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Abstract 
Adder architectures are presented here by an unified formalism, and analysed from 
the delay, complexity and power consumption points of view. An analytical model 
for the power consumption is derived, assuming that it is proportional to the 
transition density [DHNT95]. The model is subsequently validated by simulation 
using a signal transition probabilities propagation tool [Cra89]. Finally, glitches 
are taken into account when transitions at the input of a cell are separated by one or 
more cell delays. A redundant to total power ratio is also derived. 
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1 INTRODUCTION 

Addition is the most frequently used arithmetic primitive, involved not only in 
simple addition but also in more complex operations like multiplication and 
division. The present study covers the linear ripple carry adder and different 
architectures of carry select and carry lookahead adders. 

Designing low-power high-speed circuits requires a combination of techniques at 
four levels :·technology, circuitry, architectures and algorithms [BCS92]. This 
work concentrates on the architecture level and considers a CMOS static 
technology. 
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The paper is organised as follows: the L\ operator introduced by Brent and Kung 
[BrKu82] is first recalled. Then it is used to describe several well known adder 
architectures by an unified formalism. An analytical power consumption model is 
derived first for the ripple carry adder, and extended to other architectures. The 
notion of Glitch Threshold is then introduced and validated by HSPICE 
simulations, providing a glitch filtering model usable by the power evaluation 
software [Cra89]. Finally, concluding remarks and a brief presentation of the future 
work is given. 

2 THE A OPERATOR 

"'n-1 · 
Let us consider an adder that computes S =A+ B, where A= ~i=Oai * 21 and 

B = L~~~ bi * i . At every position i, the next carry Ci+ 1 is either generated, i.e. 

Ci+l = 1, propagated, i.e. Ci+l = Ci or killed, i.e. Ci+l = 0 according to the values of 
the digits ai and bi. So three signals can be defined, one for each case: gi = ai " bi, 

Pi = ai E9 bi, and ki = ai v bi . 
Then let us note Pi,j the group propagate and Gi,j the group generate, with 

n-1 ~ i ~ j ~ 0. Pi,j means that the carry propagates from position j up to position 

i, that is that Ci+l is equal to Cj. Pi,j = Il~=i Pn· Gi,j means that a carry is 

generated somewhere between j and i and propagated from this location up to 

position i and yields Ci+ 1 = 1. G1• J. = gi v "'j . {Pi n+l 1\ go). 
, £.i.n=t • 

Clearly, one has Pi,i =Pi = ai E9 bi , Gi,i = gi = ai 1\ bi , Pi,j 1\ Gi,j = 0 and 

ci+I = Gi,O· For any k such that n-1 ~ i ~ k ~ j ~ 0, the pair of bits (Pi,j• Gi,j ) 

can be computed from (Pi,k• Gi,k) and (Pk-l,j , Gk-l,j) in the following way: 

(Pi,j, Gi} = ( Pi,k" Pk-l,j, Gi,k v Pi,k" Gk-l,j) 

Is noted Ll the operator such that: 

(1) 

(2) 

In the subsequent figures the icon ¢( is used for the 4 bit input, 2 bit output 

.!\-cell. 
It is easy to prove that: 

:. L\ is associative, non commutative and idempotent. 

:. Any (Pi,j , Gi,j) requires (i-j-1) Ll-cells to be computed from the 

adders inputs. Intermediate results from the Ll-cells may be reused, thus reducing 
the total number of Ll-cells, but increasing the fan-out of some of them [Zim96]. 
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3. COST AND DELAY MODELS : WORST CASE 

The cost of an n-bit adder consists of a linear cost to compute the gi and Pi from ai 

and bi and the Si from Pi and Gi-l o plus a cost varying according to the 
' 

implementation chosen to get the Gi- 1,0 . This cost is given roughly by the 
number of ~-cells, that may range from (n-1) up to (n log2n) for regular adders or 

even go up to 1/2 (n-1)2 for special purpose adders [Zim96]. 
Note that the Pi-1,0 are never used, so the ~-cells at the bottom ofthe following 

figures produce only the Gi-1,0 output and since the Pij are only useful for the 
right input of those cells, all the n-1 ~ cells at the bottom of the figures are 
simplified. This saving is accounted for in the fixed cost . 

