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Abstract 
A software industry producing high-quality components that can be reused 
in many ways is an-unfulfilled-dream as old as the field of "software engi­
neering" itself. In this paper we present an evolutionary approach to software 
development based on the following premises: 

• software systems are unavoidably heterogeneous and distributed; 
• development and implementation techniques may be different for various 

parts of a system; 
• the parts may be in different phases of their life-cycle; 
• the parts-implemented as components in different languages-should be 

coordinated and exchange information in a standardized fashion; 
• reengineering and system renovation form an integral part of software de­

velopment. 

We illustrate this approach in various case studies and indicate some lines for 
further research. 
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1 SETTING THE STAGE 

1.1 History 

In the late 1960s, the NATO Science Committee organized a conference that 
is generally considered as the beginning of the field of software engineering. 
Quoting from the introduction of the proceedings (Naur & Randell 1969) we 
read: 

The phrase "software engineering" was deliberately chosen as being provocative, 
in implying the need for software manufacture to be based on the types of theoret­
ical foundations and practical disciplines, that are traditional in the established 
branches of engineering. 

In the same proceedings, Mcilroy (1969) states that "the software industry 
is not industrialized" and gives his vision on mass produced software com­
ponents. In the following decades, a large variety of approaches and tech­
niques have been proposed to build software: the life-cycle and waterfall mod­
els in many flavors, formal specification, rapid prototyping, fourth genera­
tion languages, code generators, computer-aided software engineering, object­
orientation, and much, much more. 

Although all these approaches can claim success in certain areas, it is aston­
ishing to see that they only have modest success in the day-to-day reality of, 
for instance, shrink-wrap software production (McConnell 1993) where "good 
enough" software is the standard (Yourdon 1996). For most software products 
time-to-market is the prevailing concern and manufacturers maintain defect 
levels that are both comparable to those of their competitors and that are 
acceptable for their customers. Mcilroy's vision of a software industry pro­
ducing high-quality components in many variations is still far from being a 
reality. 

All these approaches are based on the assumption that the software pro­
duction process can be controlled in a global, top-down, fashion. This is not 
only the theory taught to students and the fiction maintained by managers, 
but also the myth exposed by real programmers. This situation is not unique 
for software development: Kelly (1994) gives ample evidence that we are "out 
of control" in many areas of complex technological development and that 
evolutionary principles are becoming more important. 

1.2 Techniques used by Real Programmers 

(a) Information hiding 
Information hiding is probably the single most important principle guiding 
software design and construction. Goal is to achieve two forms of flexibility. 
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Flexibility of implementation is achieved by hiding the low-level implementa­
tion aspects of a program part-the specific data representations or algorithms 
used-thus concentrating and hiding implementation knowledge; new imple­
mentations can be introduced without affecting the use of the program part. 
Flexibility of use is achieved by encapsulating the program part in such a way 
that only its provided functionality is visible from the outside. Information 
hiding is the fundament of, for instance, abstract data types, object-oriented 
design, and object-oriented languages. The major challenge for information 
hiding is how to accommodate changes in the visible interface of program 
parts over their life time. 

(b) Reuse 
Reuse is a related, important notion for programmers (Krueger 1992): by 
first investing in encapsulated program parts that are of sufficient quality, 
one can later on reuse these parts to build new systems. The result is higher 
productivity of programmers and higher quality of the resulting code (Lim 
1994). As already mentioned, Mcilroy (1969) was one of the first to create the 
vision of reuse and component-based manufacturing of software. Four reuse 
techniques are in wide use: subroutine libraries, application generators, Unix 
pipelines and code scavenging. 

Subroutine libraries are the oldest and the most successful reuse technique 
and have been applied to package reusable code in areas as disparate as operat­
ing system services, input/output routines, mathematical functions, graphics, 
databases, multi-media, and more. Each library provides a language-specific 
(e.g., Fortran, C, COBOL) interface, but the same library may be accessi­
ble from different languages. A typical example is a library of mathematical 
functions that can be called from both Fortran and C. The data exchanged 
between the subroutines in the library and the program using the library are 
restricted to data types of the host language. However, when subroutine li­
braries mature, their size tends to grow geometrically. This is due to all the 
feature variations that have to be provided regarding, for instance, precision, 
robustness, algorithm used, efficiency, and memory usage. This calls for so­
phisticated search and retrieval methods such as, for instance, described by 
Prieto-Diaz & Freeman ( 198 7). 

Application generators provide an abstraction mechanism to give access 
to an underlying subroutine library. Programming language compilers and 
application generators have much in common. The former compiles a pro­
gram into machine code that may call routines from a run-time system to 
perform common tasks such as, for instance, stack and memory manage­
ment, run-time checking, and input/output. The latter takes a concise ap­
plication description as input and generates executable code, containing calls 
to the underlying subroutine library. Application descriptions are typically 
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very high-level and designed for specialized, narrow, application domains. 
Application generators extend ordinary subroutine libraries by automating 
common usage patterns of the library and hiding implicit dependencies be­
tween routines. Application generators have been applied successfully in areas 
like compiler construction, user-interfaces, and databases (Horowitz, Kemper 
& Narasimhan 1985, Cleaveland 1988) and they have a close relationship 
with Domain Specific Languages (see Section 3.2) and application frame­
works (Fayad & Schmidt 1997). 

