
8
Generic Agent Framework for
Internet Information Systems

A. Erni, M. c. Norrie, A. Kobler
Institute for Information Systems
Swiss Federal Institute of Technology (ETH)
ETH-Zentrum, CH-8092 Zurich, Switzerland
email: {erni.norrie.kobler}@inf.ethz.ch

Abstract
For effective Internet database services, it is essential that the information
requirements of regular users can be met without the typical delays currently
experienced using Internet browsers and the World Wide Web. We use co­
operating agents to manage both dient and server caches, thereby bringing
significant performance improvements. The caching and prefetching of infor­
mation is based on both user and application profiles and agents communicate
to ensure the currency of dient caches. According to specific application re­
quirements, various forms of agents can be installed on the server and dient
sides to provide value-added services to both casual and regular users. All
component agents are instantiations andjor specialisations of a generic agent.
We describe how a specific Internet brokering system for engineering product
data has been constructed using our general framework for the development
of Internet information systems.

Keywords
Internet Databases, Agents, Web Interfaces.

Information Systems in the WWW Environment C. Rolland, Y. Chen & M. Fang (Eds.)
© 1998 IFIP. PubJished by Chapman & Hall

152 Part IV Implementation 11

1 INTRODUCTION

With the development of World-Wide Web (WWW) Interfaces to a number
of commercial and research database management systems (DBMS), the task
of providing Internet access to databases and their application services is re 1-
atively straightforward. For example, the commercial systems Orade (Orade
Corporation 1996) and O 2 (02 Technology Inc.), and our own research object­
oriented data management system OMS (Norrie 1993, Wuergler 1995, Erni,
Norrie June 1997), all provide WWW Interfaces.

However, given the typical delays in WWW access to information currently
experienced, it is another step to ensure an effective information service in
terms of performance and user satisfaction. In spite of efforts to improve
network communications, delays due to network and server overloading are
likely to remain with us for some time to come.

To improve performance, we propose an agent-based architecture for
the development of integrated, multimedia information services for Inter­
net databases. Our agents execute in the background, cooperating with each
other to provide a value-added service in terms of improved user response
times for a given Internet information service. The goal of our Internet agents
therefore contrasts, and complements, that of existing proposals for Inter­
net agents where the agents provide value-added services in terms of infor­
mation gathering, filtering and processing. For example, there are a num­
ber of proposals for Internet agents to assist in finding information e.g.
(Bayer 1995, Voorhees 1994, Shakes, Langheinrich, Etzioni 1997, Doorenbos,
Etzioni, WeId 1997), filtering information such as electronic news services e.g
(Lang 1995) and also processing information for user specific tasks such as
meeting scheduling systems, e.g. (Maes 1994), and electronic mail handling
(Payne, Edwards 1995, Maes 1994). Our proposals are similar to many of
these in the need for the agents to anticipate user requirements, and also be
aware of server characteristics, in order that the desired information can be
presented promptly on demand.

A combination of server and dient agents provides performance gains to
users through active caching mechanisms based on user and application pro­
files. The agents communicate to ensure the currency of the dient caches and
prefetch information into the dient caches based on predicted user requests.

Casual users may access the information service directly via the usual
WWW services. The server agent controls all access to the database and
application services and general access is improved by the caching strategy
of the server agent. All results of queries frequently requested by dients are
stored in a global server cache, thereby reducing response time and database
load.

Regular users may further reduce response times, and possibly obtain access
to additional services, by registering with the server agent and installing one
or more forms of dient agent. For registered users, user response times are

Generic agentframeworkfor Internet information systems 153

improved through a combination of techniques to reduce network trafiic and
perform prefetching of data into the local cache. Cooperation between the
server and dient agents ensures that only new and updated information is
transferred from the server, while other information is accessed via the local
cache. Prefetching of data can be based on both user and application profiles
which enable user information requirements to be predicted and data to be
downloaded into the cache in order that it is available locally when required.
We refer to this as active caching since it means that data may be cached, not
only as a direct result of user-initiated data transfer, but also at the initiation
of either a dient or server agent.

Since our overall goal is to provide a general framework for the develop­
ment of Internet information systems, we offer a plug-and-play architecture
in which various forms of agents can optionally be incorporated to provide
improved services. The precise forms of dient and server agents used will vary
according to both application and user requirements. However, all agents are
instantiations and/or specialisations of a generic agent.

The generic agent provides all functionalities required for communication
both with other agents, either installed locally or distributed over the Internet,
and also with auser. Since a main task of our agents is cache management
- whether a global, server cache or local, dient cache - an important part of
the generic agent is the functionalities required to maintain an active cache.

