
3

VLSI Implementation of Contour
Extraction from Real Time Image
Sequences

Elmar Melcher, Lirida Naviner, Joiio Marques de Carvalho,
Jean Franfois Naviner, Ricardo A. S. Moreira, Yuri de Mello
Villar, Marcos Morais

Universidade Federa da Paraiba- DEE- CCT
58.109-970 Campina Grande- PB, Brasil
elmar@dee.ufpb.br
tel: +55 83 310 1357
fax: +55 83 3101418

Abstract
In this work a parallel architecture is proposed for VLSI implementation of a data­
flow algorithm for 20 boundary (or contour) detection. The algorithm works on the
gradient image and uses a set of primitive paths to generate all possible contour
paths on a neighborhood defined by a 5x5 window. The objective is to determine
whether or not the neighborhood central pixel belongs to a continuous boundary
line passing across the window. Test results show that one-pixel wide continuous
boundary lines can be extracted using this algorithm.

Keywords
Contour Extraction, Robot Vision, MPEG4

VLSI: lnlegrated Systems on Silicon R. Reis & L. Claesen (Eds.)
0 IRP 1997 Published by Chapman & Hall

28 Part One VLS/ for Video and Image Processing

1. INTRODUCTION

Polygonal modeling has traditionally been one of the most popular methods for
shape representation and still is largely used in applications where shape
recognition of two-dimensional objects or surfaces is needed [1, 2].
Currently a lot of attention is paid to image sequence and video coding due to the
increasing importance of high speed multimedia applications [1-3]. In fact, model­
based image coding is a powerful technique for compressing head-shoulder
images, as in the MPEG-4 sequences imposing very low bitrate coding. In image
coding, compression ratio and reconstruction quality are two issues of great
importance. The use of adaptive coding based on appropriate image models is one
of the most effective approaches to achieve these goals simultaneously. So,
polygonal modeling is an important tool for these intelligent coding schemes,
where the coder searches each image for objects which are identified according to
some underlying objects models [4]. Large compression ratios result since once an
object is identified, it can be tracked through a number of frames in a sequence and
only subsequent changes in the model parameters (shape, motion, etc.) need to be
transmitted.
Polygonal models have the advantage of being a local representation, i.e., they
preserve local shape features therefore allowing for object recognition, even in the
presence of partial occlusion of objects. Additionally, they can be made insensitive
to rotation, translation, and scaling, (a requirement for any practical recognition
system) and are much less computationally expensive than higher-order
polynomial approximations. As a drawback, the representation provided by
polygonal models is usually not as compact as those based on global features such
as moments or transform descriptors. A more complete analysis of the issues
involved in those and other forms of shape representation has been made by
Pavlidis [10]. Further details about the advantages of polygonal modeling can also
be found in the literature [8,9].
In order to operate properly, algorithms for polygonal modeling of 2D objects
require shapes with continuous and well defined boundaries. Generation of this
boundary is the objective of the preprocessing phase to which the original image of
the object to be modeled is normally submitted. As part of a typical preprocessing
operation initially a discrete gradient operator is employed to generate a gradient
image, upon which boundary tracking segmentation can be performed [10].
Most of the work so far reported on algorithms for boundary extraction on digital
images assume a sequential software implementation, either on a general purpose
computer or on an specialized signal processor. This type of approach is
inadequate if real-time high speed operation is desired, due to the computationally
intensive character of low-level image processing. Applications such as vision
systems for mobile robots or video compression may require 512x512 image
frames with 256 gray levels (8 bits) to be processed at a rate of 30 frames per

