require­
ments elicitation by collecting possible events, classifying these events, and ex­
pressing requirements as constraints on the traces of events that may occur. Such
a requirements description can subsequently be transformed into a formal specifi­
cation. The second agenda places requirements engineering in a broader context,
taking also maintenance considerations into account. This agenda can be adapted
to maintain and evolve legacy systems.

• Specification acquisition in general
There exist several agendas that support the development of formal specifications
without referring to a specific application area (such as safety-critical systems).
The agendas are organized according to specification styles that are language-independent
to a large extent [19].

• Specification of safety-critical software
Two agendas for this purpose have been presented in Section 2.2.

• Software design using architectural styles
In [9], a characterization of three architectural styles using the formal description
language LOTOS is presented. For each of these styles, agendas are defined that
support the design of software systems conforming to the style.

30 Systems Implementation 2000

• An agenda for the object-oriented Fusion method [2] makes the dependencies be­
tween the various models set up in the analysis and design phases explicit and
states several consistency conditions between them.

• Program synthesis
We have defined agendas supporting the development of provably correct pro­
grams from first-order specifications. Imperative programs can be synthesized us­
ing Gries' approach [7], and functional programs can be synthesized using the
KIDS approach [18].

4 RELATED WORK

In Section I, we have already mentioned design patterns [5] and architectural styles
[16]. Apart from the fact that these concepts are more specialized in their application
than agendas, the main difference is that design patterns and architectural styles do
not describe processes but products.

Agendas have much in common with approaches to software process modeling
[13]. The difference is that software process modeling techniques cover a wider range
of activities, e.g., management activities, whereas with agendas we always develop a
document, and we do not take roles of developers etc. into account. Agendas concen­
trate more on technical activities in software engineering. On the other hand, software
process modeling does not place so much emphasis on validation issues as agendas
do. Moreover, in contrast to process modeling techniques, no new formal language
has to be introduced to use agendas, because agendas are expressed in natural lan­
guage.

Chernack [1] uses a concept called checklist to support inspection processes. In
contrast to agendas, checklists presuppose the existence of a software artifact and aim
at detecting defects in this artifact.

A prominent example of knowledge-based software engineering, whose aims clo­
sely resemble our own, is the Programmer's Apprentice project [15]. There, program­
ming knowledge is represented by cliches, which are prototypical examples of the
artifacts in question. The programming task is performed by "inspection"- i.e., by
choosing an appropriate cliche and customizing it. In comparison to cliches, agendas
are more process-oriented.

Wile [22] presents the development language Paddle, which is similar in many
ways to conventional programming languages. Paddle's control structures are called
goal structures, and its programs provide a means of expressing developments, i.e.,
of describing procedures for transforming specifications into programs. Since carry­
ing out a process specified in Paddle involves executing the corresponding program,
one disadvantage of this procedural representation of process knowledge is that it en­
forces a strict depth-first left-to-right processing of the goal structure. This restriction
also applies to other, more recent approaches to represent software development pro­
cesses by process programming languages [14, 17].

Related to our aim to provide methodological support for applying formal tech­
niques is the work of Souquieres and Levy [20]. They support specification acqui­
sition with development operators that reduce tasks to subtasks. However, their ap-

A concept to guide software development activities 31

proach is limited to specification acquisition, and the development operators do not
provide means to validate the developed specification.

5 CONCLUSIONS

In the preceding Sections, we have shown that the concept of an agenda bears a strong
potential to
• structure processes performed in software engineering,
• make development knowledge explicit and comprehensible,
• support re-use and dissemination of such knowledge,
• guarantee certain quality criteria of the developed products,
• facilitate understanding and evolution of these products,
• contribute to a standardization of products and processes in software engineering

that is already taken for granted in other engineering disciplines,
• lay the basis for powerful machine support.

Agendas lead software engineers through different stages of the development and
propose validations of the developed product. Following an agenda, software devel­
opment tasks can be performed in a fairly routine way. When software engineers are
relieved from the task to find new ways of structuring and validating the developed
artifacts for each new application, they can better concentrate on the peculiarities of
the application itself.

We have validated the concept of an agenda by defining and applying a number
of agendas for a wide variety of software engineering activities. Currently, agendas
are under development to be used in a relatively large project (ESPRESS), where
industrial-size case studies are performed.

