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Abstract 
In this work a parallel architecture is proposed for VLSI implementation of a data­
flow algorithm for 20 boundary (or contour) detection. The algorithm works on the 
gradient image and uses a set of primitive paths to generate all possible contour 
paths on a neighborhood defined by a 5x5 window. The objective is to determine 
whether or not the neighborhood central pixel belongs to a continuous boundary 
line passing across the window. Test results show that one-pixel wide continuous 
boundary lines can be extracted using this algorithm. 
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1. INTRODUCTION 

Polygonal modeling has traditionally been one of the most popular methods for 
shape representation and still is largely used in applications where shape 
recognition of two-dimensional objects or surfaces is needed [1, 2]. 
Currently a lot of attention is paid to image sequence and video coding due to the 
increasing importance of high speed multimedia applications [1-3]. In fact, model­
based image coding is a powerful technique for compressing head-shoulder 
images, as in the MPEG-4 sequences imposing very low bitrate coding. In image 
coding, compression ratio and reconstruction quality are two issues of great 
importance. The use of adaptive coding based on appropriate image models is one 
of the most effective approaches to achieve these goals simultaneously. So, 
polygonal modeling is an important tool for these intelligent coding schemes, 
where the coder searches each image for objects which are identified according to 
some underlying objects models [4]. Large compression ratios result since once an 
object is identified, it can be tracked through a number of frames in a sequence and 
only subsequent changes in the model parameters (shape, motion, etc.) need to be 
transmitted. 
Polygonal models have the advantage of being a local representation, i.e., they 
preserve local shape features therefore allowing for object recognition, even in the 
presence of partial occlusion of objects. Additionally, they can be made insensitive 
to rotation, translation, and scaling, (a requirement for any practical recognition 
system) and are much less computationally expensive than higher-order 
polynomial approximations. As a drawback, the representation provided by 
polygonal models is usually not as compact as those based on global features such 
as moments or transform descriptors. A more complete analysis of the issues 
involved in those and other forms of shape representation has been made by 
Pavlidis [10]. Further details about the advantages of polygonal modeling can also 
be found in the literature [8,9]. 
In order to operate properly, algorithms for polygonal modeling of 2D objects 
require shapes with continuous and well defined boundaries. Generation of this 
boundary is the objective of the preprocessing phase to which the original image of 
the object to be modeled is normally submitted. As part of a typical preprocessing 
operation initially a discrete gradient operator is employed to generate a gradient 
image, upon which boundary tracking segmentation can be performed [10]. 
Most of the work so far reported on algorithms for boundary extraction on digital 
images assume a sequential software implementation, either on a general purpose 
computer or on an specialized signal processor. This type of approach is 
inadequate if real-time high speed operation is desired, due to the computationally 
intensive character of low-level image processing. Applications such as vision 
systems for mobile robots or video compression may require 512x512 image 
frames with 256 gray levels (8 bits) to be processed at a rate of 30 frames per 
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second. Real-time operation at this rate would require a processing time of 120 
nanoseconds for each image element or pixel. This performance figure becomes 
clearly out of reach for any sequential general purpose computer when one 
considers the amount of multiplications, additions and other operations usually 
involved in each output pixel computation. The obvious solution is to design 
parallel algorithms and architectures which can be implemented in specialized 
integrated circuits called ASIC's using CAD-based VLSI design tools. 
The availability of very powerful and easy to use VLSI design tools has fueled the 
development of several real-time image processing systems, particularly for low­
level feature detection and extraction applications. Bhanu et al. have designed and 
implemented a real-time segmentation processor which makes use of a gradient 
relaxation algorithm (iterative) to assign pixels into classes, based on their gray 
value and the gray values of neighboring pixels [11]. Ranganathan et al. have 
proposed a VLSI architecture which convolves images with eight 15x15 kernels in 
order to implement a technique for corner detection which is based on the concept 
of half-edge and on the first derivative of Gaussian [12]. Cheng et al. utilized the 
theory of dynamic programming to develop a backtracking method for curve 
detection and designed an associated VLSI architecture which solves the problem 
in O(n) time, where n is the length of the curve to be found [13]. All these 
architectures make use of pipelining and parallelism in order to achieve real-time 
performance. 
In this work a parallel architecture is proposed for VLSI implementation of a data­
flow algorithm for 2D boundary (or contour) detection. The algorithm works on 
the gradient image and uses a set of primitive paths to generate all possible contour 
paths on a neighborhood defined by a 5x5 window. The objective is to determine 
whether or not the neighborhood central pixel belongs to a continuous boundary 
line passing across the window. 
The rest of the work is organized as follows: Section 2 describes the algorithm for 
boundary detection. Section 3 shows results obtained by simulating actual circuit 
operation. Section 4 estimates hardware implementation cost. Finally, conclusions 
are drawn in section 5. 

