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Abstract
The rapid changes in computer hardware technology that have occurred in the
past are expected to continue well past the year 2000. This paper investigates
the impact that these trends will have on the programming language compiler.
We examine the dual questions of

1. How will the internal organization and structure of compilers need to
change in order to adapt to new technology?

2. How will the processing performed by compilers need to change in order to
keep up with changes in the underlying hardware?
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1 CLASSICAL COMPILER STRUCTURE

We begin with a very brief description of the structure of a traditionally
organized compiler for a conventional programming language to provide con-
text for the discussion that follows. This is the model of compilation that is
discussed in most academic compiler text books (Fischer & LeBlanc 1991).
No real compiler will follow this model exactly but the compiler processing
described below occurs in some form in almost all compilers.

Compilation can be described as a number of processing steps that are
(conceptually) performed in sequence.

® Preprocessing A manipulation of the source program text that occurs be-
fore the text is broken down into lexical tokens. For example the preproces-
sor used for C programs implements macro definition and use, conditional
compilation and source file inclusion.
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® Scanning The source program text is processed to divide it into language
specific lexical tokens. Extraneous material like whitespace and comments
is discarded.

® Parsing The sequence of lexical tokens produced by scanning is analyzed to
determine if it constitutes a legal program in the language being compiled.
Some intermediate data structure (e.g. an abstract syntaz tree) is produced
that captures the essential structure of the program for subsequent pro-
cessing.

® Semantic Analysis The program is analyzed to determine if it is correct
with respect to the non-syntactic constraints imposed by the language being
compiled. (e.g. type correctness, declaration of symbols before their use)

® Code Generation The program is transformed from its intermediate repre-
sentation into a sequence of instructions for some real or artificial computer.
Generally this involves selecting a sequence of instructions to implement
each construct (e.g. expression, statement) in the language. Instruction
selection may depend on context, this is a form of machine-dependent op-
timization.

® Optimization The purpose of optimization is to transform the program
(without changing its meaning) so that the program will execute more
quickly. There are two main types of optimization.
Machine independent optimization transforms the program in ways that
do not depend on the target machine for the compilation. Usually this in-
volves reducing the amount of work that is done during program execution.
Examples of machine independent optimizations include constant expres-
sion evaluation, moving loop independent code out of loops, optimizing
procedure call overhead through tail recursion elimination.
Machine dependent optimizations transform the program so as to take ad-
vantage of the characteristics of the target machine. Machine dependent
optimizations include allocating registers to variables, minimizing pipeline
stalling branches, structuring data access for improved cache performance.

Any particular compiler will perform these steps in some number of passes or
phases. Preprocessing and scanning are often called the compiler front end,
parsing and semantic analysis are the middle end and code generation and
optimization are the back end. Much of the processing in a compiler involves
the management of several major data structures.

® Source Program First files and characters, then lexical tokens and later
some intermediate representation. These data structures can be quite large.
Many compilers use some form of abstract syntaz tree as the primary in-
termediate representation. The tree is created during parsing and then
modified by subsequent processing.

® Object Program During back end processing the compiler will maintain
some data structure that represents the object program being produced.
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This may be a simple linear buffer although singly and doubly linked lists
are also widely used.

@ Symbol Table Used to record information about all symbols (e.g. identifiers)
occurring in the program. Depending on the programming language being
compiled and compiler design decisions this may be implemented as one
large table or a collection of smaller interlinked tables (e.g. type information
might be stored in a separate table, separate tables might be used for each
scope of declaration). When compiling large programs these tables will
typically have thousands or even tens of thousands of entries. For example
there may be table entries for all symbols from included interfaces, e.g.
class libraries in C++. Most production compilers use some form of hash
table (or a similar data structure) to optimize table lookup time.

® (Control Tables Many compilers use table driven processing algorithms that
operate from large constant tables. For example YACC based parsers or
Glanville-Graham style code generators.

® Optimization Data Structures Some optimization algorithms use very large
data structures (e.g. a control flow graph for the program) during their pro-
cessing (Muchnick 1997). On contemporary machines the size of these data
structures is one factor that limits the feasibility of some optimizations.