The adder delay is the sum of the delays of the ~-cells along the critical path plus 
a fixed delay to get the gi and Pi and finally the si. In the following, the delay of a 
~-cell is used as the delay unit. 

3.1. Some Adder Architectures 

Let us examine now some well-known architectures [GBB94], their delay (number 
of ~-cells along the critical path), and their cost (the total number of ~-cells). 

3.1.1 Ripple Carry Adder 
The ripple carry adder (figure 1) delay and its cost are in O(n-1 ). It is ineffi.::ient and 
easily constructed by mere abutment of ~-cells. 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 0 

Figure 1 : A 32-bit carry ripple adder 

3.1.2 Two Level Carry Select Adder (2-CSA) 
The two level carry-select-adder (figure 2), also named conditional-sum-adder or 
carry increment adder is based on the previous one truncated into blocks of varying 

sizes. Its cost is in 0(2n) and delay or -{2n 1, more precisely with k ~-cells along 

the critical path, an adder can accommodate up to 1 + l',~=I i = t k{k + 1) bits. 

28 27 26 25 24 23 22 21 20 19 18 17 1615 14 1312 11 10 9 8 7 6 5 4 3 2 I 0 
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Figure 2 : A Two level carry select adder 
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3.1.3 Brent and Kung Adder 
The Brent and Kung adder [BrKu82] is based on binary ~-cell trees. The cost is 
0(2n), the delay 0(2riog2(n)1 -2). One binary tree outputs the ~.o for all i in the 

form 2i-I, then another tree gives the remaining Gi o . 
' 

3.1.4 Sklansky Adder 
The Sklansky adder [Skla60] has proved to be the fastest architecture. Its cost is 

Of n lo;2(n) l, and its delay or log2(n) l. The main drawback is that the fan-out 

grows exponentially from the inputs to the outputs along the critical path and 
consequently the transistors must be sized. 

3.1.5 Kogge & Stone and Han & Carlson Adders 
The most significant bit of a Brent and Kung adder as well as in a Sklansky adder is 
obtained by a perfectly balanced binary tree in time log2(n). If the tree for the most 
significant position is just copied for all other positions, the Kogge and Stone 
adder [KoSt73] is obtained. The fan-out is reduced to just two, at the expense of a 
larger number of ~-cells, that becomes O(n(log2(n) - 1) + 1) cells. As for the 

Sklansky adder, the delay is or Iog2n 1 . 
In order to reduce the number of cells of the Kogge and Stone adder, Han and 

Carlson [HaCa87] have proposed to compute only the odd positions, and then to 
add a layer to compute the even positions from the odd ones. The delay is slightly 

increased to or1og2(n)1 +1, while the complexity becomes O~(rlog2(n)1 +1). 

3.2. Comparison 

Table I [TVG95] 
Adder # o[ Ll-cells Delay ( ,1-celQ Max. [an-out Use[ul Activi!J!_ 
Ripple n -1 n -I 2 n/2 
2-CSA r2n -Th 1 r-Y2n1 r-Y2n1 r2n -Th 1/2 
3-CSA 5/2 n -3/ogin 12) r~1 r~1 N.A. 

B&K r2n- login) 1 r21ogin) -21 r21og2(n) -21 N.A. 

Sklansky r n 12 Iog2(n ) 1 flog2(n )1 n 12 ,f n 14 Iog2(n ) 1 
K&S r n (log2(n )-1 )+ 11 flog2(n )1 2 ,f n 12 Iog2(n ) 1 
H&C r n 12 Iog2(n )+ 11 flog2(n ) 1 + 1 2 zf" n 14 log2(n ) 1 

4. ACTIVITY MODEL FOR THE RCA 

In this part of the paper, a model for the activity of a Ripple Carry Adder (RCA) is 
derived without taking into account the attenuation of the spurious transitions. In 



Spurious transitions in adder circuits 381 

the ripple carry adder, when all the inputs are applied at once, the activity is mainly 
due to the propagation of the carry through a chain of Pi= 1. Let us call T(n,k) the 
number of different chains of k consecutive "1 "s in a binary word of length n : It is 
obvious that: T(n,O)=O (no "zero bit" chain), T(n,n)=1 (i.e. 111...11) and 

T( n, n -1) = 2 (i.e. 2 possibilities : 011...111 or 11...1110). 

