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Abstract 
Component systems require flexible composition of components. In contrast to 
current systems which only support a fixed set of composition mechanisms, 
future systems should provide a composition language in which users can 
define their own specific composers. For an object-oriented setting, we argue 
that this will be possible by meta-programming the class-graph. 

Composers will be based on two major elements. First, they will express 
coupling with graph-based operators which transform parts of the class-graph 
(coupling design patterns). Second, during these transformations, elementary 
meta-operators will be used to transform data and code, rearranging slots and 
methods of their parameter-components. Thus during their reuse, components 
are queried by introspection and transformed by meta-programming. 

Meta-programming composers generalize connectors in architectural lan­
guages. They encapsulate context-dependent aspects of a system, so that 
components become independent of context and can be reused more flexi­
bly. 
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1 INTRODUCTION 

For a long time, software engineers have had a dream: they want to build soft­
ware from standard parts by composition (LEGO principle). Several authors 
have claimed that software composition will become a fundamental principle 
for the future software industry, because it supports flexible reuse [NM95] 
[Nie95]. However, it is not easy to build software like LEGO: it is not suf­
ficient to reuse components as is, a software component has to be adapted 
extensively before it can be embedded into a larger system. 
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Usually components are coupled by hand-programming. To this end, com­
ponent systems, such as JavaBeans [Jav96] or ActiveX [VN96], offer standard­
ized coupling interfaces, by which the components can be plugged together. 
More elaborate software architecture systems, such as Darwin [MDK92], Uni­
Con [SDK+95], or ACME [GA095], offer a limited set of connectors by 
which components can be coupled in an abstract way [BF96]. Connectors 
link interfaces (ports) of components and arrange for embedding and con­
trol flow among them. Their major advantage is that they encapsulate all 
communication- and coupling-oriented aspects of a system. Then components 
can be programmed independently of their embedding context and reuse is 
improved. In general, two kinds of connectors can be distinguished. Primi­
tive connectors are provided by the programming language or the operating 
system and comprise mechanisms such as method calls, pipelines, or event 
signaling. Composite connectors should be composed of these and should in­
troduce complex interaction schemes among the components. However, there 
are only few systems which allow the specification of connectors [All97]. 

In this work, it is argued for an object-oriented setting, that complex con­
nectors can be specified by static meta-programming on class-graphs. In an 
object-oriented setting, components are classes, and with meta-programming 
classes and methods can be introspected and adapted during composition. In 
essence, meta-programming can be used to define composition operators over 
components, so-called composers. These fall into two main categories: compos­
ite connectors link components and encapsulators encapsulate components to 
the outer world. Typically, composers are derived from design patterns that 
transform the structure of the class-graph. Hence this paper suggests that 
a second-generation component system should include a general composition 
language with meta-programming composers. This would allow to compose 
components very flexibly and improve reuse. 

The next section presents some examples in which components are coupled 
by event-based design patterns (section 2). It turns out that these patterns can 
be seen as composite connectors, which may be specified separately from the 
components. This rises the need for meta-programming. In section 3 composers 
are defined formally and their tasks in future component-systems are dis­
cussed: complex composition (section 3.1), encapsulation, and configuration 
(section 3.3). It is also shown how composers can be represented by ordinary 
methods in an object-oriented language that supports meta-programming 
(section 3.2). Lastly, it is demonstrated that several well-known approaches 
from the literature are applications of meta-programming composers. 
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Figure 1 Coupling two components with JavaBeans EVENT ADAPTOR design 
pattern. Coupling-specific parts are shaded. The event adaptor object receives 
the event and distributes to a listener. 

2 EVENT COUPLING WITH META-PROGRAMMING 
COMPOSERS 

This section presents two examples how meta-programming composers may 
look like, in particular composite connectors. The examples are based on a 
certain class of design patterns, namely those that couple components ( cou­
pling design patterns) [Tic97] [GHJV94]. These design patterns can be meta­
programmed, i.e. described with programs on the meta-model. 

Event coupling is a flexible method to link components [SN92] [GHJV94]. 
In an event-based coupling, events are fired by an event source component and 
delivered to a mediator context• which redistributes them to event listeners 
components. All event source and listener components have to register with 
the mediator, so that the mediator can distribute events correctly. When new 
listeners register, or the mediator changes, the behavior of the system changes 
also. However, such a change is transparent to the sources and listeners since 
they do not know to whom an event is delivered and from whom an event 
originates. This is the reason why event-based coupling is so flexible. 