The various forms of agents that can optionally be installed can be thought
of as providing various levels of improved performance to users. The basic
system, without agents, exploits the WWW to provide universal access to a
given database system and its services. Installation of a server agent, with
its caching mechanisms, will provide improved access for all users - casual or
regular. By offering a dient agent, regular users may register and install a
dient agent locally with the effect of furt her improving the performance by
means of a local, active cache. If appropriate, a system may additionally offer
the option of installing a personal assistant on the dient side. This personal
assistant maintains the user profile and cooperates with the other agents to
increase the prefetching of data according to observed behaviour patterns.

Using this framework, we have developed a number of Internet information
systems based on our object-oriented database system, OMS (Norrie 1993,
Wuergler 1995) and its WWW interface (Erni, Norrie June 1997). These in­
dude an Internet brokering system for engineering product data (IPBS), an
integrated tourist information service for snow and avalanche data in the Swiss
Alps (Erni, Norrie January 1997) and an information system for renting hol­
iday apartments.

In this paper, we will use the example of the Internet product data broker­
ing system, IPBS, to describe the development and operation of our agents.
IPBS was developed in conjunction with the Institute for Design and Con­
structive Methods at ETH Zurich. The system provides a virtual marketplace

154 Part IV Implementation Jl

for engineers in which they can search for information on products of various
companies and follow links to individual company product catalogues.

In the following sections, we discuss our agent-based architecture and
generic agent framework in detail. We start in section 2 by presenting the
overall architecture in terms of the dient and server sides, the agents and the
various information sets. In section 3, we detail the functionalities and com­
munication of the generic agent and explain how our plug-and-play approach
was achieved. Section 4 presents the Internet product brokering system and
a detailed description of how the agents are installed in the context of the
WWW is given in section 5. Conduding remarks are given in section 6.

2 ARCHITECTURE

As stated previously, general WWW interfaces have been implemented for a
number of DBMS, induding Orade (Ora96 1996), O2 (02) and our own re­
search object-oriented data management system OMS (Norrie 1993, Wuergler
1995, Erni, Norrie June 1997). Using these interfaces, Internet access can be
provided to information systems either directly (Erni, Norrie June 1997) or
through writing HTML pages with embedded queries e.g. (02). The key issue
therefore is not how to provide WWW access to a database system, but how
to make it more attractive to both information consumers and producers in
terms of performance and ease of use. In particular, we wish to benefit from
the open access afforded by WWW, without the drawbacks in terms of poor
performance due to network and server overloading and one-hit communica­
tion protocols.

It is therefore important that regular users, who may be dependent on
Internet information services for their daily work activity, can be provided
with improved access over casual users in terms of performance and possibly
also functionality. For example, it may be that certain data or services are
only available to registered users.

We achieve this through the use of an agent-based architecture as shown in
figure 1.

The architecture of a particular agent-based information system can be
viewed in terms of its server and dient sides with the browser part considered
as the user's entry point to the Internet database and its application services.
In figure 1, we show all possible forms of agents that we support and the role
of each is discussed below. However, as will be discussed in detail later, for
any given information system, it is the choice of the system developer, along
with the users, as to which agents are actually installed on the server and
dient sides.

The server side is responsible for controlling all accesses to the database.
Because we want to provide access to an existing database system through a
single WWW entry point, all available database application services should
be integrated into one Information System which is accessed via a Database

Generic agentframeworkfor Internet information systems 155

set t' Atco,,/., ClUW us''''
'8tO"'" , I ,. Acee" /or npltu usus , ,

"M " " t :' " Interne I
, I

" I !

Figure 1 Agent-Based Internet Architecture

Agent. Users access the integrated system through different user groups. We
distinguish between casual users, accessing the information services directly
via the usual WWW services, and registered users who frequently access the
data and therefore have installed local dient agents enabling them to optimise
their working with the system, see figure l.

The database agent has its own Active Cache storing results of frequently
requested queries and therefore reducing query processing. We also refer to
this as the system's Global Cache since it serves the entire user community.
The Application Profile stores information about both registered users and
data update patterns. This information is used to ensure that only the newest
and updated information is stored in the global cache. If a registered user has
particular information interests, they may register their interest in terms of
the corresponding queries with the database agent. These Registered Queries
are then used to notify the dients of any relevant changes to the database
and help ensure the consistency of the dient cache as the database agent can
automatically send the ne west version of the data to the dients concerned
without explicit request.