Unix pipelines (llitchie & Thompson 1974) provide a global reuse mech­
anism: the input and output of individual Unix programs can be connected 
together to form a pipeline of programs that carry out a certain task. Typical 
pipelines perform sequences of operations for searching, replacing, transform­
ing, and formatting text streams. Each program in the pipeline may be written 
in a different language, the data exchanged between programs has the form of 
a list of strings, and programs can only be combined in a strictly sequential 
fashion. As a prelude to discussions later (in Section 2.3), we observe that the 
pipe mechanism has two fundamental properties: ( i) a standardized format to 
exchange data between programs; and ( ii) a sequential composition operator 
to connect programs. 

Code scavenging is a frequently used, but largely under-documented tech­
nique for reuse: when a programmer needs to implement a certain functionality 
she searches through the sources of existing programs and looks for code that 
provides functionality that is comparable to the one that is desired. When 
such code is found, she reuses it after appropriate editing and modification 
rather than writing the code from scratch. At least three aspects of code 
scavenging are remarkable: ( i) it is the inverse of the instantiation of param­
eterized data types; (ii) the common origin of the original and the modified 
code are immediately lost, but might be recovered using reverse engineering 
techniques; (iii) although, the technique is frequently used in practice, there 
is hardly any support for it let alone any supporting theory. We will discuss 
this topic further in Section 4.3. 

(c) Tools 
In common use for program construction are tools for compilation, editing, 
debugging, configuration and version management, execution profiling, cover­
age measurement and other testing tools. In some specialized areas (compiler 
construction, databases, user-interfaces) program generators are being applied 
successfully. For researchers, it is rather disappointing to see that the high­
tech tools and techniques that result from research projects only have a very 
limited impact in practice (Hoare 1996). A single version management tool 
such as, for instance, CVS (Cederqvist 1993) has probably done more for 
software quality than all existing verification techniques combined. 
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1.3 Plan of this paper 

The contribution of this paper are speculations on emerging software engi­
neering approaches that promote evolution and reuse. These speculations are, 
however, based on extensive experience in the area of building software tools, 
i.e., tools that analyze, transform, or generate software. 

The plan for the paper is as follows. In Section 2, we sketch a new approach 
to building software that we are currently applying in various projects. In 
Section 3, we describe case studies that illustrate our approach. In Section 4, 
we draw some general conclusions for the field of software engineering as a 
whole and point at several research directions. 

Managerial and economic aspects of reuse-and of software engineering 
in general-are of utmost importance (Lim 1994) but we will largely ignore 
them. The only exception is Section 4.4 where we discuss usage-based pricing 
methods for software in relation to the evolutionary software engineering that 
we propose in this paper. Basili, Caldiera & Cantone (1992) give an organi­
zational view on component factories that can be used as complement to the 
technical view presented by us. 

2 AN EVOLUTIONARY APPROACH 

2.1 Preliminary observations 

In the theory and practice of software engineering, most attention is given 
to forward engineering: building new systems. In reality, only 30% of the 
total costs of a system are devoted to its initial construction: the remaining 
70% are spent on maintenance and adjustments to new requirements and new 
operating environments. These costs are confirmed in many studies (Lientz 
& Swanson 1980, Reutter 1981); McConnell (1996) gives a recent summary 
of these findings. For instance, based on an extensive case study Reutter 
(1981) found that 70% of the programming costs occur after installation of 
the initial product and that only 8% can be attributed to emergency repair 
and corrective coding. Then 25% of the costs are due to environment changes 
and 67% can be attributed to upgrades and enhancements of the system. The 
latter costs include upgrades, changes due to new business conditions, and 
modifications and/or addition of new subsystems. The remaining costs are 
directly related to a system's evolution: adjusting to new infrastructure and 
building new versions and adding new functionality. The conventional models 
like the waterfall model do not cover these evolutionary aspects very well. 

Based on the observations made so-far, we can draw some preliminary con­
clusions: 
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Figure 1 Construction-time versus run-time. 

• We need software engineering practices that smoothly integrate forward 
engineering, maintenance, reverse engineering and system renovation. 

• Software development as a whole seems to be too complex to be controlled 
in a top-down fashion. Evolutionary mechanisms seem more appropriate. 

• It is not easy to indicate in which evolutionary phase a complete system 
is: typically its parts are in different phases of their evolution. 

• Reuse is a key to more effective, higher quality, software development. 
In particular, reuse across different implementation languages should be 
supported. 

The above insights have been stated, maybe in a different wording or a dif­
ferent emphasis, by other authors like, for instance, Yourdon (1993, p. 262). 
They remain, however, of interest and form the point of departure for the 
remainder of this paper. 