• Also called event adaptor, event handler, or event manager. 
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Figure 2 Coupling two components with design pattern EVENTN OTIFICA­
TION. Coupling-specific parts are shaded. The listener registration and event 
signaling is dispersed into StateChange and EventStub components. 

JavaBeans event adaptor Figure 1 shows the design pattern EVENT ADAP­
TOR from JavaBeans 1.0 (Jav96] (also called mediator in (SN92]) . In this cou­
pling scheme, the event source maintains a list of listeners to which events are 
to be distributed. When the source fires an event with method fireEvent, an 
event adaptor component is called. This adaptor may modify events and has 
to distribute them to a listener. To be ready for an EVENT ADAPTOR-coupling, 
a listener only has to register for an event at the event source (calling method 
addListener) and to provide an ordinary method that is called when an 
event occurs (method doit). The source has to do more for the coupling: it 
has to maintain the list of listeners. Hence, when components should be reused 
that were not prepared for event-based coupling, the components have to be 
extended by event-handling code manually (white-box reuse). 
Event notification design pattern Event management can be decoupled 
from event sources. Figure 2 shows another event coupling design pattern, the 
EVENTNOTIFICATION (Rie96). Here the management of the listener list is dis­
persed into a new component, the StateChange. When the coupling is initial­
ized, the source creates a StateChange object for each event that it may fire. 
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The listener that registers with an event creates an event-specific EventStub 
object. This combination of StateChange and EventStub objects substitutes 
the event-specific listener queue of the event source in EVENT ADAPTOR. When 
an event occurs, the source signals the corresponding State Change object. This 
object distributes the event to all registered EventStub objects, which in turn 
call the doit-routine in the appropriate listener. 
From design patterns to meta-programming composers In EVENTNOTIFICA­
TION, almost all elements of the coupling are separated from the event source 
and the event listener, except the registration and the event-firing. This intro­
duces a new view on the coupling of source and listener: the context-related 
parts of the scheme can be regarded as glue code which is introduced by 
a composer while connecting the components. In essence, such a composer 
has to do two things: it has to allocate new components and their interac­
tions (the glue code), and it has to modify the components so that they can 
be coupled. In EVENTNOTIFICATION the composer is a composite connec­
tor which creates the glue classes StateChange and EventStub and mixes the 
calls of f ireEvent () and addListener 0 into the code of the source and 
the listener. Hence the composer performs grey-box reuse on its parameter­
components: although the user is not forced to edit the parameter-components 
manually (white-box) they are not reused as-is (black-box), but adapted by 
mixing-in connector code. 

Also the EVENTADAPTOR pattern may be regarded as composer, the only 
difference is that it couples more tightly and changes more details in its 
parameter-components: it allocates a component EventAdaptor, adds meth­
ods and calls to the event source, and mixes the call to addListener into the 
listener. 

Hence an event coupling scheme can be regarded as a meta-programming 
composition operator, which transforms the class-graph and mixes-in data and 
code into the parameter-components. Because nothing particular has been 
required, more design patterns should be realizable by meta-programming 
composers. 

3 COMPOSERS: THE KEY TO SECOND-GENERATION 
COMPONENT SYSTEMS 

This section defines formally how composers and second-generation compo­
nent systems look like. These definitions can be realized directly in a pro­
gramming language which supports reflection and intercession [KP97], and 
we outline how it would look like in Java. 
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3.1 Composition with composers 

For the definition of composers, a simple object-oriented meta-model is as­
sumed which may be easily extended in case of specific requirements. In this 
model components are classes. Additional meta-objects are methods and in­
structions. Component ports are method interfaces, and primitive connectors 
are method calls. The relations among the components are inheritance and 
association. A class-graph is an instance of the meta-model: 

Definition 1 A meta-model M = (T, R) is a scheme for a relational graph 
with a set of node labels T = {class, method, instruction} and a set of relation 
labels R = {association, inheritance}. 

A class-graph G = (Vi, Ej) is a relational graph with a family of node sets 
Vi, i E T, and a family of binary relations Ej C (I x I), I = U Vi, j E R. I is 
called the set of meta-objects. 