The dient side consists of two cooperating agents referred to as the Personal
Assistant and the Internet Agent. The personal assistant keeps track of a User
Profile where knowledge about user behaviour and actions to be performed is
recorded. The profile may be either specified directly by the user or generated
by a learning component of the personal assistant based on the monitoring of
user actions. The personal assistant communicates with the Internet agent to
initiate prefetching of query results in the user's local cache. Such a trigger
can be either a time trigger, for example if a user requests some information
every day at 5pm, a data update operation on the server side or a specific

156 Part IV Implementation Jl

action performed by the user. The personal assistant also communicates with
the user to inform hirn of actions taken on his behalf and whether information
of interest has changed as reflected by updates to the local cache.

The main task of the Internet agent is to reduce access times for the user.
The user response times are improved mainly by active caching, which is
achieved in cooperation with the personal assistant and the database agent.
Active caching is based on both user and application profiles. Based on the
user profile, the personal assistant predicts when the user needs which infor­
mation, and requests that the Internet agent loads this information into the
local cache. Based on the application profile, the database agent knows which
data has been updated and sends the new version to the Internet agent, which
then stores the information in the user's local cache, also referred to as the
Active Cache.

The user interacts with the information system through the browser compo­
nent which is implemented in Java and is made available to the user through
a standard WWW browser. The application front-end comprises a browsing
component and an agent referred to as the Front-End Agent. This agent em­
ploys different Viewers for the different presentations of the data and has its
own Active Cache to improve performance while browsing back and forth in
an information system. With all forms of agents installed, the information sys­
tem may therefore have four types of agents and three levels of active caching
as shown in figure 1.

Having described the general architecture and the various forms of agents,
we now discuss the different architectural variants possible. These variants
reflect the various levels of cooperative caching and personalisation that may
be supported depending on specific application system requirements. Impor­
tant is the fact that each level of support corresponds to the installation of a
different form of agent - and further agents can be installed dynamically and
transparently with the only visible effect being improvements in performance,
and possibly also functionality.

A driving force in the development of our framework is the current trade­
off that arises between universality and efficiency of Internet access. Through
WWW, casual users are able to access an information system easily, and
without having to install any special software locally. However, WWW ac­
cess is typically much slower than traditional dient-server access over stable
network connections with the effect that regular users are soon frustrated.
Regular users would be only too willing to download and install software in
return for improved performance - especially if the means of access remains
unchanged.

In the following figures we show how our generic agent framework can be
used to put an Internet information system together and achieve an archi­
tecture according to the characteristics and requirements of the different user
groups. In figure 2, the basic architecture to support an Internet information
service is shown.

Generic agentframeworkfor Internet information systems 157

o
.... ",'1

! ~ i I I' ~~~--::-L---------- I .. ~ 1 i
> -- '~-- I

. ~J~.)Jd'~
~

Figure 2 Basic Agent-Based Internet Architecture

Here, the only change from direct WWW access to the database concerns
the use of an application-specific interface as supported by a front-end agent.
The user accesses the data from the information system directly without the
help of any other agents. Every query is evaluated by the database on demand.
Therefore even if many clients need the same query, it has to be evaluated
each time.

8,.';;';-1

Figure 3 Improved Agent-Based Internet Architecture

The next level of enhancement which can be used is to install a database
agent on the server side as shown in figure 3. This architecture improves
performance for all users through the caching of query results. For any query,
the database agent first checks if the result is already stored in the global
cache. If so, the query does not need to be evaluated again, and the result is
directly sent back to the user. Note that this contrasts with the caching policies
of many proxy servers which tend not to cache dynamically generated pages.
In fact, it is frequently the case in information systems that top-level queries
used to navigate the database, or inspect new information, are requested by

158 Part IV Implementation 11

many users - and repeated by individual users. This strategy of query caching
alone leads to significant improvements in access to Internet databases - and
is, in fact, now used in all general access to our own Internet database system,
Internet OMS (Erni, Norrie June 1997).

In all variants of our agent-based architecture with a database agent on the
server side, from the point of view of casual users, the architecture will be as
shown in figure 3. However, regular users may optionally register and then
download and install one or more local agents resulting in the architectural
view shown in figure 4.

.

Figure 4 Agent-Based Internet Architecture for Regular Users

Faster access to the desired data can be achieved in two steps. First, by in­
stalling only the Internet agent which manages a local active cache, thereby re­
ducing network trafik. Second, by installing a personal assistant which learns
from user behaviour and, in cooperation with the Internet agent, initiates
transfer of data into the local cache in anticipation of user actions. As ex­
plained previously, cache coherency is ensured through cooperation between
the Internet agent and the database agent.