The algorithms that manipulate these data structures in most contemporary
compilers were designed when main memory usage was a significant issue and
the processor/memory bandwidth was not a significant issue.

2 THE FUTURE OF HARDWARE

Most projections of hardware technology for the year 2000 and beyond (IEEE
Spectrum Staff 1997, Burger & Goodman 1997) suggest that we will have
available a vastly more powerful and capable computing environments. Moore’s
Law (the number of transistors on a chip doubles every 18 month) is now ex-
pected to be a reasonable forecast through 2017.

® Clock speeds for affordable processors will reach the many hundred mega-
hertz range. Current top end processors with clock speeds in excess of 600
MHz clocks are currently available, clock speeds of 1 GHz or more may
be reached by the year 2000. Near term changes to processor instruction
sets will be in the direction of multimedia support and in the introduction
of short instructions to improve instruction cache density. Most machines
will be highly superscalar, attempting to execute multiple instructions per
machine cycle. The number of instructions issuable per cycle will increase
in future processors. Some manufacturers are investigating VLIW (very
long instruction word) architectures as a means to achieve future perfor-
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mance gains. Instruction pipelines will likely deepen as technology changes
increase the number of transistors on a chip.

@ The typical contemporary processor has relatively small level one (L1)
caches for instructions and data and a somewhat larger second level (L2)
cache. On current high end processors the time penalty for a L1/L2 cache
miss is equivalent to several hundred processor instructions. In the future
we expect the L1 and L2 caches to grow in size and the penalty for cache
misses to become more severe.

® Physical memories, even on modest workstations will be in the hundreds to
thousands of megabyte range. One Gb memory chips should be available
in the not too distant future.

® Local area networks will have capacities measured in the terabyte range
while wide area networks will reach multiple gigabyte speeds. This trend
may increase the popularity of the network computer, a workstation with
little or no local disk storage.

® Disks with 10s of gigabyte capacity will be readily available at reasonable
prices. RAID style disk organizations will increase in popularity.

® DVD, the successor to CD-ROMs will provide online read only storage
capacities in the 500 MB to 1 Gb range.

® The cyclical popularity of parallel processing may reach another peak as
the limits of single processor architectures are reached. The success of mul-
tiprocessing will depend on the level and quality of support provided by
the underlying operating systems and or our ability to develop software
that makes effective use of parallel hardware.

On the other hand there are trends which will make the task of compilation
more difficult in the future.

® The ratio processor speed to memory speed will increase, leading to larger
primary and secondary caches interposed between the processor and physi-
cal memory. Chip makers will attempt to counter this imbalance with larger
on-chip primary and secondary caches, larger register files and denser in-
struction sets. Some manufacturers are prototyping processor chips with
large on-chip memories (Anon 1996).
Making most effective use of the available processor/memory
bandwidth and achieving high cache utilization will become the
dominant performance issues as processor speeds continue to out-
strip memory access speeds.

® Memory access and cache interactions will continue to be a performance
bottleneck for fast IO devices and networks.

® Processors will have more general registers that the compiler must try to
use effectively.
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The net effect of these changes will require significant changes in the way
compilers are constructed which will improve compiler performance and main-
tainability. A trend in recent hardware designs (e.g. the DEC Alpha and the
Intel/HP IA-64) has been to simplify the hardware to improve processor speed
and to require the compiler to expend considerably more effort on code se-
lection and optimization. The recently announced Intel/HP IA-64 (Merced)
architecture(Crawford & Huck 1997) is indicative of the trends in this area

® A much larger number of general purpose and floating point registers to be
managed by the compiler (128 each in the IA-64).

® Predictive and Speculative execution modes that transfer instruction schedul-

ing effort from the hardware to the compiler.

Six way multiple instruction issue.

Designs that minimize the impact of branching on processor pipelines.

Speculative load instructions to help mitigate memory access latency.

Support for parallel execution of instructions in the processor.

Processor support for multiple instruction sets (IA-32 and IA-64 in Merced)

that will greatly complicate the compiler’s code generation algorithms.