2.2 Construction-time versus run-time 

It is worthwhile to make a distinction between the moments that one is 
building software and the moments one is executing the resulting programs, 
see Figure 1. We will call the former construction-time which includes the 
phases: ( i) Design and Build: Requirements Analysis, Design, Implementa­
tion (coding); ( ii) Maintain; (iii) Renovate: Reengineering and System Ren­
ovation (Chikofsky & Cross 1990, van den Brand, Klint & Verhoef 1997). 
The moments one is executing programs will be called run-time and includes 
the phases: ( i) Test: Unit Testing, System Testing; ( ii) Operate. One could 
make a further distinction between test-time and exploitation-time, but for 
the purposes of this paper we will call them both run-time. 

Development of a system can be seen as the first time a system is in the 
construction-time environment; after delivery it enters the run-time environ­
ment. During maintenance or renovation the system enters the construction­
time environment again. During its life time, a software system will thus alter­
nate between construction-time and run-time. Two aspects of this approach 
are worth emphasizing. First, the phase Renovate is usually not included in 
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the life-cycle. We stress its importance by including it as a phase in our evo­
lutionary life-cycle model. Second, only the life-cycle of a complete system is 
usually taken into consideration. In Section 2.3 we will present an approach 
that supports the component life-cycle: each part of a system may be in a 
different phase of its evolutionary life-cycle. 

We will now first discuss run-time (Section 2.3) and then construction-time 
(Section 2.4). 

2.3 Run-time 

As already discussed earlier (Section 1.2), Unix pipelines provide a successful 
mechanism for the connection of the input and output of individual programs 
that provides ( i) a standardized format to exchange data between programs 
(a list of strings); and ( ii) a sequential composition operator to connect pro­
grams. However, pipes have several shortcomings. First of all, they lack the 
basic functionality to exchange data that have more structure than a list of 
strings. A second shortcoming is that only sequential composition of programs 
is provided: the output of program A can be connected to the input of program 
B, but it is impossible to feed partial outputs of B back to A. As a result, it 
is impossible to describe interaction and cooperation between programs very 
well. Both shortcomings are addressed below. 

In previous work Bergstra & Klint (1996a, 1996b) and van den Brand, Klint 
& Verhoef have already argued that the key for obtaining a flexible run-time 
architecture is the separation between computation-the functions to calcu­
late application dependent values and the procedures to perform application­
dependent actions-and coordination-the flow of control between the com­
putational parts of a system. A system using this distinction is naturally 
subdivided into components that carry out specific services such as, for in­
stance, storage, retrieval, transformation of data, and user-interfacing. Each 
component carries out specific tasks and does not rely on direct connections 
with other components but relies on a coordination mechanism to make such 
connections. In this way, the same component can be reused in many ways 
by using it in combination with different components. We discuss now three 
key aspects: coordination, representation of intermediate data, and testing and 
debugging. 

Coordination Bergstra & Klint (1996a, 1996b) have introduced the ToOL­
Bus, a component interconnection architecture resembling a hardware com­
munication bus. To control the possible interactions between software com­
ponents connected to the bus direct inter-component communication is not 
supported by the architecture. 

The TooLBus serves the purpose of defining the cooperation of a number 
of components Ci ( i = 1, ... , m) that are to be combined into a complete sys-
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Figure 2 Global organization of the TooLBus. 

tern as is shown in Figure 2. The internal behavior or implementation of each 
component is irrelevant: they may be implemented in different programming 
languages or be generated from specifications. Components may, or may not, 
maintain their own internal state. The parallel process P1 II · · · II Pn in Fig­
ure 2 describes the initial behavior of the interaction between the components 
C1, ... , Cm and the interactions between the sequential processes P1 , ••. , Pn. 
A sequential process Pi can, for example, describe communication between 
components, communication between processes, creation of new components, 
or creation of new processes. TooLBus processes also support relative and 
absolute time aspects. In the communication between the TooLBus and a 
component both can take the initiative for the communication. In this way, the 
TooLBus can send computation requests to components (ultimately resulting 
in some answer from the component), or the component can send a request 
to the TooLBus (typically, to notify the TooLBus of user-interaction or an 
error condition). The operators like the parallel composition operator II that 
we use in TooLBus processes stem from concurrency theory, more precisely, 
they are based on the algebra of communicating processes (ACP) described 
by Baeten & Weijland (1990) and Baeten & Verhoef (1995). 

Coming back to the discussion on Unix pipelines (Section 1.2), it will be 
clear that we have extended the set of composition operations from only se­
quential composition to a much richer set of operators. Bergstra & Klint 
(1996b) give a comparison ofthe ToOLBus with other approaches to software 
integration. Here it is sufficient to summarize the most innovative aspects of 
the TooLB us: ( i) the process-oriented description of cooperation; and ( ii) 
the standardization of the intermediate data exchanged between components 
as described in the next section. 