We emphasise this step-wise enhancement of a system, to show that agents
are developed as component software which may optionally be introduced
into the system for improved performance - without affecting how the user
accesses the system. Within any one system, different users may have different
architectural views depending on whether or not they are prepared to register
and install software locally. The agents themselves are configured based on
the generic agent described in the next section.

3 GENERIC AGENT

The goal of building a generic agent is to allow adeveloper to easily put
together an Internet information system through the specialisation of compo-

Generic agentframeworkfor Internet information systems 159

nent objects according to the requirements and characteristics of the applica­
tion system.

Each component agent is an instantiation, and possibly specialisation, of
a generic agent. The main task common to all agents is the ability to com­
municate both with other agents and with users. Further, most agents are
concerned with the management of a local active cache. The exception to this
is the form of agent known as a personal assistant.

Therefore, the two main functionalities of our generic agent are communi­
cation and cache management. The generic agent is implemented as a Java
dass and specialisations of it can be achieved by adding or overriding so me
of its methods.

A system may comprise many forms and instances of agents resulting in a
complex network of cooperating agents. For example, in figure 5, we show a
three-Ievel architecture built from database, Internet, personal assistant and
front-end agents.

f I rr:-.;r ~ - -,-"..... _. ,,_ "aa'
~?

\/ r V

1 "I..(

j I s.::.. c..:.wt ..

J

V V

0010_" ... '

Figure 5 Communication between specialised agents

Communication between agents may be local or across a network. In aB
cases, communication is via sockets using a self-defined message protocol. At
the bot tom of figure 5 is the database agent installed on the server machine. It
accepts requests from many Internet agents and also directly from a front-end
agent, each of them running on a dient machine and communicating with the
database agent via raw sockets. An Internet agent itself accepts requests from
front-end agents, database agents and, in one instance shown in figure 5, a
personal assistant.

Each agent may have several dient agents - but at most one server agent.
This leads to a tree-structure as seen in the example of figure 5. Thus, each
front-end and personal assistant has only one Internet agent as a server, and

160 Part IV Implementation II

each Internet agent has only one database agent as a server. However, a
database agent can serve many Internet agents and an Internet agent could
serve many front-end agents and personal assistants.

The generic agent is able to create socket connections, either locally or
via the Internet, and is always ready to accept new ones. The generic agent
maintains these connections and informs the other agents if a connection
breaks or if an agent is about to shut down.

The general data flow goes from top to bot tom, that means from the dients
(front-end agent or personal assistant) to the server (database agent). Agents
communicate by means of message packages the structure of which is shown
in figure 6.

Data (Query, Answer, Special Command)

Figure 6 Structure of a Message Package

A message can either be a database query or a special agent command. The
Package ID is used to identify the outgoing query with the incoming answer.
The Package Type defines the type of the data, if it is either a database
query, a special agent command or an answer. The Caching Strategy indicates
whether the data received is to be stored in the active cache of the agent. For
example, special agent commands or error messages from the database should
not be stored, however valid query results are stored. The Time-Stamp is
necessary to keep the active cache up to date. In storing the time the query
was evaluated, a detection of query results which are out of date is possible.

To be able to handle this kind of message, the generic agent has built-in
functionalities to accept queries from dient agents, to process queries by either
taking the result from the active cache or forwarding the query to its server
agent, to wait for results from the server agent and to send the results back
to the dient.

The main task of the generic agent is to reduce query response time for the
user. To achieve that the generic agent has to organise and maintain an active
cache. The generic agent has functions to store and delete data in its cache
and also to automatically refresh data by sending arequest to its server agent
when it receives notification that the data has been updated in the database.

Another important feature of an agent is communication with the user. The
generic agent provides a graphical user interface through which the user can
configure the agent by specifying various parameters such as the host and port
number of its server agent. Through this interface, the user can also view the
log file detailing the agent's actions and various statistics about the agent's
activities, such as the average processing time for queries and the hit rate of
the cache.

Having explained the different functionalities of our generic agent, we know

Generic agentframeworkfor Internet information systems 161

that the agent receives messages from its various dients and from its server.
The agent has to process these messages, maintain its cache, listen for new
dients requesting connections and display its actions to the user. To optimise
performance, the agent decomposes all of these actions into different tasks
which are executed in parallel. Figure 7 shows the architecture of the generic
agent, consisting of the various tasks.

~r
/~ '";, (J V (J

~(J(J

Client Connections

Query Handler

eUent Listener

Agent's Main Process

I,

Agent Window

.. ~-"-

Figure 7 Architecture of the Generic Agent

In starting the agent, a background process is created, shown as the Agent's
Main Process, which is responsible for the administration of an other subtasks.
At the same time, the user interface, called Agent Window, is presented to
the user which enables hirn to initialise the agent and to observe all actions
the agent is executing. See also figure 8 a).