These changes will also require compilers that strive to produce highly opti-
mized object programs to work even harder since most of these changes make
optimization more difficult and/or more costly to perform. The next section
discusses a number of issues related to compiler structure and the new forms
of compiler processing that may be required.

3 THE FUTURE OF COMPILERS

These inevitable trends in hardware technology will lead to significant changes
in the way that programming languages are processed and in the role of the
software that we presently know as compilers . There are two issues to consider
with respect to the future of compilation

1. What changes will be required to allow compilers to continue to operate
with acceptable performance?

2. What changes will be required to allow compilers to generate object pro-
grams that operate with acceptable performance?

The first issue will affect the structure of compilers and the techniques that
are used to process programming languages. The second issue affects the type
of algorithms that will need to be used in compilers (e.g. superoptimization.)
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3.1 Compiler Organization and Structure

Most contemporary compilers large monolithic programs. I expect that com-
pilers will become much more Object Oriented in their internal architecture.
This change should lead to improved maintainability and portability of com-
pilers. An example of the evolution that I hope will occur is the novel structure
of the DEC SRC Modula-3 compiler developed by Kalsow, Muller & Heydon
(1995). In this compiler

® There are four major Object types: values (bindings), statements, expres-
sions and types.

® Each of these major Objects provides an interface to a family of derived
objects representing language specific entities. For example the value object
includes any kind of value that can be named in Modula-3 including con-
stants, variables, functions, procedures, modules, types, fields, etc. There
is a derived statement object for each type of statement in the language.

® A major effort was made to encapsulate all knowledge about each lan-
guage feature in a single module. For example there is a single module that
contains all of the processing (syntax analysis, semantic analysis, code gen-
eration) for each type of statement. Information hiding is used extensively
to limit access to information about each language construct to the module
in which the construct is processed.

Kalsow (1996) reports that the object oriented structure greatly enhanced
compiler maintainability. Most compiler bugs could be fixed by corrections
within a single object. The Modula-3 compiler was an interesting experiment
in a novel structure for a compiler. It was an incomplete experiment since the
compiler did not include an optimization phase so the issue as to whether this
design would work well with a heavy weight optimizer is still open to question.
Kalsow (1996) points out that optimization is performed using optimization
specific data structures that can be created separately so that there is some
reason to believe that this object oriented design is compatible with heavy
weight optimization.

For highest performance, compiler code and data should fit into the pro-
cessors L1 cache. To achieve this goal, we may see a return to a compiler
organization based on many small passes that each make some small contri-
bution to the compilation process. Perhaps something reminiscent of Ershov’s
30 pass Algol-60 compiler (Yershov 1965).

3.2 Compiler Internal Data Structures

Larger physical memories will make it feasible to maintain very large memory
resident data structures, e.g. compiler tables and the abstract syntax tree for
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a program. This will largely eliminate the algorithms used in many contem-
porary compilers for keeping part of these data structures on disk. Large in
memory data structures should be used only if they do not seriously impact
processor data access. Many data structure algorithms (e.g. searching a linked
list) induce very poor cache utilization. We will probably see a much wider
use of persistent memory structures (i.e. permanently memory resident parts
of compiler tables) such as the symbol table entries for standard library rou-
tines and the control tables required to drive table driven algorithms. Koehler
& Horspool (1996) have demonstrated a prototype mechanism for caching
symbol compiler tables. Given the expected bandwidth improvements in local
and wide area networks, their approach might be very attractive in network
computer environments.

Most production compilers use some form of hash table for efficient sym-
bol table lookup. Used naively hashing can cause very poor memory/cache
performance. New algorithms will need to be developed that optimize use of
processor memory bandwidth and maximize cache hit ratios. For example an
old technique that may return to popularity is the unique identifier number
technique. With this technique, the scanner assigns a unique integer key to
each distinct identifier that it processes (e.g. every occurrence of the identifier
foobar in the program will be mapped to the integer key 231). This assign-
ment can be done efficiently using a relatively small hash table or similar data
structure. Thereafter, this integer key is used to access information about the
identifier, e.g. the integer key is used to directly access the compilers symbol
table whenever middle or backend processing need information about the iden-
tifier. This technique provides lookup that is as efficient as hashing but with
better memory and cache characteristics. The processing required to handle
reuse of the same identifier in different scopes of declaration is straightforward
to implement.