T and R can be extended for other purposes with arbitrary other meta­
objects and relations. A class-graph can be rewritten by a composer, an op­
erator that uses graph rewriting and meta-programming: 

Definition 2 A composer C = (L ~ R, P) is a complex operator on the 
meta-model: L ~ R is a graph-rewrite rule with left-hand side class-graph L 
and right-hand side class-graph R, and P is a (meta-)program, performed on 
the items matched by L. 

A composer applies to a class-graph as follows: 

Definition 3 Let G be a class-graph. Then the composition G ~c H with 
composer C consists of the following steps: 

1. The user specifies a subgraph G' C G (the application point). G' is tested, 
whether L matches it, i.e. a non-induced injective graph homomorphism 
from L to G' is found.* 

2. The rewriting is performed, i.e. G' is rewritten to G11 which is injectively 
homomorph toR. 

3. The meta-program P is performed on G'. 

The examples from section 2 can be regarded as graph rewrite rules on 
the class-graph: the left-hand side L consists of the white parts in the figures 
which are matched in the class-graph. The shaded part, i.e. the allocated glue 
methods and classes, is introduced by applying the right-hand side R to the 

• An induced subgraph is matched, if together with a set of nodes in the graph all incident 
edges are matched also. Otherwise a non-induced subgraph is matched [BFG94]. 
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matched subgraph. After that the meta-program P modifies the white parts 
appropriately, i.e. extends the matched meta-objects. 

Based on these terms a component system can be formally defined: 

Definition 4 A component system is a tuple CS = (M,C) where M is a 
meta-model and C is a finite set of composers. A component-based software 
S is the result of a sequence Q of compositions in the component system, 
starting from an initial class-graph Z: Q = Z -+e1 G1 · · · -+en-! Gn-1 -+en 
S,C1, ... ,Cn EC. 

Component-based software is the result of a sequence of composer applications 
in a component system. Unfortunately, CS cannot be an automatic graph 
rewrite system, since such a system would select arbitrary derivations, and 
not those the programmer wanted. 

3.2 Composers in action 

These formal definitions are concrete enough that they translate directly to a 
textual form in a Java-like style, and in the following the EvENTADAPTOR­
connector from section 2 is demonstrated. All that is needed additionally is a 
meta-programming interface that provides reflection (querying meta-objects) 
and intercession (manipulating them). To this end, it is assumed that the 
reflection interface of Java is extended by intercession. 

In such an extended reflection interface, the items of the meta-model, i.e. 
all meta-objects, are represented with ordinary classes. The following exam­
ple uses the meta-objects Class, Method, and (implicitly) Instruction (Fig­
ure 3). We assume some basic reflective methods, such as findMethod which 
finds a method with a name, and findClass which finds a class with its name. 
Also several intercessory methods are required. The operator new may also al­
locate meta-objects, addMethod adds a method to a class, prefix prefixes the 
instruction list of a method with some instructions, and MakeCodeFromText 
constructs instruction lists from Java text. 

Also the entire component system becomes an ordinary Java class, in which 
composers are static methods. In a composer (L--+ R,P), the graph rewrite 
tasks are implemented by matching and manipulating class-graph objects. 
The left-hand side L is implemented with a set of tests on the parameter­
components and their relations. The right-hand side R turns into meta-state­
ments which allocate and link meta-objects. The meta-program P consists 
of applications of elementary meta-operators and translates directly to a se­
quence of intercessory method calls. 

With composers as methods, users may write programs of composer applica­
tions (Figure 4). Suppose that three classes Boss, Assistant, and Secretary 
are given, each of them with a doit and init method. Before a composer can 
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class ComponentSystem { 

} 

public static void ClassGraph parser(){ .. }; 
public static void void prettyPrint(ClassGraph c){ .. }; 
public static void JavaBeansEventConnector(EventSource:Class, EventListener: Class) { 

I• L: MATCH vhether the source and the listener are related by a relation listener •I 
if (!member(EventListener,EventSource->listener)) return; 

} 

I• no application possible •I 

I• R: REWRITING: Create meta-objects and meta-object-relations •I 
Class EventAdaptor = nev Class("EventAdaptor"); 
Method receiveEvent= nev Method("receiveEvent" ,MakeCodeFromText("listener->doit () ")); 
Method addListener = nev Method("addListener",MakeCodeFromText( 

"for (o = first(EventSource.adaptors); 

addMethod(EventAdaptor,receiveEvent); 