With the initialisation of the agent, the Client Listener process is started,
which listens for new dients trying to connect to the agent. At the same time,
the Server Listener process is initiated, which connects to the user-specified
server agent and listens für messages arriving from there, see figure 8 b).

If a connection request arrives from a dient, the dient listener starts a Client
Connection process, which handles all messages to and from that dient, as
shown in figure 8 c). By creating aseparate process, the dient listener is ready
to accept other dient connections without affecting the dient connection just
established.

If one of the connected dients sends a query, a Query Handler process is
created which processes the query by checking for the result in the active
cache or sending the query to the Server Listener process which forwards it
to the server agent, see figure 8 d). While the query handler is processing the
query, the dient connector is ready to accept other queries.

Decomposing these tasks into different parallel processes enables many
queries from different dients to be processed quickly, thereby providing all
users with a fast and effective Internet information service.

162 Part IV Implementation II

;{\/) , . V\
a) ~ /~. // A ... '·.M.;

\~_W_

"IT'

~~-
C)~ 0 ~

.Gg)
~

~0~\ ~u-
b) '\

. /(J1t
~_u-

~~-
d) z!!.: (J •• 0\

~
o

Figure 8 Tasks of the Generic Agent

Through the implementation of this generic agent, the main functionali­
ties of all forms of agents used in our agent-based Internet architecture are
provided. From the generic agent, we have developed generic forms of the
database, Internet, front-end and personal assistant agents. In the next sec­
tion, we describe how each of these was developed from the generic agent by
considering the requirements and operation of a specific application system
IPBS.

4 INTERNET PRODUCT BROKERING SYSTEM

The goal of the Internet product brokering system, IPBS, is to provide engi­
neers with Internet access to a database of information about various com­
panies and their product catalogues. As part of the design process, engineers
will perform an initial search for products meeting their requirements and, on
identifying likely sources, follow Internet links to the catalogues available on
individual company Web sites.

An earlier prototype system was developed by our project partners, the
Institute of Construction and Design Methods at ETH Zurich, based on a
relational database management system and using HTML pages with CGI
scripts. While the system provides the basic functionality required, it is slow
and navigation through the database tends to be tedious, since a user must
always start from the same top-level entry point and navigate to their cho­
sen data. We implemented a new version based on our own object-oriented
database management system OMS, its WWW interface and our agent frame­
work. The resulting system has proved more flexible in terms of navigation
and also much faster.

Generic agentframeworkfor Internet information systems 163

We use this application system to describe how the various forms of agents
in our framework are related to the generic agent described in the previous sec­
tion. Using the framework, an application system can be rapidly constructed
using the plug-and-play approach - with only some cases requiring specialisa­
tion of the agents for extended functionality. In this section, we detail how the
various forms of agents were developed from the generic agent by describing
how the IPBS system could be developed starting with only the generic agent.

The first stage is to develop the underlying database system containing
product and company data using the OMS object-oriented database man­
agement system (DBMS). OMS provides many features, such as data model
and query language expressiveness, browsing capabilities, uniform handling of
data and metadata and also URLs as base types, that are beneficial to this
and other applications. However, the agent framework is not dependent on
the use of OMS. Any database management system could be used, provided
that there is a means for communication with an agent so that the agent can
forward relevant queries and also be notified of changes in the database - ei­
ther directly or through a monitoring capability. In practice, the only parts of
the system which are DBMS dependent are the application front-end interface
where queries are formulated and the means of communication between the
database agent and the DBMS.

The implementation of the database agent is straightforward as most of
the functionalities are already provided by the generic agent, however a few
extra functionalities specific to the tasks of the database agent have also to be
provided. In this way, you can consider that, as a specialisation of the generic
agent, we implement a generic database agent. This agent is, in turn, used to
implement a specific database agent for IPBS capable of interfacing with the
OMS database system.

As described in the previous section, the generic agent provides a mes­
sage protocol which enables communication with other agents. This message
protocol has to be extended such that communication with the database is
also possible. Additionally, a feature has to be implemented which allows the
database agent to observe all changes of data made in the database. This is
especially important for keeping the cache up to date and informing all In­
ternet agents about changes to data. In connection with cache maintenance,
the database also has to handle registration of both users and queries. This
feature also has to be implemented.