2 ALGORITHM 

For hardware implementation of image processing, the most performant algorithms 
are those of the data-flow type. The image pixels come in serially, pixel by pixel, 
one line after the other. For every incoming image pixel, a data-flow algorithm 
produces one output pixel. The output pixel is determined by a function of the 
corresponding input pixel and neighboring pixels. These pixels form a window. 
Apart from the function, the performance and the data storage requirements of 
data-flow algorithms depend on the size of the window, as shown in table 1. The 
storage size and delay times are for images with 8 bits per pixel, 512 pixels per 
line, 512lines per image, 30 images per second. 
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The performance characteristics of data-flow algorithms makes them the best 
choice for real time image processing. 
The boundary detection algorithm proposed in this paper consists of the first three 
processing stages shown in figure 1. Each stage will be described in detail in the 
following paragraphs. 
Table I Window size and performance of data-flow algorithms 

Window storage space image 

pixel x pixel required (bits) delay (JIS) 

2x2 I line+ 2 pixels= 4112 1 pixel= 0.1 

3x3 2lines + 3 pixels= 8216 I line+ 2 pixels= 61.7 

Sx5 4lines + 5 pixels = 16424 2lines + 4 pixels= 123.3 

oriliDIIimqe .,-~mqe flnllxwderiJnace lleallldbonler lmqe - poillll 
wtlhHUJb-YIIue 

Figure 1 The image processing stages of the proposed algorithm 

2.1 Spline Gradient 

In a 5x5 matrix we define four masks for the Spline gradient based on the one­
dimensional spline coefficients obtained as described in [14]. The two-dimensional 
spline gradient g, is obtained from the horzontal, vertical, and diagonal gradients 
g,x, g,ro g,1, gn, respectively: 

gp =3(Jgpxl+lgpyi)+2QgPJI+IgP21) O> 
One of the main advantages of this gradient operator is that it is less sensitive to 
noise. This comes from the fact that the Spline gradient uses a 5x5 window and 
determines its result from the mean value of horizontal, vertical, and diagonal 
derivatives. Apart from that the boundaries are sharper, making the gradient values 
of the contour pixels significantly higher than those in the neighborhood. That 
happens because the spline interpolation best approximates the discrete points to 
the original function. 
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2.2 Local Maximum and Pathfinder I 

This phase works with two criteria. If both criteria are validated, the center pixel of 
the window becomes the output pixel, otherwise the output pixel becomes zero. 
Note that the output image at this phase is not a binary image. It has as many gray 
levels as the input image. 
The local maximum criterion is based on a 5x5 window. A simple criterion would 
be that if the center pixel were among the five biggest values in the window it 
would be chosen as a contour pixel [15]. However, this condition is insufficient 
because in the cases where many pixels had the same gray level value the center 
pixel had its significance lowered. Therefore, there should be some kind of weight 
assigned to the center pixel in order to help make the decision. This weight is 
defined as: 

{
0 , ifNs =0 

W= 
2Ns + N. + Pc , otherwise 

where, W = weight of center pixel; 
N, = number of pixels smaller than the center pixel; 
N, = number of pixels equal to the center pixel; 
Pc =gray level value of the center pixel (0 :S Pc < 32). 