Let us now compute the general term T(n,k) for 0 < k < n . Since the word 
extremities as well as the bit value 0 act as chain separators, we distinguish two 
cases. When the chain touches one of the two extremities of the n-bit word, there 
are 2n-(k+l) different values for then- (k + 1) bits outside the chain. 

11...10 011. .. 01 

k+1 n-(k+1) 

There are n- (k+2) possibilities for the chain to be in the middle of the word and 
for each position there are 2n-(k+2) values of then- ( k + 2) remaining bits. 

D1...10 011. .. 01 

k+2 n-(k+2) 

Thus T(n,k)=2n-k(1+n-:-l) forO<k<n, T(n,O}=O and T(n,n)=l 

4.1. Activity of the RCA 

In the case of the RCA, none of the outputs is obtained from a balanced binary 
tree, and thus, the activity window of any output is equal to its logical depth. This 
is not true for other architectures where the outputs are obtained by balanced binary 
trees like the Kogge and Stone. 

The activity caused by a carry propagation over k positions is proportional to 

k2 /2 [MoPa96]. Thus the average activity is 

(3) 

Let us recall some useful identities [Kre93] : 

2 3 
""'". 2-i 2 n ""'n ·22-i 6 n ""'" ·32-i 26 n (4) ~i=0 1 ' = -2D, ~i=0 1 ' = -2D, ~i=O 1 ' = -2D 

since they allow to simplify the expression of 

A_ 3n-4 3n2 -----+3n-4 
- -4-- 2n+3 n-+oo 4 

With these identities, one can also easily verify that : 

(5) 
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_I ~n k T{n k)=~- 3n 
2" "'"'k=O . ' 2 2n+2 

n 
--~ 

n~oo 2 

which is the known average delay of the ripple carry adder. 

(6) 

In the following, the higher order terms are neglected, i.e. it is assumed that : 

A= 3n- 4 . Table 2 shows the relative error for 8, 16, 32 and 64 bits. 
4 

Table 2 
#of bits Activity (%) Delay(%) 11 (%) 
8 9.3750 2.34 8.2759 
16 0.15 0.02 0.04 
32 8.94e-06 5.59e-07 4.26e-06 
64 8.33e-15 2.60e-16 2.58e-06 

Due to the equiprobability of the output vectors, the average number of useful 
transitions in a RCA is equal to half the number of cells. The total activity A is 
split in two parts : A= Auseful + Aredundant· Thus, the ratio Tf of redundant over 
total activity is: 

Tf = A redundant = A- A useful = _n_-_4_ 
A A 3n-4 

(7) 

For large values of n, Tf "" 1/3. This result is consistent with the BDD 
simulations using a unit delay and with [LMJ95]. 
By adopting this approach, it is also possible to determine the acticity at a given 
time ti (Figure 3 ). 

"" Ripple chain of length k 
II 

t 
i 
:~ 
..';! 

Figure 3: Activity at time tj. 

The activity at t} is given by : A( ti) = 2
1n . r:=I k. T{ n, k). The ripple chains 

of length k that exist at t2 are those of length k+ 1 at t 1 , thus : 

A( t2) = 2
1n . 1:::: k. T( n, k + 1). The sum goes to n-1 because in a word of length 

n, one cannot have a ripple carry chain of length greater than n. 
More generally, the activity at time ti is given by : 

( ) 1 ~ n-i ( k . ) -i ( n - i ) A ti =zo""'"'k=lk.T n, +1 =2 - 2-+2 (8) 
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5. EXTENSION OF THE MODEL TO OTHER ARCHITECTURES 

The previous model is extended to the adders that can be obtained by an association 
of ripple carry chains - like the carry select adder or the Kogge and Stone adder for 
example. 

In the computation of 1J, the useful activity Auseful is assumed to be half the 
number of !:J. cells since "0" and "1" are equiprobable (this is consistant with the 
BDD simulations). 