The main functionalities of the Internet agent are maintenance of the cache
and routing of messages to the correct destination. These functionalities are
all provided by the generic agent, and the Internet agent can be implemented
directly using the generic agent.

As described in section 2, the personal assistant keeps track of the user
profile, where knowledge about user behaviour and actions to be performed
is recorded. The profile may be either specified directly by the user or gen­
erated by a learning component of the personal assistant based on past user

164 Part IV Implementation II

behaviour. In IPBS, the learning component is not required as the user spec­
ifies the data of interest directly. The main task of the personal assistant is
therefore to ensure that the defined data, as requested by the user, is always
stored and current in the user's local cache. Another task is to inform the
user of any changes to the data of interest. To be able to attract the attention
of the user for such announcements , we visualise the agent as shown in the
upper left corner of figure 9. Different facial expressions and a dialogue box
are used to inform the user of changes to data and actions of the agent, for
example, whether the agent is idle, working or halted.

Figure 9 Internet Product Brokering System

The front-end agent controls the user interface and runs as a Java applet
inside the browser. Because it is responsible for the visualisation of results and
for user's requests, the generic agent has to be extended to support these fea­
tures. This is done by implementing different viewers for the different types of
data to be presented to the user. Two of these viewers for IPBS can be seen in
figure 9. The viewer on the right was built specifically for IPBS and is used to
browse through the product hierarchy searching for specific product groups.
On the left side, a dynamically generated viewer is shown. This vi ewer is used
to display any OMS objects on the dient side. Depending on the parameters
sent by the database, this viewer automatically generates the appropriate win­
dow format for the corresponding query result. This vi ewer is not application
specific and, in fact, is the basis for the WWW interface to OMS provided by

Generic agent framework for Internet information systems 165

Internet OMS (Erni, Norrie June 1997). By dicking on the various buttons of
the displayed objects, the next query is sent to the database and the result is
again presented in a dynamically generated window format. In this way, an
application specific interface may be developed rapidly using a combination
of the generic viewers for displaying database objects and application specific
Vlewers.

As described in this section, it is relatively straightforward to implement
the various agents of the framework based on the generic agent. In practice,
the IPBS system was developed from this framework. Details of IPBS and its
implement at ion are given in (Ruser 1997). The main task was to design the
application interface and decide on the role of the personal assistant in terms
of how much personalisation was required and how this should be provided. In
IPBS, the personal assistant task is minimal since no monitoring or learning
component is involved. In such cases, we actually recommend integration of
the personal assistant with the Internet agent to reduce the number of com­
munication layers between the user and the database, thereby enhancing the
overall performance. However, we also have experience in developing other
applications with more sophisticated personal assistants which construct user
profiles based on the monitoring of user behaviour e.g. (Honegger 1997).

5 AGENT INSTALLATION

In this section, we describe the installation of the system in terms of how
and where agents are installed and how the start-up and registration process
functions. Specifically, we present our solution to how agents can communicate
with the application Java applets given the various Java security restrictions.
Further, we describe how this solution effectively allows us to combine univer­
sality of WWW access with the performance benefits of dient-server access
over stable connections.

Figure 10 shows the installation of agents from the perspective of a casual
user. The database system and the server agent have to be installed on the
server machine, as shown in the right of figure 10. For a user to access the ap­
plication system, two HTML documents are needed and these are also stored
on the server machine. One HTML document is the startup page containing
a startup applet needed for the initialisation of the system, and the other
HTML document contains the front-end applet and the viewers, which then
builds the user interface to the system.

The dient machine should be viewed as two Iogical machines - the Iocal
maehine on which Ioeal applieations exeeute and the Java virtual maehine
within the browser on which Java applets exeeute. This distinction is made
sinee seeurity restrictions prevent Java applets that have been downloaded and
exeeute within a browser to communicate with loeal applieations. However, we
note that with recent developments in seeure and signed applets as available in
the first release of Java Security in JDK 1.1 (Sun Mierosystems), it should be

166 Part IV Implementation II

rBro ... Ir - - -=11 u.:Q/MII&Itin. II St"'trMllcltin.

I : .•

o -c---- -.-
...................... _n. St . n. ... p

Afpl e t.

4 .

~-- -----

f.1 .. ',','.·,·,·.S?.'.·.· ... S?.]
NnL' 'r~u.- en4 vJ.-wen
~"'L -""ln sn

runnino l"\.Lf\nlpg

3.

s.

----§;--- -----------

1.

00
s.rvv DIIl.6bas ,

2 . 11.

[:1::::::::::1:1
~nt.

.!Iit.U~~

""",h t.

----------- - ...