3.3 Effects on Front End Processing

Although techniques for designing very efficient compiler front ends have been
known for some time (Waite 1986) much more will be need to be done to make
memory access within the front end as efficient as possible. Much more than
in the past, compiler front end algorithms will have to be tuned for efficient
memory access and high cache utilization. For example, very significant per-
formance gains can be achieved if the scanner is designed so that its code and
local data fit in the processors L1 cache(Morgan 1997). Waite recommends
an approach that minimizes the number of times each character is accessed
during front end processing. This recommendation is more important today
with the increased processor/memory bandwidth problem.

Another likely trend in front end processing is to eliminate it entirely. Pro-
gramming environments that store programs in a pre-tokenized internal repre-
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sentation are becoming mature products that are widely available. Compilers
will process this internal representation directly rather than working from
traditional source files.

Context Inhalation is the process of efficiently dealing with external files
that are incorporated into a compilation unit. For example, use of #include
in C or the IMPORT declaration in Modula-3. It has long been recognized
(Cashin, Joliat, Kamel & Lasker 1981) that inefficient context inhalation can
significantly reduce compiler efficiency. Litman (1993) implemented a form
of preprocessing that predetermined which symbols in an imported interface
were actually used in compiling a given piece of source code. Inhalation could
then by optimized to read in only these symbols. We expect techniques like
this to be more widely used in the future as a way to reduce the context
inhalation overhead.

3.4 Effects on Program Representation

Compression of object code, source code and compiler tables will become a
common approach to dealing with processor/memory and memory/disk band-
width bottlenecks. (Ernst, Evans, Fraser, Lucco & Proebsting 1997). Many
implementations of Java use a compressed library of standard classes as a
mechanism for reducing input bandwidth. Compilers (or link editors) will
generate object modules and executables in a compressed format.

3.5 Effects on Code Generation

The near term changes in processor instruction sets that will affect code gen-
eration and code selection most are the addition of multi-media instructions,
the ability to deal with small data types (e.g. 8 or 12 bit integers) and the
development of RISC style architectures with several sizes of instructions. We
are already seeing efforts by some manufacturers to develop RISC machines
with short encodings for frequently used instructions as a way of reducing the
required memory bandwidth for instruction fetch.

In the past, code selection and generation for RISC architectures was rela-
tively straight forward because there was often only one possible instruction
to implement each operation (e.g. integer addition). The projected changes
to processors will make code selection for RISC machines much more like
code selection for CISC machines. Extensive pattern matching on an inter-
mediate representation may be required to determine when the multimedia
instructions can be utilized. A variety of data sizes and tradeoffs between in-
structions of various lengths will require more decision making and complexity
in the code selection process.

Compiler will have to pay much more attention to data and program layout
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in order to achieve good cache utilization. For some recent work in this area
see (Hashemi, Kaeli & Calder 1997).

3.6 Effects on Optimization

The expected increases in the ratio of processor speed to memory speed
and the widespread use of multilevel caches will only increase the need for
extremely sophisticated optimization techniques to achieve high processor
utilization and acceptable performance. The significantly faster processors
and the much large memories that I am assuming will increase the size
of optimization problems that can be handled in practice, but the funda-
mental NP-completeness of optimization problems will endure. Optimiza-
tion is one of the most important areas of for current research in compiler
technology(Muchnick 1997). There are many issues that modern optimizing
compilers attempt to deal with

® Register Allocation attempts to optimize program execution speed through
intelligent use of a (relatively small) fixed number of hardware registers.
Graph coloring techniques (Chaitin 1982) are used to select registers for
instructions and to allow some program variables to reside in registers. This
area will become less significant as the number of registers available in a
processor increases. The techniques suggested by Sites (1979) may again
become relevant.

® Interprocedural Analysis attempts to discover optimizations (e.g. access
to shared variables) that occurs across function call boundaries. Whole-
program optimization will become a significant research area(Blainey &
Archambault 1997).