(2) 

The multiplication of N, by 2 is used to emphasize the importance of this term in 
comparison to N,. 
The local maximum criterion is then validated if the center pixel value is greater 
than 13% of the full scale value and if its weight is bigger than a threshold value, 
which was found empirically to be 30. 
The pathfinder criterion also works on a 5x5 window. This criterion determines 
whether the center pixel of the window belongs to a continuous border line passing 
across the window. To accomplish this, all possible border paths across a 3x3 
window, shown in figure 2a inside the squares formed by the pixels in the 
positions I, together with their possible continuations, represented by the positions 

2 and 3, must be checked. The possible paths are derived from the primitives in 
figure 2a by mirror and rotation operations. Eliminating repetitive patterns, a total 
of 44 distinct paths was obtained. Note that the paths in figure 2a do not contain 
any sharp corners, which would difficult subsequent border tracking. 
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Figure 2 Primitive paths for pathfinder I (a) and pathfinder II (b) 

The pathfinder criterion is validated if the center pixel belongs to two of the eight 

paths with the largest values. The value of a path is determined by the weighted 
sum of its pixel values: 

{
M 2 + M 3 +_g_ IP; , if condition 

Ws== 0 2 Npl i=l 

, otherwise 

(3) 

where, Ws =Weighted sum; 
NP1 = Number of positions I in the 3x3 path; 
P; = Gray level value of the t pixel in position I; 
M. = Maximum value among the pixels in position n. 

condition= p;'s and M:s must be all bigger than 13% of the full gray scale value. 
Note that Ws is always an integer value. 

2.3 Pathfinder II 

The pathfinder II algorithm uses only paths containing at least 3 pixels in the 

positions I. These 28 paths were derived from the primitives in figure 2b applying 

the same technique used in pathfinder I. 
The same equation (3) is used to calculate the weighted sum for each path. Then 

the two highest results, called here W,1 and W,2 associated to the masks m1 and m2, 

respectively, are determined. If the highest sum, always assumed to be W,I' is equal 

to zero then the center pixel of the window does necessarily not belong to the path, 

and the output pixel is set to 0. 
A second condition to be analyzed is when W,1 and W,2 have an equal value and m1 

and m2 are adjacent (adjacent paths are those which are different from one another 
by just one pixel). This situation is considered a stalemate, because the two 
different pixels in each path could be equally labeled contour pixels. This 
stalemate is resolved with a simple logic. If there is a vertical stalemate, this logic 
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keeps the pixel on top and discards the other one. If the stalemate is horizontal, the 
pixel on the left is kept and the one on the right is discarded. 
In the absence of stalemate, if m1 contains a position 1 in its center the output is set 
to 1, else it is set to 0. 
This criterion assures that only one of the pixels of the different paths is set to 1, 
providing a one pixel wide border line. In the examples shown in section 3, the 
stalemate situation occurs at about 4% of the border pixels. 

3. SIMULATIONRESULTS 

Operation of the border detection hardware implementation was simulated by a 
program written in C language. The choice of C is justified by the fact that it 
allows fast simulations at functional level providing fast turn-around time for 
debugging and parameter adjustment. A hardware description language like 
Verilog or VHDL runs slower and is more complicated to debug. 
Images of two objects were used to validate the algorithm: An arch-shaped toy 
block, figure 3 and a screwdriver, figure 4. 
The toy block is made of 64x64 pixels. 32 gray levels (5 bits) are used. 
Figure 3a shows a shape with sharp contrast. The gradient's figure 3b reaches 
strong gray level values all around the border and the contour line is relatively 
thin. This makes the task of border extraction rather easy, resulting in a perfectly 
continuous line no more than one pixel wide in figure 3d. 

a b 

c d 

Figure 3 Original image oftoy block (a), gradient image (b), first border( c) and 
second border (d). 
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The screwdriver is made of220xl28 pixels. 32 gray levels (5 bits) are used. 

Figure 4 Original image of the screwdriver (a) and second border (b). 