-{I::::::I :·:::rI :l
11'1"1&.- F'l"ont- ent.! . 1..,.,..
~nt .wl.r;.

fru.n.nlng runnlno

Figure 10 Startup-Proeess for Casual Users

possible to avoid these restrictions in the future. In the ease of a easual user
aeeessing the database, no software is installed on the user's loeal maehine
and henee there are no eomponents of the applieation exeeuting on the loeal
maehine as shown in figure 10.

In figure 10, we also show the steps involved in installing the applieation
and aeeessing the database. Installation of the system involves starting the
database server (1) and the server agent (2). A user aeeesses the system by
downloading the HTML-doeument eontaining the startup applet (3) whieh
then exeeutes and starts the applieation loeally (4). Beeause the server agent
keeps traek of all Internet agents running, the startup applet first establishes
eontact with the server agent (5) and (6). Sinee this eontact is important in the
ease of registered users, we deseribe it in more detaillater. The startup applet
then downloads the HTML doeument (7) eontaining the front-end agent (8)
and the viewers (9) from the server maehine and the applieation is started.

In eontrast, figure 11 shows the installation of the agents from the per­
speetive of regular users who register and install dient agents on their loeal
maehine.

In this ease, a eopy of the HTML doeument eontaining the front-end agent
and the viewers is also stored on the user's loeal maehine. This is neeessary
beeause of Java's applet seeurity restrictions. Java applets are only allowed to
eonnect with the maehine from whieh they were downloaded. This means that
they eannot eonnect to loeal applieations. Further, they eannot write to loeal
files. There would therefore be no way for the front-end agent and Internet
agent to eommunieate direetly. However, by storing a loeal eopy of the applet
for the front-end agent on the dient maehine, we ean switeh the downloaded

Generic agent framework for Internet information systems

Brow .. r LDcalMlUlIiii.

o 0-
' lu.CMI J ,tU .. IIIJ'M
u.ht .• rH ·Ai.n t

s. , 3 .

Sov"Maeloiu

00
se,r'oIe .. !:MulM., ,

2. ,1.

--~:_- - - ---

:I::::·::::g: .. : - ---- - - - _6_._ - - - - - ~ - - - - ~- - - ~ ~ r·I :::··::::I J
1fT'IIt.. 'u,I"'t\rP

Doc\AIIen~ ~hl,.
..".,- St.att.llp
~"t. Io,pplet

1. 8. - -- - - - - - - -- ...
... -------- ____ 9_. _____ _

l!~~::~~~::~~]=l !~: .. ~!~['J [1 ······_·····"1"1·:
·tm.L·,: · ·· r~t.::~ · !r~::;~;
DocUIMIU. APPl . t

1q- 12.
ItVnnlng fl.Innln'ill rulU"llng'runnl~ runnl~nnlrt9

Figure 11 Registration- and Startup-Process for Regular Users

167

applet with the local applet, thereby allowing the applet to communicate
directly with the local Internet agent.

As before, the database system (1) and server agents are started on the
server machine. On the user's local machine, the Internet agent is started (3)
and it first sends the local address of the HTML page containing the front-end
applet to the server agent (4), which registers the Internet agent and stores the
address received. Next the personal assistant is started (5). The user accesses
the application system in exactly the same way as the casual users, i.e. by
downloading the HTML document (6) containing the startup applet which
then executes (7). The startup applet contacts the server agent (8). In this
case, the server agent knows of the existence of a local Internet agent and it
sends back a message giving the address of the local HTML page containing
the front-end agent (9). This HTML document is then loaded from the user's
local machine enabling the front-end agent to communicate with the Internet
agent. The applets for the front-end agent and viewers are then started and
the application interface presented to the user is exactly the same as with the
casual user.

The solution presented enables us to provide uniform WWW access to
the application system for all users. However, in the case of registered users
with locally installed software, the server agent uses its knowledge of the
user to effectively switch from running the application via WWW to running
the application via a traditional style dient-server architecture over socket
connections. In this way, not only does the performance of the system improve

168 Part IV Implementation 11

due to the use of active caching, but also due to the system running over stable
socket connections rather than HTTP.

6 CONCLUSION

We have presented a framework for the development of Internet information
systems based on an architecture that uses cooperation between dient and
server agents to improve user response times through active caching mecha­
nisms. This framework is based on a generic agent containing all functionali­
ties needed to cooperate with other agents and with the user. Based on this
generic agent, we provide various forms of dient and server agents from which
specific Internet information systems can be built.

Our experience in building various application systems using this framework
proves that such systems can be developed quickly and that they provide far
better performance than simply using normal WWW database access. In the
future, we want to continue our experiments with various caching strategies
and carry out detailed performance measurements.