VLSI implementation of contour extraction 29

second. Real-time operation at this rate would require a processing time of 120
nanoseconds for each image element or pixel. This performance figure becomes
clearly out of reach for any sequential general purpose computer when one
considers the amount of multiplications, additions and other operations usually
involved in each output pixel computation. The obvious solution is to design
parallel algorithms and architectures which can be implemented in specialized
integrated circuits called ASIC's using CAD-based VLSI design tools.
The availability of very powerful and easy to use VLSI design tools has fueled the
development of several real-time image processing systems, particularly for low­
level feature detection and extraction applications. Bhanu et al. have designed and
implemented a real-time segmentation processor which makes use of a gradient
relaxation algorithm (iterative) to assign pixels into classes, based on their gray
value and the gray values of neighboring pixels [11]. Ranganathan et al. have
proposed a VLSI architecture which convolves images with eight 15x15 kernels in
order to implement a technique for corner detection which is based on the concept
of half-edge and on the first derivative of Gaussian [12]. Cheng et al. utilized the
theory of dynamic programming to develop a backtracking method for curve
detection and designed an associated VLSI architecture which solves the problem
in O(n) time, where n is the length of the curve to be found [13]. All these
architectures make use of pipelining and parallelism in order to achieve real-time
performance.
In this work a parallel architecture is proposed for VLSI implementation of a data­
flow algorithm for 2D boundary (or contour) detection. The algorithm works on
the gradient image and uses a set of primitive paths to generate all possible contour
paths on a neighborhood defined by a 5x5 window. The objective is to determine
whether or not the neighborhood central pixel belongs to a continuous boundary
line passing across the window.
The rest of the work is organized as follows: Section 2 describes the algorithm for
boundary detection. Section 3 shows results obtained by simulating actual circuit
operation. Section 4 estimates hardware implementation cost. Finally, conclusions
are drawn in section 5.

2 ALGORITHM

For hardware implementation of image processing, the most performant algorithms
are those of the data-flow type. The image pixels come in serially, pixel by pixel,
one line after the other. For every incoming image pixel, a data-flow algorithm
produces one output pixel. The output pixel is determined by a function of the
corresponding input pixel and neighboring pixels. These pixels form a window.
Apart from the function, the performance and the data storage requirements of
data-flow algorithms depend on the size of the window, as shown in table 1. The
storage size and delay times are for images with 8 bits per pixel, 512 pixels per
line, 512lines per image, 30 images per second.

30 Part One VLSI for Video and Image Processing

The performance characteristics of data-flow algorithms makes them the best
choice for real time image processing.
The boundary detection algorithm proposed in this paper consists of the first three
processing stages shown in figure 1. Each stage will be described in detail in the
following paragraphs.
Table I Window size and performance of data-flow algorithms

Window storage space image

pixel x pixel required (bits) delay (JIS)

2x2 I line+ 2 pixels= 4112 1 pixel= 0.1

3x3 2lines + 3 pixels= 8216 I line+ 2 pixels= 61.7

Sx5 4lines + 5 pixels = 16424 2lines + 4 pixels= 123.3

oriliDIIimqe .,-~mqe flnllxwderiJnace lleallldbonler lmqe - poillll
wtlhHUJb-YIIue

Figure 1 The image processing stages of the proposed algorithm

2.1 Spline Gradient

In a 5x5 matrix we define four masks for the Spline gradient based on the one­
dimensional spline coefficients obtained as described in [14]. The two-dimensional
spline gradient g, is obtained from the horzontal, vertical, and diagonal gradients
g,x, g,ro g,1, gn, respectively:

gp =3(Jgpxl+lgpyi)+2QgPJI+IgP21) O>
One of the main advantages of this gradient operator is that it is less sensitive to
noise. This comes from the fact that the Spline gradient uses a 5x5 window and
determines its result from the mean value of horizontal, vertical, and diagonal
derivatives. Apart from that the boundaries are sharper, making the gradient values
of the contour pixels significantly higher than those in the neighborhood. That
happens because the spline interpolation best approximates the discrete points to
the original function.

VLSI implementation of contour extraction 31

2.2 Local Maximum and Pathfinder I

This phase works with two criteria. If both criteria are validated, the center pixel of
the window becomes the output pixel, otherwise the output pixel becomes zero.
Note that the output image at this phase is not a binary image. It has as many gray
levels as the input image.
The local maximum criterion is based on a 5x5 window. A simple criterion would
be that if the center pixel were among the five biggest values in the window it
would be chosen as a contour pixel [15]. However, this condition is insufficient
because in the cases where many pixels had the same gray level value the center
pixel had its significance lowered. Therefore, there should be some kind of weight
assigned to the center pixel in order to help make the decision. This weight is
defined as:

{
0 , ifNs =0

W=
2Ns + N. + Pc , otherwise

where, W = weight of center pixel;
N, = number of pixels smaller than the center pixel;
N, = number of pixels equal to the center pixel;
Pc =gray level value of the center pixel (0 :S Pc < 32).