In comparison to the toy block, the screwdriver in figure 4a has poor contrast, 
mainly due to its round shape at perpendicular sections of the image plane· and 
because of the shadow caused by light that falls onto the image plane in angle from 
the left side. To avoid the shadow, the light source should be located next to the 
camera. The contrast is particularly bad at the tip of the screwdriver and at the top 
of the handle. Even though, the results obtained after the image was run through 
the algorithm were very good, except for a two pixel wide border point located in 
the upper bottom comer of the handle, zoomed in figure 4b. 
Still, the quality of the contour in figure 4b is clearly sufficient for a subsequent 
vertex extraction procedure [16]. 

a 

b 
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4 HARDWARE IMPLEMENTATION 

This section will show how the operators used in the algorithm described in 
section 3 are implemented in hardware. An estimation of chip area required for a 
3-metal 0.5J.Lm technology is also given. 
The operators described in the following also use the faster system clock to reduce 
hardware costs by a 5 stage pipelining. 
The first operator is the gradient operator. It is divided in two parts. The first part 
is used in the first 4 pipelining stages to calculate the absolute values of the 4 one­
dimensional gradient values gX' gY' gPl' gP2. During the last stage, the weighted sum 
according to equation (1) is calculated in the second part. 
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~-------------------------~~L----------~ Figure S Schematic for determination of parameters 

The implementation uses off-chip RAM for the line memory (see table 1). Only 
the registers required for storing the pixels of one window are on the chip. In each 
pixel clock cycle, one new window column consisting of 5 pixels is loaded from 
the off-chip RAM. The pixels are loaded serially pixel by pixel using a system 



36 Part One VLSI for Video and Image Processing 

clock that divides the pixel clock cycle by 5 in order to reduce the number of pins 
of the circuit is thus reduced. 
The second operator is the local maximum operator. In each stage, 5 pixel values 
are compared to the center pixel and the number of pixel values bigger than the 
center pixel is accumulated across the stages (figure 5). The accumulated value is 
compared to the threshold value in the first stage of the next pixel clock cycle, 
increasing the output image latency by the time corresponding to one pixel clock 
cycle. 
The third operator is pathfinder I. As there are 44 paths, equation (3) (see figure 6) 
must be evaluated 9 times in each stage. In the same circuit, the 9 resulting weights 
are sorted and the 8 highest weights are stored. In the following pipelining stages, 
these 8 weights are sorted together with 9 new weights. In this manner, the 8 
highest weights of all 44 paths are available and the final result can be easily 
obtained. 

A 

+ B S 

4 X II 

Figure 6 Schematic of equation (3) 

The fourth operator, pathfinder II, works in a similar way to pathfinder I. 
However, the number of paths weights to calculate and to sort is smaller. 
Note that all the four operators can be implemented on the same chip. Two 
external pins can be used to select the output of the chip in order to program the 
function that the chip will actually perform. This option allows to use three 
identical circuits with only 16 pins each to implement all the operations needed for 
the algorithm. 
A transistor count and chip surface estimation is given in table 2. 
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Table 2 Transistor count and chip area 

operator number of transistors) chip area ( mm2) 

gradient 5323 0.59 

local maximum 1484 0.16 

pathfinder I 27252 3.03 

pathfinder// 15528 1.73 

total 49587 5.51 

5 CONCLUSION 

The simulation results show that the hardware implementation of the proposed 
algorithm is capable of producing good results even for images with poor contrast. 
In both cases a continuous, well defined, one pixel wide contour was extracted by 
the circuit, which will ease considerably the task of the vertex extraction algorithm, 
last stage of the polygonal modeling operation. 
A data-flow solution for the vertex extraction procedure is rather more complicated 
than a sequential one. Sequential algorithms progress pixel by pixel along the 
shape contour, testing each new pixel in order to detect vertex for the polygonal 
approximation. A list of the boundary points has to be available beforehand, which 
precludes its use on high-speed real-time operation. In the other hand, data-flow 
algorithms work on the image as it is being acquired line by line. Therefore, they 
represent the only possible solution if real-time performance is to be achieved. 
However, data-flow algorithms look at the image through a rectangular window of 
a given size, 5x5 or 8x8, for instance. This fact makes it difficult to determine to 
which shape a contour segment belongs, when more than one object (or shapes) 
are present in the image scene being modeled. A compromise solution to the above 
problem may be a hybrid architecture, where vertex detection would be followed 
by a non data-flow procedure in charge of assigning detected vertex to objects. 
The development of an algorithm for VLSI implementation of the complete 
polygonal modeling procedure is presently under way. Once it is completed and 
integrated with the circuit described in this paper, a complete high-speed system 
for polygonal modeling of 2D shapes will be available, capable of performing at 
the rates required for real-time applications. 
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