Ultimately, all active caching on both the server and dient sides involves
the prefetching of data based on anticipated user requirements. Predicting
user requests may depend both on individual user behaviour and also appli­
cation characteristics. For example, semantic relationships between data may
indicate that access to one data object is likely to be followed by access to
another specific data object. We are therefore also investigating extensions to
the user and application profiles and their construction to assist in prefetching
strategies.

7 BIOGRAPHY

Antonia Erni is a Research Assistant in the Institute for Information Sys­
tems at ETH Zurich working in the area of agents and internet databases. She
designed a generic agent framework for the development of integrated, mul­
timedia information services for internet databases and developed a generic
World-Wide Web interface to the OMS object-oriented database system. Cur­
rently, she is developing an internet apartment reservation system using the
general framework.

Moira C. Norrie is a Professor in the Institute for Information Systems
at ETH Zurich. She formed a research gr<mp in the area of Global Infor­
mation Systems in February 1996. The main interests of the group are in
object-oriented data models and systems, internet databases and advanced
database applications such as document management systems, product infor­
mation systems and scientific data systems.

Adrian Kohler is a Research Assistant in the Institute for Information
Systems at ETH Zurich. He designed and implemented a product information

Generic agentframeworkfor Internet information systems 169

system based on a general product data model using the OMS/Java frame­
work. OMS/ Java can be regarded as an object-oriented database management
system for the Java environment that supports the generic object data model
OM. Currently, he is developing the product data model into a general meta
data model.

REFERENCES

Bayer, D. A Learning Agent for Resource Discovery on the World Wide Web.
Master's thesis, Dept of Computing Science, University of Aberdeen,
Scotland, 1995.

Doorenbos, R. B, Etzioni, O. and Weld, D. S. A Scalable Comparison­
Shopping Agent for the World Wide Web. In Proceedings of the First
International Gonference on Al.ltonomol.ls Agents, Marina deI Rey, Cal­
ifornia USA, February 1997.

Erni, A. and Norrie, M. C. Agent Based Internet Database Services. In 4th
Doctoral Gonsortium GA ISE '97, Barcelona, Spain, June 1997.

Erni, A. and Norrie, M. C. Snownet: An agent-based internet tourist in­
formation service. In Proceedings of the 4th International Gonference
on Information and Gomml.lnication Technologies in Tourism, Edin­
bl.lrgh, Scotland, Institute for Information Systems, ETH Zurich, Jan­
uary 1997. Springer-Verlag.

Honegger, F. PIA: Personal Internet Assistant. Semester thesis, Institute f~r
Information Systems, ETH Zurich, 1997.

Lang, K. NewsWeeder: Learning to Filter Netnews. In Proc. 12th Intl. Ma­
chine Learning Gonference (ML95), San Francisco, USA, 1995. Morgan
Kaufmann.

Maes, P. Agents that Reduce Work and Information Overload. Gomml.lni­
cations of the AGM, 37(7), July 1994.

Maes, P. Modeling Adaptive Autonomous Agents. Artificial Life Journal,
1(1 & 2), 1994.

Sun Microsystems. The Java Development Kit (JDK).
http://java.sun.com/products/jdk/ .

Norrie, M. C. An Extended Entity-Relationship Approach to Data Man­
agement in Object-Oriented Systems. In 12th Intl. Gonf. on Entity­
Relationship Approach, pages 390-401, Dallas, Texas, December 1993.
Springer-Verlag, LNCS 823.

02 Technology Inc., Versailles, France. 02 Web.
Orade Corporation, California 94065. U.S.A. Oraele WebServer 2.0, 1996.
Payne, T. R. and Edwards, P. Interface Agents that Learn: An Investigation

of Learning Issues in a Mail Agent Interface, 1995.
Ruser, P. Agent-based product data information system. Master's thesis,

Institute for Information Systems, ETH Zurich, 1997.
Shakes, J., Langheinrich, M. and Etzioni, O. Dynamic Reference Sifting:

170 Part IV Implementation 11

A Case Study in the Homepage Domain. In Proceedings of the 6th
International World Wide Web Conference, Santa Clara, California
USA, April 1997.

Voorhees, E. M. Software Agents for Information Retrieval. In Software
Agents: Papers fram the 1994 Spring Symposium, Menlo Park, CA,
USA, 1994. AAAI Press. .

Wuergler, A. Object Model System: An Object Database Management Sys­
tem for the OM Data Model. Master's thesis, Institute for Information
Systems, ETH, 1995.