(2)

The multiplication of N, by 2 is used to emphasize the importance of this term in
comparison to N,.
The local maximum criterion is then validated if the center pixel value is greater
than 13% of the full scale value and if its weight is bigger than a threshold value,
which was found empirically to be 30.
The pathfinder criterion also works on a 5x5 window. This criterion determines
whether the center pixel of the window belongs to a continuous border line passing
across the window. To accomplish this, all possible border paths across a 3x3
window, shown in figure 2a inside the squares formed by the pixels in the
positions I, together with their possible continuations, represented by the positions

2 and 3, must be checked. The possible paths are derived from the primitives in
figure 2a by mirror and rotation operations. Eliminating repetitive patterns, a total
of 44 distinct paths was obtained. Note that the paths in figure 2a do not contain
any sharp corners, which would difficult subsequent border tracking.

32 Part One VLSI for Video and Image Processing

•• :o ••• •• .D :E:J
i =~. tiJ

••• •• • ••
i =~. :~

••• •• • ••

·l!:J ·o =u
•• ••• • ••

w·u =u
•• • • • • ••

e Proioion I e P• .. ioion 2 e Pt'«ilion 3 e P<'«iliun I • P05ilion 2 • Posninn 3

a b

Figure 2 Primitive paths for pathfinder I (a) and pathfinder II (b)

The pathfinder criterion is validated if the center pixel belongs to two of the eight

paths with the largest values. The value of a path is determined by the weighted
sum of its pixel values:

{
M 2 + M 3 +_g_ IP; , if condition

Ws== 0 2 Npl i=l

, otherwise

(3)

where, Ws =Weighted sum;
NP1 = Number of positions I in the 3x3 path;
P; = Gray level value of the t pixel in position I;
M. = Maximum value among the pixels in position n.

condition= p;'s and M:s must be all bigger than 13% of the full gray scale value.
Note that Ws is always an integer value.

2.3 Pathfinder II

The pathfinder II algorithm uses only paths containing at least 3 pixels in the

positions I. These 28 paths were derived from the primitives in figure 2b applying

the same technique used in pathfinder I.
The same equation (3) is used to calculate the weighted sum for each path. Then

the two highest results, called here W,1 and W,2 associated to the masks m1 and m2,

respectively, are determined. If the highest sum, always assumed to be W,I' is equal

to zero then the center pixel of the window does necessarily not belong to the path,

and the output pixel is set to 0.
A second condition to be analyzed is when W,1 and W,2 have an equal value and m1

and m2 are adjacent (adjacent paths are those which are different from one another
by just one pixel). This situation is considered a stalemate, because the two
different pixels in each path could be equally labeled contour pixels. This
stalemate is resolved with a simple logic. If there is a vertical stalemate, this logic

VLSI implementation of contour extraction 33

keeps the pixel on top and discards the other one. If the stalemate is horizontal, the
pixel on the left is kept and the one on the right is discarded.
In the absence of stalemate, if m1 contains a position 1 in its center the output is set
to 1, else it is set to 0.
This criterion assures that only one of the pixels of the different paths is set to 1,
providing a one pixel wide border line. In the examples shown in section 3, the
stalemate situation occurs at about 4% of the border pixels.

3. SIMULATIONRESULTS

Operation of the border detection hardware implementation was simulated by a
program written in C language. The choice of C is justified by the fact that it
allows fast simulations at functional level providing fast turn-around time for
debugging and parameter adjustment. A hardware description language like
Verilog or VHDL runs slower and is more complicated to debug.
Images of two objects were used to validate the algorithm: An arch-shaped toy
block, figure 3 and a screwdriver, figure 4.
The toy block is made of 64x64 pixels. 32 gray levels (5 bits) are used.
Figure 3a shows a shape with sharp contrast. The gradient's figure 3b reaches
strong gray level values all around the border and the contour line is relatively
thin. This makes the task of border extraction rather easy, resulting in a perfectly
continuous line no more than one pixel wide in figure 3d.

a b

c d

Figure 3 Original image oftoy block (a), gradient image (b), first border(c) and
second border (d).