I• P: MODIFY existing components •I 

o != WLL; 
o = next(EventSource.adaptors,i)) 

o. recei veE vent 0 ; ")) ; 

prefix (findMethod (EventListener, "ini t") , MakeCodeFromText ("source. addListener () ")) ; 
addMethod(EventSource,addListener); 
initialize(EventSource.adaptors); 

Figure 3 A component system as a Java-style class 

be applied to a class-graph, a parser has to translate some components from 
program text to a class-graph. Then the composers (e.g. the EVENT ADAPTOR­
and EvENTNOTIFICATION-connectors) can be applied to the components. Fi­
nally, a pretty-printer has to generate Java code which contains the final 
layout of the classes. Hence complex applications can be plugged together 
with several calls to composer methods. 

public static void CreateApplication() { 
ComponentSystem cs; 

} 

ClassGraph classgraph = cs.parser(); 
Boss boss = findClass("Boss"); 
Assistant assistant = findClass("Assistant"); 
Secretary secretary = findClass("Secretary"); 

I• Compose the classes •I 
cs.JavaBeansEventConnector(boss,assistant); 
cs.EventNotificationConnector(boss,secretary); 

cs.prettyPrint(classgraph); 

Figure 4 Composer applications as ordinary method applications 

Since the composer extends the doit- and init-methods of the classes ap­
propriately, event communication is introduced automatically by the com­
poser application. Furthermore, since the composer only adds event-firing 
calls, and these are independent of the old code, the parameter-components 
are extended transparently. This illustrates the power of our approach: com-
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ponents may be programmed independent of their context and, if the added 
code does not conflict with old code, the components are embedded into the 
context transparently. 

When the meta-operators of the composition language are used carefully, 
components can be composed transparently and consistently. The extended 
version of this paper [ Ass97] defines a criterion which checks that changes 
of parameter-components do not disturb the rest of the system. Whether 
new code is independent of old code can be checked by program analysis 
methods, e.g. program slicing. Then, although code and data of components 
are modified, old use-contexts never need to be changed. This is a major step 
forward towards general software composition, since it leads to grey-box reuse, 
i.e. reuse that extends components transparently to old use-contexts. 

Of course a full-fledged component system would offer a library of com­
posers. Users may use inheritance or even composition to extend them: since 
composers are components, they can be composed themselves. Composers will 
be designed along several design dimensions: Which parts of which parameter­
components are coupled to others (data-flow dimension)? How complex are 
links? Which parameter-component executes when (control-flow dimension)? 
How tight are parameter-components coupled (integration dimension)? Pro­
gramming comp<,>sers spans up a large design space of composers, leaving all 
freedom for users to adapt compositions to their applications. 

Also, the approach can be extended to a dynamic scenario. If the pretty­
printing step is substituted by a code generation step (e.g. to Java bytecode) 
the generated classes can be loaded dynamically. Additionally, if bytecode 
can be read and meta-programmed- which is no problem in Java since type 
information is attached to each class file - the scenario becomes completely 
dynamic: compositions can be applied during the run-time of a system, the 
resulting classes are compiled, type-checked, and re-loaded again. Hence incre­
mental meta-programming paves the way for incremental dynamic evolution 
of architectures. 

3.3 Composers encapsulate and configure 

Until now only composers have been investigated which couple components 
(i.e. connectors). Of course a composer may also abstract its parameter­
components into a new component (encapsulation). Such hierarchical com­
position of subsystems is desired, since a subsystem hides unnecessary details 
to the outer world. This means in our example CreateApplication that after 
the two event connectors have been applied, a third composer should be called 
which encapsulates the three classes Boss, Assistant, and Secretary into 
one component. Such a composer should be formed according to an encapsu­
lating design pattern, such as Facade (GHJV94]. It would create at least one 
new class for encapsulation and would link all parameter-components to it. 
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Configuring a system means to choose one of several variants for some of 
its parts. Since composers can be programmed, they can be built in variants. 
When a composer couples transparently, it can be exchanged to its variant 
without changing the coupled components. Then configuration amounts to 
selection of composers. Hence meta-programming composers allow to config­
ure a software system orthogonally in two dimensions: both components and 
composers can be varied independently. 