5.1. Two Level Carry Select Adder 

The 2-CSA adder is a RCA truncated into blocks. For n bits, the length of these 

blocks varies from 1 to -{iii - 1. Thus a n bits 2-CSA can be viewed as -{iii 
RCAs of length varying from 1 to -{iii - 1 (first level) plus a row of cells that 
form the second level (figure 2). 

5.1.1 First level 
The total activity of the first level of the 2-CSA is given by the sum of the 
activities of the ripple carry chains, as they are independent from each other. 

A =-1 ·"'~(i.A(i)]=-1 ·"'~[i. 3i-4]= n.-fiii _ 3.-{iii -~ (9) 
!"level 2n ~. 2n ~. 4 2 8 4 

5.1.2 Second Level 
The second level of the 2-CSA is approximated here by a ripple carry chain of 

length -{iii, in which, a cell at position i is duplicated i times. This approach 
neglects the acticity generated at the second level by the ripple of the outputs at the 
first level. The activity of such a ripple carry chain can be deduced from the activity 

of the RCA by assuming that the capacitance of the kth cell is k instead of l. 

(10) 

5.1.3 Total Activity of the 2-CSA 
The total activity of the 2-CSA is the sum of the activities of the first and second 
levels : 

A _ A +A _ 3. -{iii+ 4. n. -{iii- 6. n- 57 
Total - 1 '' level 2nd level - 8 (11) 

Assuming that the useful activity is given by half the number of cells, the 
redundant to total activity ratio can be computed: 
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A-A fu (7.~ +4.n.~ -14.n-57) 
1J = use I = -'-----,=,...------,=,....-----...!... 

2csA A 3.~ +4.n.~ -6n-57 
(12) 

5.2. Kogge and Stone adder 

Each bit of the Kogge and Stone adder is obtained by a balanced binary tree, thus 
the output of any cell can change only once during a clock cycle - no redundant 
transitions. 

The carry propagation is the result of a logical AND, thus its activity decreases 
very rapidly with the depth (like 2-i), but the transition probability of the carry 
generation is almost constant (1/2). These considerations allow us to approximate 
the activity of the Kogge and Stone adder by half the number of its cells : 

n 
AK&s = -log2 n , and 7JK&S = 0 

4 

6. GLITCH THRESHOLD 

(13) 

HSPICE simulations has been carried out on simple circuit examples (Figure 4) in 
order to quantify the spurious transitions absorption or propagation. The notion of 
Glitch Threshold is introduced here in order to quantify when a glitch becomes 
a spurious transition 

~ 
0 

Figure 4: Spurious transition generation and propagation 

When the transitions at the inputs of a gate are separated by a delay 0, a glitch is 
generated at "Out" (figure 4). The amplitude of this glitch is proportional to 0 
(figure 5). This glitch can be either absorbed, or propagated depending on its width 
and on the delay of the following gate. As it can be seen in figure 5, there is a 
threshold for the glitch propagation from "Out" to "Outl". 

HSPICE measurements have been carried out (ATMEL-ES2 ECPD07 
technology) and ploted. The plot shows that there is a threshold delay under which 
the glitch is absorbed, and above which the glitch grows into a spurious transition 
(figure 5). We call this threshold delay Gth. 

The variation ofGth with respect to 't (the buffers' delay) is linear (figure 6), and 
the slope is approximately 1.89. This means that a glitch of width 0 = Gth will 
become a spurious transition only if 0;::: 1.89 't. The glitch threshold depends on 
the loading capacitance of OUTl. The threshold phenomenon is attenuated when 
the capacitance is large. 
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Figure 5 : Glitch Threshold Figure 6 : Variation of Gth with 't . 

This characteristically behaviour of spurious transitions has been implemented in 
a BDD simulation tool [Cra89], and in the following section, the above analytical 
model is compared to the simulations for different adders architectures. 