The overall effect of the TooLBus approach is that components become 
black boxes that can transform and generate information in a common inter­
mediate data format. We have explicitly chosen to ignore the meaning of the 
operations performed by the components; it remains the responsibility of a 
system's designer to compose components in meaningful ways. 

Intermediate representation van den Brand, Klint & Verhoef (1996) have 
proposed a data structure, called the Annotated Term Format (ATF} specif-
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ically designed for the data exchange between (possibly) heterogeneous or 
distributed components in a software system. Instances of this format-such 
as communicated via the TooLBus-are called ATerms. This data format 
describes terms that can be dynamically extended with annotations. Annota­
tions may be arbitrarily complex-even annotated-ATerms. ATF is able to 
accommodate the representation of all possible data that might be exchanged 
between components. The representation is such that individual components 
may access and modify annotations that have been added by other com­
ponents but they may also completely ignore them. Components are thus 
immune for annotations they are not interested in. 

ATF can also be used as internal data structure of components themselves. 
It is a powerful format in which it is possible to represent, for instance, parse 
trees that can be annotated with diverse information like textual coordinates, 
access paths, or the result of program analysis. 

ATF has been implemented as a subroutine library (C, Java). An important 
characteristic of the implementation is that it maximizes the sharing of sub­
terms. In other words, ATerms are treated as directed acyclic graphs with 
maximal sharing of subgraphs. In this way, we can maintain a simple, term­
oriented, view of ATerms at the conceptual level but still provide an efficient 
and concise representation at the implementation level. 

Testing and debugging In the TooLBus architecture, components are 
considered to be black boxes that transform and generate ATerms. This is 
an ideal starting point for testing, since it is very easy to test each compo­
nent in isolation. As we will see in Section 2.4, we will frequently use formal 
techniques and executable specifications to prototype components. Such pro­
totypes can be tested by applying them to appropriate test cases. Sometimes, 
the prototype will be replaced by a more efficient implementation. In those 
cases, an interesting back-to-back testing strategy becomes feasible: we can 
compare the behavior of the prototype with the behavior of the more efficient 
implementation of that component. 

A final issue to be considered here is the debugging of TooLBus-based 
applications. We have to deal with concurrent and distributed execution, 
and components that may have been implemented in different languages. 
The problem here is how to provide a uniform debugging framework while 
still reusing native debuggers for language-specific debugging. Olivier (1997) 
describes the ToOLBus Integrated Debugging Environment (TIDE) that is 
based on an abstract, event-driven, model for debugging. Typical events are 
calling a procedure and reaching or setting a break point. A source-code viewer 
and a variable inspector are examples of available generic tools that are based 
on this abstract debugging model. For each language L that is used for the im­
plementation of a component, the abstract events can be implemented by the 
native L debugger. In this manner, a unified debugging view can be provided 
for all components while still relying on existing debuggers. TIDE itself has 
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also been implemented as a component-based system and uses the TooLBus 
for coordination. 

2.4 Construction-time 

The run-time architecture just sketched, implies that construction is needed of 
( i) the coordination description; ( ii) individual components. We will make no 
assumptions about the relation between the construction environment and the 
run-time environment. They may be completely disjoint, partially overlap, or 
even be identical. In a similar spirit, we do not assume that the construction­
time environment is the same for each component. 

We will now describe how to make coordination descriptions, and how to 
make components, with emphasis on the special case of language-oriented 
components. 

Constructing coordination descriptions The construction of the coordi­
nation descriptions for the TooLBus amounts to writing process expressions 
describing the desired cooperation between components. Currently, we provide 
tools for static type checking of process expressions, and for the debugging and 
tracing of their execution. In principle, formal verification of process expres­
sions is conceivable, but we have not yet worked on applications that really 
needed this. 

Constructing components In a first approximation, we have nothing to say 
about the construction methods used for building components. Any software 
engineering technique or programming language can be used at the component 
level as desired. From an evolutionary perspective it is important to note that 
each component may be in a different evolutionary phase. 

We have more to say about construction methods for components when 
they have something to do with language-processing such as, for instance, 
parsing, checking, compiling or transforming programs in existing or new lan­
guages. This is less restrictive than it may seem at first sight: in many problem 
areas one can follow a language-oriented approach since there is some domain­
specific language (DSL) that characterizes essential aspects of the application 
domain, see Section 3.2. 

The AsF+SDF Meta-Environment (Klint 1993, van Deursen, Heering & 
Klint 1996, van den Brand, van Deursen, Klint, Klusener & van der Meulen 
1996) is our preferred language prototyping tool. It is an interactive program­
ming environment generator that takes a language definition as input (in­
cluding a definition of the syntax of the desired language and optionally other 
operations on programs in the language such as, for instance, interpretation, 
compilation or transformation) and generates corresponding tools as output. 
From the syntax definition of the desired language various components are 
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generated: a GLR parser, a syntax-directed editor, a pretty printer, optional 
traversal functions, and optional program analysis functions. For the opera­
tions defined on programs, efficient term-rewrite engines are generated. It will 
not come as a surprise that all these components can be connected to the 
TooLBus and that all intermediate data (e.g., parse trees) are represented 
as ATerms. 