4 RELATED WORK 

Architectural styles [GS93] describe component systems that allow only a 
certain kind of composers. For instance, in implicit-invocation systems only 
event-based composers are allowed while in procedure-call systems only com­
posers are allowed that introduce method call links. In repository systems 
composers couple components tightly and synchronize them by wrapping slot 
access methods with synchronization protocols. In pipe-filter systems com­
posers introduce unidirectional flow of work packages between components. 
Additionally, when the architecture is described by composer applications, ex­
change of composers change the architecture. Exchanging one composer style 
to another changes the architectural style of a system. For instance; it can be 
easily imagined that a procedure-call system can be turned into an implicit­
invocation system: call-composers need to be exchanged to their event-based 
cousins. 

Adaptive programming (ADP) [LSLX94] uses graph rewriting on the class­
graph and method aggregation. First ADP computes a set of classes to which 
new methods are added, evaluating a path expression on the class-graph. This 
corresponds to the evaluation of a Datalog procedure on the class-graph, or 
an edge-addition graph rewrite system [Ass94]. In a second step these classes 
are extended by new methods which are created from a code specification. In 
essence, ADP is just a form of static meta-programming. It can be regarded 
as a powerful super-composer which connects a set of classes with an mixed-in 
algorithm. Because the set of classes is computed from a Datalog procedure, 
the ADP-operator can do more than a composer, which can match only a 
fixed number of meta-objects in the left-hand side of its graph rewrite rule. 

Aspect oriented programming ( AOP) divides programs into component parts 
and aspects [Kic96]. Aspects are merged into the components, just as in our 
approach composers extend components with context-related code. However, 
AOP relies on a particular aspect language, which describes the coupling, 
and an aspect weaver, which performs the coupling. Hence for each class of 
applications new aspect languages and weavers have to be developed. Our 
approach is simpler, as it only relies on static meta-programming. As in AOP, 
the composition process can be expanded to code. 

Context relations allow to adapt objects to their context at allocation 
time [SPL96]. This is similar to the exchange of superclasses at allocation 
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time (Wec97]. However, adapting components and exchanging superclasses is 
just a special case of meta-programmed composition at allocation time. 

Composition-filters (Ber94] (ABV92] and the layered object model (Bos95] 
represent context-related actions of a class by filters or layers that encapsu­
late it. Each message that arrives at a class has to cross this set of filters which 
modify it. However, composing filters (i.e. wrapping code around methods and 
objects) is a simple meta-operation. (Bos97] details this for context-related 
adaptation. He argues that components need to be adapted flexibly with su­
perimposition which is a modification of the component by means of a new 
layer around it. Bosch mentions the idea that adaptation can be meta-pro­
gramming, but does not elaborate on this. Meta-programming is more power­
ful than layering: it can change components deep inside their implementation 
while layering can only wrap components. 

In his thesis (Zim97], Zimmer develops the idea to use design patterns as 
transformation operators on the class-graph. Zimmer defines a language in 
which all actions a design pattern involves can be described systematically 
(pattern matching on the class-graph, transformations of methods, etc.). Al­
though Zimmer did not recognize that his language uses static meta-program­
ming this provided one of the starting points for our work. 

Code generation from design patterns has been attempted only recently 
(BFVY96]. Design patterns are described in the form of (GHJV94], with an 
additional description in a special language COGENT. This macro-based lan­
guage is expanded by the perl interpreter to C++ code. Since the items of 
COGENT are classes, this approach is static meta-programming, although 
it has not been described as such. In our work, code generation from design 
patterns results naturally, since composed classes can be compiled. 

5 CONCLUSION 

This work demonstrates that in future component systems application-specific 
and coupling-specific code can be separated from each other entirely. Powerful 
composition operators can be developed which introduce coupling code into 
the application-specific components from outside because they edit and adapt 
components during composition (grey-box reuse). These composers use static 
meta-programming and coupling design patterns. Whenever a composer is 
applied, the meta-programming composition creates glue code between com­
ponents automatically. Additionally, if the meta-programming composition is 
applied together with dynamic loading, dynamically changing architectures 
can be constructed easily. 

Meta-programming composers generalize architectural description languages 
to a general composition language. Hence this work lays the foundation for 
second-generation component systems, in which context-specific aspects will 
be encapsulated in complex composers while application-specific aspects will 
be encapsulated in components. Since both components and composers can 
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be varied orthogonally, reuse will be enhanced enormously. White-box reuse 
is too difficult and laborious; black-box reuse is too primitive; grey-box reuse 
is the way to go, and meta-programming composers enable grey-box reuse. 
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