34 Part One VLS/ for Video and Image Processing

The screwdriver is made of220xl28 pixels. 32 gray levels (5 bits) are used.

Figure 4 Original image of the screwdriver (a) and second border (b).

In comparison to the toy block, the screwdriver in figure 4a has poor contrast,
mainly due to its round shape at perpendicular sections of the image plane· and
because of the shadow caused by light that falls onto the image plane in angle from
the left side. To avoid the shadow, the light source should be located next to the
camera. The contrast is particularly bad at the tip of the screwdriver and at the top
of the handle. Even though, the results obtained after the image was run through
the algorithm were very good, except for a two pixel wide border point located in
the upper bottom comer of the handle, zoomed in figure 4b.
Still, the quality of the contour in figure 4b is clearly sufficient for a subsequent
vertex extraction procedure [16].

a

b

VLSI implementation of contour extraction 35

4 HARDWARE IMPLEMENTATION

This section will show how the operators used in the algorithm described in
section 3 are implemented in hardware. An estimation of chip area required for a
3-metal 0.5J.Lm technology is also given.
The operators described in the following also use the faster system clock to reduce
hardware costs by a 5 stage pipelining.
The first operator is the gradient operator. It is divided in two parts. The first part
is used in the first 4 pipelining stages to calculate the absolute values of the 4 one­
dimensional gradient values gX' gY' gPl' gP2. During the last stage, the weighted sum
according to equation (1) is calculated in the second part.

r---------------------------------------
1 N,(t-1)
I
I

Pc I
1------"7'-,
I
I
I

P,1
I

A c

A

+ N,
I B

I

s
N,(t) I

I
I
I

I 5]) I
I
I
I

pz I
A c

B s

A

p1 +
I A C B S /!.•
I N,Jt) I

I I
I B S I
I I
I I

~-------------------------~~L----------~ Figure S Schematic for determination of parameters

The implementation uses off-chip RAM for the line memory (see table 1). Only
the registers required for storing the pixels of one window are on the chip. In each
pixel clock cycle, one new window column consisting of 5 pixels is loaded from
the off-chip RAM. The pixels are loaded serially pixel by pixel using a system

36 Part One VLSI for Video and Image Processing

clock that divides the pixel clock cycle by 5 in order to reduce the number of pins
of the circuit is thus reduced.
The second operator is the local maximum operator. In each stage, 5 pixel values
are compared to the center pixel and the number of pixel values bigger than the
center pixel is accumulated across the stages (figure 5). The accumulated value is
compared to the threshold value in the first stage of the next pixel clock cycle,
increasing the output image latency by the time corresponding to one pixel clock
cycle.
The third operator is pathfinder I. As there are 44 paths, equation (3) (see figure 6)
must be evaluated 9 times in each stage. In the same circuit, the 9 resulting weights
are sorted and the 8 highest weights are stored. In the following pipelining stages,
these 8 weights are sorted together with 9 new weights. In this manner, the 8
highest weights of all 44 paths are available and the final result can be easily
obtained.

A

+ B S

4 X II

Figure 6 Schematic of equation (3)

The fourth operator, pathfinder II, works in a similar way to pathfinder I.
However, the number of paths weights to calculate and to sort is smaller.
Note that all the four operators can be implemented on the same chip. Two
external pins can be used to select the output of the chip in order to program the
function that the chip will actually perform. This option allows to use three
identical circuits with only 16 pins each to implement all the operations needed for
the algorithm.
A transistor count and chip surface estimation is given in table 2.

VLS/ implementation of contour extraction 37

Table 2 Transistor count and chip area

operator number of transistors) chip area (mm2)