In the future, we will investigate to what extent agendas are independent of the lan­
guage which is used to express the developed artifact, and we will define agendas for
even more activities (e.g., testing) and specific contexts, e.g., object-oriented software
development.

Acknowledgment. Thanks to Thomas Santen whose suggestions helped improve
the presentation of this work.

REFERENCES

[I] Y. Chemack. A statistical approach to the inspection checklist formal synthesis and im­
provement. IEEE TSE, 22(12):866--874, Dec. 1996.

[2] D. Coleman, P. Arnold, St. Bodoff, Ch. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: The Fusion Method. Prentice Hall, 1994.

[3] J. Davies. Specification and Proof in Real-Time CSP. Cambridge Univ. Press, 1993.
[4] ESPRESS. Engineering of safety-critical embedded systems. Project description:

http://www. first.gmd.de/- espress.
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of

Reusable Object-Oriented Software. Addison Wesley, Reading, 1995.

32 Systems Implementation 2000

[6] P. Garg and M. Jazayeri. Process-centered software engineering environments: A grand
tour. In A. Fuggetta and A. Wolf, editors, Software Process, number 4 in Trends in
Software, chapter 2, pp. 25-52. Wiley, 1996.

[7] D. Gries. The Science of Programming. Springer-Verlag, 1981.
[8] M. Heisel. Methodology and Machine Support for the Application of Formal Techniques

in Software Engineering. Habilitation Thesis, TU Berlin, 1997.
[9] M. Heisel and N. Levy. Using LOTOS patterns to characterize architectural styles. In

M. Bidoit and M. Dauchet, editors, Proceedings TAPSOFT'97, LNCS 1214, pp. 818-
832. Springer-Verlag, 1997.

[10] M. Heisel, T. Santen, and D. Zimmennann. Tool support for fonnal software develop­
ment: A generic architecture. In W. Schafer and P. Botella, editors, Proc. 5th ESEC,
LNCS 989, pp. 272-293. Springer-Verlag, 1995.

[II] M. Heisel and C. Siihl. Fonnal specification of safety-critical software with Z and
real-time CSP. In E. Schoitsch, editor, Proceedings 15th SAFECOMP, pp. 31-45.
Springer-Verlag London, 1996.

[12] C. Heitmeyer, R. Jeffords, and B. Lebaw. Automated consistency checking of require­
ments specifications. ACM TOSEM, 5(3):231-261, July 1996.

[13] K. Huff. Software process modelling. In A. Fuggetta and A. Wolf, editors, Software
Process, Trends in Software 4, chapter 2, pp. 1-24. Wiley, 1996.

[14] L. Osterweil. Software processes are software too. In 9th ICSE, pp. 2-13. IEEE Com­
puter Society Press, 1987.

[15] C. Rich and R. C. Waters. The programmer's apprentice: A research overview. IEEE
Computer, pp. 10-25, Nov. 1988.

[16] M. Shaw and D. Garlan. Software Architecture. IEEE Press, 1996.
[17] T. Shepard, S. Sibbald, and C. Wortley. A visual software process language. CACM,

35(4):37-44, Apr. 1992.
[18] D. R. Smith. KIDS: A semi-automatic program development system. IEEE TSE,

16(9): 1024-1043, Sept. 1990.
[19] J. Souquieres and M. Heisel. Expression of style in fonnal specification. In W. B. Sam­

son, editor, Proc. Software Quality Conf., pp. 56-65, ISBN 1 899796 02 9, 1996. Univ.
of Abertay Dundee.

[20] J. Souquieres and N. Levy. Description of specification developments. In Proc. of Re­
quirements Engineering '93, pp. 216--223, 1993.

[21] J. M. Spivey. The Z Notation- A Reference Manual. Prentice Hall, 1992.
[22] D. S. Wile. Program developments: Fonnal explanations of implementations. CACM,

26(11):902--911, Nov. 1983.

6 BIOGRAPHY

Maritta Heisel received her diploma and PhD in computer science from the University
of Karlsruhe, Germany. Her habilitation she received from the Technical University
of Berlin. She currently teaches at the University of Magdeburg.