3 CASE STUDIES 

3.1 Conversion tools for system renovation 

The construction-time versus run-time dichotomy is also useful when building 
tools for the conversion of legacy systems. Consider building a tool for the au­
tomatic conversion between COBOL versions or dialects. In principle, one can 
write a single, monolithic, tool that performs the desired conversion. From an 
evolutionary perspective, however, such a monolithic tool is undesirable, since 
it will require major modifications when either a minor variation in the input 
language occurs (e.g., a vendor-specific language extension) or additional con­
version steps are needed. Another disadvantage is that the conversion steps 
already implemented in the tool cannot be reused for other purposes. 

Van den Brand, Sellink & Verhoef (1997c, 1997b, 1997a) describe a more 
evolutionary approach. During the construction phase of the conversion tool, 
the whole conversion process is first split-up in a number of smaller steps 
(e.g., parse, add end-if's, remove goto's, simplify conditions, pretty print). 
Next, each step is specified in AsF+SDF and the corresponding component is 
generated automatically. During the run-time phase of the tool, the individual 
components are tied together with a coordination architecture. 

Since, the components are generated from specifications, they can more 
easily be adapted to changing circumstances. This is particularly true for 
the parsing component. As an aside, we like to mention here that the parser 
generation techniques we use are based on GLR parsing and can thus handle 
arbitrary context-free grammars (Rekers 1992). In contrast to more restrictive 
approaches (e.g., LL, LR), this opens up the possibility to develop modular 
grammar descriptions that can be composed in various ways. This is another 
example, of our component-based approach. 

3.2 Domain specific languages 

A DSL provides a conceptual framework and a notation that can be used to 
concisely express problem solutions in a particular application domain. Using 
compiler technology, texts written in a DSL can be compiled into, for exam­
ple, executable code, calls to library routines, database transactions, or HTML 
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forms. In this way, the DSL captures the essential knowledge of the application 
domain itself, while the corresponding DSL compiler captures the knowledge 
of the underlying infrastructure. Some characteristic domains where DSLs 
play a role are: ( i) finance (e.g., modeling specific product classes such as, 
for instance, interest-based products, insurances, or option trading). (ii) elec­
tronic commerce (e.g., message formats, work flow); (iii) telecommunications 
(e.g., protocols, configuration of telephone exchanges); (iv) testing (e.g., test 
scripts); ( v) multi-media (e.g., authoring scripts, content descriptions). 

The knowledge that is necessary for a DSL and its compiler can come 
from two sources: a detailed domain analysis of the application area, or from 
reengineering a legacy system. In the former case, mainly human domain 
experts are involved in the design of the DSL. In the latter case, an existing 
legacy system is first analyzed and possibly transformed into a collection of 
reusable parts. These parts then form the starting point for a domain expert 
while designing the DSL. Existing knowledge is hence reshaped into a DSL. 
This illustrates the close relationship between the use of DSLs for forward 
engineering and for reverse engineering. 

Arnold, van Deursen & Res (1995) describe the language RISLA that is 
intended for the definition of interest-based products. Using existing domain 
knowledge and a good library of COBOL routines, RISLA was designed and 
prototyped by means of the AsF+SDF Meta-Environment. Products defined 
with RISLA are compiled into COBOL programs that can be executed in a 
traditional administrative environment. From an evolutionary point of view it 
is interesting to observe that the first RISLA prototype was re-implemented, 
for efficiency reasons, using standard techniques (Lex and Yacc). After a few 
years, the language had to be redesigned in order to incorporate the experience 
gained with it. This turned out to be impossible with the existing, efficient, 
implementation and the redesign was again based on AsF+SDF. The current 
production version of RISLA uses AsF+SDF directly. 

The use of DSLs has various advantages. First, the domain knowledge em­
bodied by the DSL is easily available thus promoting its (re)use. This leads to 
explicit descriptions of the essential content only and leads to a speed-up of 
the software development process and better time-to-market. Second, the DSL 
compiler insulates the user from unnecessary details and severing machine de­
pendencies. As a result, changes in the software and hardware infrastructure 
have to be accommodated only once in the DSL compiler. After re-compilation 
of all DSL programs, the desired infrastructure-related changes have been ef­
fectuated without making a single change to the DSL programs themselves. 
Contrast this with the traditional situation that domain-related knowledge 
and infrastructure-related knowledge are intermixed in the program code. The 
use of DSLs thus leads to greater flexibility and less maintenance (van Deursen 
& Klint 1998). 

In large organizations one can identify several, distinct, application areas 
that are amenable to automation by means of DSLs. Each application area 
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will have its own DSL, which is used to generate components. The use of 
a coordination architecture for interconnecting the generated components is 
sketched by van Deursen & Klint (1998). 