gradient 5323 0.59

local maximum 1484 0.16

pathfinder I 27252 3.03

pathfinder// 15528 1.73

total 49587 5.51

5 CONCLUSION

The simulation results show that the hardware implementation of the proposed
algorithm is capable of producing good results even for images with poor contrast.
In both cases a continuous, well defined, one pixel wide contour was extracted by
the circuit, which will ease considerably the task of the vertex extraction algorithm,
last stage of the polygonal modeling operation.
A data-flow solution for the vertex extraction procedure is rather more complicated
than a sequential one. Sequential algorithms progress pixel by pixel along the
shape contour, testing each new pixel in order to detect vertex for the polygonal
approximation. A list of the boundary points has to be available beforehand, which
precludes its use on high-speed real-time operation. In the other hand, data-flow
algorithms work on the image as it is being acquired line by line. Therefore, they
represent the only possible solution if real-time performance is to be achieved.
However, data-flow algorithms look at the image through a rectangular window of
a given size, 5x5 or 8x8, for instance. This fact makes it difficult to determine to
which shape a contour segment belongs, when more than one object (or shapes)
are present in the image scene being modeled. A compromise solution to the above
problem may be a hybrid architecture, where vertex detection would be followed
by a non data-flow procedure in charge of assigning detected vertex to objects.
The development of an algorithm for VLSI implementation of the complete
polygonal modeling procedure is presently under way. Once it is completed and
integrated with the circuit described in this paper, a complete high-speed system
for polygonal modeling of 2D shapes will be available, capable of performing at
the rates required for real-time applications.

6 REFERENCES

[1] I. K. Sethi and N. Ramesh. Local association based recogmtton of two­
dimensional objects. Machine Vision and Applications, 5:265-276, 1992.

38 Part One VLSI for Video and Image Processing

[2] F. Stein and G. Medioni. Structural indexing: Efficient 2-d object recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(12): 1198-1204, 1992.

[3] Y. Q. Zhang and S. Zafar, Motion-compensated wavelet transform coding for
color video compression, IEEE Trans. Circuits Syst. Video Technol., 2, 285-
296, 1992

[4] T. Y. Tian, M. Shah, Motion estimation and segmentation, Machine Vision
and Applications, 9, 32-42, 1996

[5] M. Ghandari, S. De Faria, I. N. Gob, K. T. Tan, Motion compensation for very
low bitrate video, Signal Processing: Image Communication, 7, 567-580, 1995

[6] S. Zhang, M. Liang, J. A. Robinson, G. L. Greg, Motion coding of image
primitives, Signal Processing: Image Communication, 7, 457-469, 1995

[7]T. Pavlidis. Survey: A review of algorithms for shape analysis. Computer
Graphics and Image Processing, 7:243-258, 1978.

[8]N. Ayache and 0. D. Faugeras. HYPER: A new approach for the recognition
and positioning of two-dimensional objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(1):44-54, 1986.

[9]Y. Kurozumi and W. A. Davis. Polygonal approximation by the minimax
method. Computer Graphics and Image Processing, 19:248-264, 1982.

[lO]A. D. Marshall and R. R. Martin. Computer Vision, Models and Inspection.
World Scientific, London, U.K., 1992.

[11]B. Bhanu, B. L. Hutchings, and K. F. Smith. VLSI design and implementation
of a real-time image segmentation processor. Machine Vision and
Applications, 3:21-44, 1990.

[12]N. Ranganathan, S. J. Nichani, and R. Mehrotra. A VLSI architecture for half­
edge based comer detector. Machine Vision and Applications, 4:165-181,
1991.

[13]H. D. Cheng, C. Tong, andY. J. Lu. VLSI curve detector. Pattern Recognition,
23:35-50, 1990.

[14]E. Melcher, J. M. Carvalho, M. Barros, L. Naviner, J. F. Naviner et al. A novel
gradient operator suited for VLSI implementation of 2D shape recognition.
Proceedings of IX SBCCI, Simp6sio Brasileiro de Concepyiio de Circuitos
lntegrados, pages 321-332, Recife- PE, March 1996.

[15]E. Melcher, J. M. Carvalho, H. Mehrez, N. Vaucher, A. Hoelle, L. Naviner, J.
F. Naviner et al. A 2D shape boundary detection algorithm for VLSI
implementation. Proceedings of VII SIBGRAPI, Simp6sio Brasileiro de
Computayiio Gnillca e Processamento de Imagens, pages 191-196, Sao Carlos
- SP, October 1995

[16]E. Melcher, J. M. Carvalho, P. C. Cortez, L. Naviner, J. F. Naviner. A vertex
detection algorithm for VLSI implementation. Proceedings of IX SIBGRAPI,
Simp6sio Brasileiro de Computayiio Gnifica e Processamento de Imagens,
pages 367-368, Caxambu- MG, October 1996.