® Predictive and Speculative Ezecution New processors will use branch path
prediction and speculative execution of instructions as a way of gaining
speed. New optimization algorithms(Hwu 1997, August, Hwu & Mahlke
1997) will be required to deal with this change in processor functionality.

® Parallelism optimizations attempt to discover parts of a program that can
be executed concurrently. This optimization is useful even on single pro-
cessor systems because such systems are typically superscalar (executing
more than one instruction per machine cycle) and pipelined (instruction
execution occurs in a number of distinct stages).

® Object Oriented Optimizations deal with optimization opportunities that
arise in object oriented languages such as C++ and Java. Typical opti-
mizations are compile time determination of virtual function call targets
and changes to reduce storage management (garbage collection) overhead.

® Machine Dependent optimizations for contemporary RISC processors in-
clude instruction scheduling (to avoid processor stalls), data mapping and
reorganization to maximize cache performance.
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We expect to see increased efforts in the area of run-time optimization of
programs, either through increased run-time gathering of profile information
as suggested by Ammons, Ball & Larus (1997) or by dynamic optimization
done during program execution (Goodwin 1997). In this later case some part
of the optimization process is embedded in the run time system and is invoked
to optimize the program for a particular execution.

3.7 Effects on the Compilation Process

Although faster processors can mask a lot of inefficiency, programs are be-
coming larger and are using more complicated interfaces (e.g. class library
hierarchies in C++ and Java) efficient compilation will continue to be of con-
cern especially in organizations whose commercial success depends on efficient
software development and/or maintenance.

Faster local area networks will make various forms of load sharing and
distributed processing more attractive. For example the Load Sharing Facility
developed by Zhou, Zheng, Wang & Delisle (1994) provides for transparent
migration of processing across a heterogeneous network of workstations. The
range and attractiveness of this type of load sharing will increase with faster
local area networks.

If parallel processing comes back into vogue then we may see compiler
designs that attempt to exploit parallel processing. Parallel processing could
be exploited at the compilation level as is currently done by programs like
parallel make (Baalbergen 1988) or within the compiler itself. Vandevoorde
(1987), Wortman & Junkin (1992) and others have demonstrated prototype
compilers that were able to take advantage of small scale parallel processing.
The extension of compiler internal processing to highly parallel machines as
suggested by Hillis & Steele (1986) will be an interesting and challenging
problem.

3.8 Data Caching, Incrementalism and Dynamic
Compilation

Some existing compilers cache data about source programs (e.g. context in-
halation hints). Incremental compilers are often used in interactive environ-
ments where a program is (conceptually at least) recompiled as it is being
edited (Adams, Tichy & Weinert 1994). In a related context Linton & Quong
(1989)showed that most programs change very little from one compilation to
the next so that incremental modification to program executable files could
significantly reduce the time required to link edit programs. In cases where
compilers interoperate with a programming environment that tracks source
code changes it would be feasible to recycle parts of object programs and only
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recompile the parts that have changed. Algorithms for effective incremental
compilation are well known and could easily be extended if the savings in
memory bandwidth and compiler processing were large enough.

An extreme form of incrementalism which may be attractive in the future
is just in time compilation. The initial executable representation of a program
is derived directly from the internal representation used in the middle end of
compiler processing (e.g. something equivalent to the abstract syntax tree that
is input to code generation). The code generation (and optimization) phases
of the compiler are available as a part of the runtime system. The first time
execution reaches some part of the program, code generation is dynamically
invoked and that part of the program is transformed into machine instructions.
The advantages of this technique arise from two observations

® A small portion of the source code (typically 10..20%) is responsible for
almost all of the executed instructions in a typical execution.

® In typical program executions, large portions of the source code (e.g. 50..60%)
are never executed.

Some current Java implementations feature just in time compilation. Poletto,
Engler & Kaashoek (1997) recently demonstrated a prototype system for dy-
namically generating code for C.

4 SUMMARY

In this paper we have discussed the effect that anticipated changes in hard-
ware technology will have on the structure and operation of compilers. The
hardware changes open up many worthwhile avenues for improvement but also
lead to new and more challenging problems especially in the area of program
optimization.
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