7 . BDD SIMULATION AND RESULTS 

The tool used for implementation and experiment is ASYL+ [Cra89]. It provides a 
complete environment for macro generation and low-level synthesis. The size of the 
operands is sufficient to build a netlist for any kind of adder architecture. The 
mapping and the estimates are then performed with the user library, delay and 
dissipation model. 

t=O 
0 1=1 
,. 1=2 

• t=3 

Figure 7 : Switching probabilities example 

so 
'-------J 

o o.Po 
v 

The power is dependent on the circuit structure as well as the circuit inputs: it is 
said to be input pattern-dependent. To solve this problem, one can simulate the 
circuit for a large number of inputs and then average the switching activity. On the 
other hand, probabilities where introduced [Bur88] to perform the averaging before 
running the analysis [Najm95] by estimating the number of transitions per clock 
cycle. Using the Boolean network functionality and connectivity, these input 
probabilities are propagated through the network. To apply statistical properties, 
reconvergent fanouts and feedback have to be taken into account. A convenient way 
to do this is to use binary decision diagrams [Najm91]. As the adder architectures 
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do not contain any reconvergent fanouts, the probability computation is performed 
without any approximation. 

A glitch is created at the output of a gate because of the difference in arrival 
times at its inputs. Then, the glitch can be propagated to the fanout gates according 
to their sensitivity. The probability of a switch due to a glitch cannot be estimated 
the same way as a useful switch for the simple reason that the probability of a node 
to undergo a transition does not depend only on the Boolean network functionality 
but also on its structure (path lengths for instance). 

The formula Pr = 2PJ0-PJ) in no longer valid any more for all the possible 
transitions. To solve this problem, the probability calculation must be based on 
real delay models. Since the switching probabilities are supposed to be known at 
the primary inputs of the circuits, they are propagated to the fanout gates up to the 
roots of the circuit using the gate delays. Each gate modifies the switching 
probability according to its ability to propagate the transition from its inputs to its 
output, what we called sensitivity. The sensitivity calculation rests on the 
functionality of the gate according to the probabilities at the inputs. Finally, gates 
have a set of switching probabilities, distant from each other according to the glitch 
threshold previously introduced, which are added. A simple example of carry ripple 
adder is illustrated in figure 7. 

3000 

2500 

~ 2000 ... 
! 
c 1500 
0 

om 
c. 
:~ 1000 
1:1 

500 

-·-Ripple carry 

- .... c..,.._- Carry Select 2 

-·-Carry Select 3 

-~o~- Brent & Kung 

-·-Sklanski 

--j6!r-- Han & Carlson 

~M~~m~oomo~NMV~m~oomo~NMV~m~mmo~N 
~~~~~~~~~~NNNNNNNNNNMMM 

bit 

Figure 8 : HSPICEIBDD Power dissipation vs. number of bits 

A switch is represented by a square, coloured according to its occurrance time. Its 
probability is a function of the input switching probabilities Pi and the 
sensitivities Si of the cells yet encountered. The authors propose a gate level 
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estimator based on these remarks in [Lau96]. It gives close dissipation estimation 
to an exhaustive simulation in classical combinational circuits. 

The automatic simulation is consistent with the analytical model previously 
exposed which rests on unit delay and capacitance, and with a power dissipation 
function linear with respect to the fanout capacitances. However, technology 
mapped adders have realistic delays as well as a more complex dissipation model at 
each switching, including for instance the charging of internal capacitances. As a 
consequence, we built, at transistor level, and simulated a ~-cell with HSPICE. 
The submicron technology used is A TMEL ES2 ECPD07. Once the elementary 
cell is fully characterised, the synthesis tool estimates the total power dissipation 
of classical adder architectures. These estimate are presented in figure 8. 

8. CONCLUSION 

In this paper the most frequent adder architectures were compared from the activity, 
delay and cost points of view. The originality of the approach is that the estimation 
of the activity was achieved analytically by implicitly exhaustive enumeration of 
all vectors. This is possible thanks to the properties of the ~ operator. Redundant 
transitions were taken into account, and a redundant to total power ratio was 
derived. Finally, glitch filtering is taken into account by feeding the BDD tool with 
technology driven HSPICE simulation results. 

In this article it is assumed that all the inputs are ready at the same time, and that 
all the outputs are desired at the same time. This is not always the case, especially 
if an adder is associated with other operators that have their own delays. For 
example in multipliers or dividers, the inputs arrival times are accessible to 
simulation, thus different adder architectures adapted to these conditions should be 
examined in order to match the best power-delay-cost trade off. 
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