3.3 Renovation of the AsF+SDF Meta-Environment 

Van den Brand, Kuipers, Moonen & Olivier (1997) describe the renovation 
of the AsF+SDF Meta-Environment and apply an evolutionary, component­
based, approach to our own tool suite. 

At construction-time, formal specifications (in AsF+SDF) are used to spec­
ify the behavior of various components (e.g., syntax-directed editor, program 
repository, query engine) and component-generators (e.g., parser generator, 
pretty printer generator, ASF+SDF compiler). When efficiency dictates this, 
individual components that have been prototyped with AsF+SDF can be re­
placed by more efficient ones that are, for instance, implemented in C or 
replaced by an existing tool. Note that DSLs (Section 3.2) are used for de­
scribing, syntax, semantics, pretty printing, coordination, and user-interfaces. 

At run-time, the TooLBus is used to connect components (the ones that 
have been implemented manually as well as the ones that have been generated) 
and they can be combined in many ways. In this way, tailored systems can be 
constructed easily. 

4 PERSPECTIVE 

We will now briefly summarize the software engineering approach presented 
here (Section 4.1) and discuss the relation with other approaches (Section 4.2). 
We conclude with a number of research topics: how to find components for 
reuse (Section 4.3), and the role of cost models for software (Section 4.4). 

4.1 An emerging software engineering methodology 

The evolutionary approach we have sketched in this paper can be character­
ized by the following principles: 

• System parts are decoupled by separating computation from coordination. 
• A process-oriented, formal, method describes the coordination of compo­

nents. 
• A common intermediate representation standardizes the exchange of infor­

mation between components. 
• Testing and debugging of components is standardized. 
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• A wide variety of software engineering techniques is used to construct com­
ponents. Where applicable, we use formal specifications to design and pro­
totype components. 

• Each component of a system may be in a different phase of its evolutionary 
life-cycle and may be replaced anytime. 

• The creation of distributed, heterogeneous, systems is accommodated. 

We have illustrated all these principles with techniques and examples from 
our own experience. The same principles can, however, also be applied based 
on other technology. 

4.2 Relation with other approaches 

Contrary to popular belief, object-oriented languages do not form a panacea 
for software engineering in general and reuse in particular. Frakes & Fox (1995) 
show that reuse does not depend on the implementation language used. In 
particular, of the two 00 languages appearing in their survey (SmallTalk and 
C++) no positive effect on reuse was found. Yourdon (1993) gives arguments 
for this. This explains why we have stressed the importance of heterogeneity: 
being able to combine programs written in different languages. 

Although communication infrastructures like, for instance, CORBA (OMG 
1996) also enable building multi-language applications, they do not provide 
the strong separation between coordination and computation as we do. 

Contrary to many software engineering frameworks or approaches based on 
formal techniques, we take a very liberal stand: our evolutionary, component­
based, approach is neutral to and can be combined with many different­
formal or informal-methodologies and techniques. 

4.3 Identifying components for reuse 

Recalling the discussions on code scavenging as a technique for reuse (Sec­
tion 1.2) and on forward engineering versus reverse engineering (Section 2.1), 
we observe that there are two approaches to define components for reuse: ( i) 
the a priori definition of parameterized components, and ( ii) the post facto 
recovery of components from existing code. 

Parameterized data types, such as modules and components, have a long 
history in computer science and they have been applied successfully in many 
projects. Defining a parameterized data type anticipates the reuse of the data 
type by establishing which parts can vary (the parameters) and which parts 
are fixed (all other aspects of the data type). Depending on the context, type 
constraints may be imposed on the instantiation of the parameters. Param­
eterized data types correspond, for example, to generics in Ada, and tern-
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plates in C++. Reuse of parameterized data types is hindered by the fixed 
parameters-the data type could lend itself to more forms of reuse than can 
be expressed by the fixed set of parameters-and by limitations of static type 
constraints that forbid dynamic forms of polymorphism. 

Parameterized components can also be recovered from existing code. One 
approach is to analyze existing code and search for strong correlations between 
data and code (van Deursen & Kuipers 1997). The outcome of such an analysis 
can be either code restructuring or conversion of the existing code into class 
definitions in an object-oriented language. Mayrand, Leblanc & Merlo (1996) 
describe the use of metrics for finding function clones. Another approach is to 
manually "frame" existing code fragments into reusable components to which 
parameters are added as needed (Bassett 1996). Various fragments from the 
original code can then be regenerated from a single, reusable, frame by means 
of formalized low-level editing operations. In this way the set of reusable 
frames can slowly grow, thus decreasing the size of the code base that has to 
be maintained. 

We conclude that techniques stemming from research on parameterized 
data types (type constraints, syntax-directed view on modules) and from the 
reengineering field (clustering, framing) could be fruitfully combined to open 
new perspectives on finding and defining reusable components. 

4.4 Usage-based cost models for components 

Cox (1996) argues that there is no economic incentive for building high­
quality, reusable, software components. In his view, the mere notions of own­
ing, selling and buying electronic property-such as software-form the key 
problem. The current pay-per-copy schemes for software distribution prevent 
easy experimentation with new software products and make it hard to estab­
lish a realistic price for each product that is based on its inherent characteris­
tics such as, for instance, functionality, implementation effort, or lines of code. 
Instead, the distribution of software should be free and payment should be 
based on pay-per-use schemes. He proposes a new commercial infrastructure 
that opens up the potential for using large systems that are composed of many 
components, where each use of a component directly generates revenues for its 
owner/implementor. Since components can easily be replaced by better (and 
cheaper) ones, a competition between component manufacturers will emerge. 

We agree with Cox's vision and observe that the software engineering ap­
proach we propose in this paper is compatible with it: pay-per-use schemes 
can easily be incorporated in the coordination architecture we have described. 
Issues to be addressed are security and confidentiality of the payment trans­
actions and compatibility with emerging standards for electronic commerce. 



16 Systems Implementation 2000 

5 ACKNOWLEDGMENTS 

Section 3.2 is based on a text from a research proposal co-authored by Arie 
van Deursen. 

REFERENCES 

Arnold, B.R.T., A. van Deursen & M. Res (1995), An algebraic specification of 
a language for describing financial products, in 'ICSE-17 Workshop on 
Formal Methods Application in Software Engineering', IEEE, pp. 6-13. 

Baeten, J.C.M. & C. Verhoef (1995), Concrete process algebra, in 'Handbook 
of Logic in Computer Science, Volume IV, Syntactical Methods', Ox­
ford University Press, pp. 149-268. 

Baeten, J.C.M. & W.P. Weijland (1990), Process Algebm, Cambridge Tracts 
in Theoretical Computer Science 18, Cambridge University Press. 

Basili, V.R., G. Caldiera & G. Cantone (1992), 'A reference architecture for 
the component factory', ACM TOSEM 1(1), 53-80. 

Bassett, P.G. (1996), Framing Software Reuse, Yourdon Press, Prentice-Hall. 
Bergstra, J.A. & P. Klint (1996a), The TOOLBus coordination architecture, in 

P.Ciancarini & C.Hankin, eds, 'Coordination Languages and Models', 
Vol. 1061 of LNCS, pp. 75-88. 

Bergstra, J.A. & P. Klint (1996b), The discrete time TooLBus, in M.Wirsing 
& M.Nivat, eds, 'Algebraic Methodology and Software Technology', 
Vol. 1101 of LNCS, Springer-Verlag, pp. 286-305. 

van den Brand, M.G.J., A. van Deursen, P. Klint, S. Klusener & E. van der 
Meulen (1996), Industrial applications of ASF+SDF, in M.Wirsing & 
M.Nivat, eds, 'Algebraic Methodology and Software Technology', Vol. 
1101 of LNCS, Springer-Verlag, pp. 9-18. 

van den Brand, M.G.J., M.P.A. Sellink & C. Verhoef (1997a), Control flow 
normalization for COBOL/CICS legacy systems, Technical Report 
P9714, University of Amsterdam, Programming Research Group. 

van den Brand, M.G.J., M.P.A. Sellink & C. Verhoef (1997b), Generation of 
components for software renovation factories from context-free gram­
mars, in !.Baxter, A.Quilici & C.Verhoef, eds, 'Proceedings of the 
Fourth Working Conference on Reverse Engineering', pp. 144-153. 

van den Brand, M.G.J., M.P.A. Sellink & C. Verhoef (1997c), Obtaining 
a COBOL grammar from legacy code for reengineering purposes, in 
M.Sellink, ed., 'Proceedings of the 2nd International Workshop on 
the Theory and Practice of Algebraic Specifications', Electronic Work­
shops in Computing, Springer Verlag. To appear. 

van den Brand, M.G.J., P. Klint & C. Verhoef (1996), Core technologies 
for system renovation, in K.Jeffrey, J.Kral & M.Bartosek, eds, 'SOF­
SEM '96: Theory and Practice oflnformatics', LNCS, Springer-Verlag, 
pp. 235-254. 



Evolutionary software engineering 17 

van den Brand, M.G.J., P. Klint & C. Verhoef (1997), 'Reverse engineering 
and system renovation- an annotated bibliography', ACM Software 
Engineering Notes 22(1), 57-68. 

van den Brand, M.G.J., T. Kuipers, L. Moonen & P. Olivier (1997), Imple­
mentation of a prototype for the new ASF +SDF meta-environment, 
in M.Sellink, ed., 'Proceedings of the 2nd International Workshop on 
the Theory and Practice of Algebraic Specifications', Electronic Work­
shops in Computing, Springer Verlag. To appear. 

Cederqvist, Per (1993), Version Management with CVS, Signum Support AB, 
Box 2044, S-580 02 Linkoping, Sweden. 

Chikofsky, E.J. & J.H. Cross (1990), 'Reverse engineering and design recovery: 
A taxonomy', IEEE Software 7(1), 13-17. 

Cleaveland, J. Craig (1988), 'Building application generators', IEEE Software 
5(4), 25-33. 

Cox, B. (1996), Superdistribution: Objects as Property on the Electronic Fron­
tier, Addison-Wesley. 

van Deursen, A., J. Heering & P. Klint (1996), Language Prototyping: AnAl­
gebraic Specification Approach, Vol. 5 of AMAST Series in Computing, 
World Scientific Publishing Co. 

van Deursen, A. & P. Klint (1998), 'Little languages: Little maintenance?', 
Journal of Software Maintenance . To appear. 

van Deursen, A. & T. Kuipers (1997), Finding classes in legacy code using clus­
ter analysis, in S.Demeyer & H.Gall, eds, 'Proceedings ESEC/FSE 97 
Workshop on Object-Oriented Reengineering', Technical Report TUV-
1841-97-10, pp. 1-5. 

Fayad, M.E. & D.C. Schmidt (1997), 'Special issue on object-oriented appli­
cation frameworks', Communications of the ACM 40(10). 

Frakes, W.B. & C.J. Fox (1995), 'Sixteen questions about software reuse', 
Communications of the ACM 38(6), 75-87. 

Hoare, C.A.R. (1996), How did software get so reliable without proof?, in 
M.-C.Gaudel & J.Woodcock, eds, 'Proceedings of the Third Interna­
tional Symposium of Formal Methods Europe: Industrial Benefit and 
Advances in Formal Methods', Vol. 1051 of Lecture Notes in Computer 
Science, Springer Verlag, pp. 1-17. 

Horowitz, Ellis, Alfons Kemper & Balaji Narasimhan (1985), 'Survey of ap­
plication generators', IEEE Software 2(1), 4Q-54. 

Kelly, K. (1994), Out of Control: The New Biology of Machines, Social Sys­
tems, and the Economic World, Addison-Wesley. 

Klint, P. (1993), 'A meta-environment for generating programming environ­
ments', ACM TOSEM 2(2), 176-201. 

Krueger, C.W. (1992), 'Software reuse', ACM Computing Surveys 24(2), 131-
183. 

Lientz, B.P. & E.B. Swanson (1980), Software Maintenance Management-A 
Study of the Maintenance of Computer Application Software in 487 



18 Systems Implementation 2000 

Data Processing Organizations, Reading MA: Addison-Wesley. 
Lim, W.C. (1994), 'Effects of reuse on quality, productivity, and economics', 

IEEE Software 11(5), 23-30. 
Mayrand, J., C. Leblanc & E.M. Merlo (1996), Experiment on the automatic 

detection of function clones in a software system using metrics, in 
S.Bohner & C.A, eds, 'International Conference on Software Mainte­
nance', IEEE, pp. 244-253. 

McConnell, S. (1993), Code Complete, Microsoft Press. 
McConnell, S. (1996), Rapid Development, Microsoft Press. 
Mcilroy, M.D. (1969), Mass produced software components, in P.Naur & 

B.Randell, eds, 'Software Engineering', pp. 138-150. 
Naur, P. & B. Randell, eds (1969), Software Engineering-Report on a confer­

ence sponsored by the NATO SCIENCE COMMITTEE, NATO Science 
Committee, Garmisch, Germany, 7-11 October, 1968. 

Olivier, P. (1997), Debugging distributed applications using a coordination ar­
chitecture, in D.Garlan & D. L.Metayer, eds, 'Coordination Languages 
and Models', Vol. 1282 of LNCS, pp. 98-114. 

OMG (1996), COREA: Architecture and Specification, Object Management 
Group (OMG). 

Prieto-Diaz, R. & P. Freeman (1987), 'Classifying software for reusability', 
IEEE Software 4(1), 6-16. 

Rekers, J. (1992), Parser Generation for Interactive Environments, PhD the­
sis, University of Amsterdam. 

Reutter, J. (1981), Maintenance is a management problem and a program­
mer's opportunity, in A.Orden & M.Evens, eds, '1981 National Com­
puter Conference', Vol. 50 of AFIPS Conference Proceedings, AFIPS 
Press, Arlington, VA, pp. 343-347. 

Ritchie, D.M. & K. Thompson (1974), 'The UNIX time-sharing system', Com­
munications of the ACM 17(7), 365-375. 

Yourdon, E. (1993), Decline and Fall of the American Programmer, Prentice­
Hall. 

Yourdon, E. (1996), Rise and Resurrection of the American Programmer, 
Prentice-Hall. 

6 BIOGRAPHY 

Paul Klint is research group leader at the Centrum voor Wiskunde en Infor­
matica, and professor of computer science at the University of Amsterdam. 
His research interests include programming environment generators, domain 
specific languages, coordination architectures and the integration of forward 
and reverse engineering techniques for software. 

Chris Verhoef is an assistant professor at the University of Amsterdam. 
His research interests are software engineering, system renovation, reverse 
engineering, maintenance, and theoretical computer science. 


