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Abstract 

A second generation integrator based on the switching current memory cell 
reported in (Gon~alves, 1996 A) has been prototyped. The constant voltage 
switching of the integrator is well suited to low voltage applications, since it 
avoids the conduction gap of the switches as well as the signal dependent charge 
injection. A programmable biquad has been implemented using the proposed 
second generation integrator. The center frequency and the quality factor can be 
tuned independently. 
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1 INTRODUCTION 

Sampled data circuits have been intensively employed in VLSI chips. The 
switched capacitor (SC) technique has been the prevailing one over the last two 
decades. SC filters achieve a high accuracy with a low distortion. However, 
besides requiring a double poly process, the standard SC technique has the 
problem of increasing prohibitively the resistance of the switches for low voltage 
operation (Crols, 1994). If the supply voltage is lower than a certain minimum 
value, the switch resistance tends towards infinity (Crols, 1994 and Vittoz, 1994) 
for a range of the input level. This "conduction gap" is a critical limitation for SC 
filters. There are some special techniques to deal with this problem, such as the 
use of dedicated processes, on-chip generation of a voltage larger than the power 
supply and the switched op-amp (Crols, 1994). Of course, these techniques add 
some extra cost to the chip. 

In the late 1980s a new sampled data technique called switched current (SI) was 
introduced (Hughes, 1989 and 1990). The basic SI circuit is the current mode 
track and hold circuit shown in Figure 1(a). This technique presents the same 
limitation of SC circuits with respect to the conduction gap of the switches when 
operated at low supply voltages. To overcome the problem of the conduction gap 
of the switches, the SI mirror scheme shown in Figure 1(b) was presented in 
(Gon~alves, 1996 A). 

In this work we propose a second generation SI integrator. In the new integrator 
the switches operate at constant voltage, thus avoiding the conduction gap 
existing in conventional SI circuits. Moreover, the charge injected by the switches 
becomes signal-independent. The proposed integrator has been prototyped and 
programmed by using MOSFET-Only Current Dividers (MOCD) (Bult, 1992 and 
Gon~alves, 1996 A). A programmable integrator-based biquad which allows 
independent tuning of the center frequency and the quality factor has been 
implemented. 

(a) (b) 
Figure 1 (a)Conventional SI mirror. 

(b) SI mirror proposed in (Gon~alves, 1996 A). 
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2 SECOND GENERATION (SI) INTEGRA TOR 

The conventional second generation SI integrator (Hughes, 1989) is shown in 
Figure 2(a). In this paper, we propose a second generation SI integrator based on 
the SI mirror shown in Figure l(b). The integrator is made up of two switched 
current memory cells, as shown in Figure 2(b). Two available outputs are loA and 

los-
In the odd phase : 

loA (n) = a IA(n) = -a{ lin (n) + ls(n)} ( 1.a) 
while in the even phase 

ls(n-112) =ls(n-1) = - IA(n-1) 
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Figure. 2 - (a) Conventional second generation SI integrator. 

(b) Proposed second generation SI integrator. 
(c)Switching clock sequence. 

(l.b) 
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From equations (l.a) and (l.b) we can write 

loA (n) = -a lin (n) + loA(n-1) 
and 

los (n) = yliu(n-1) + los(n-1) 

where a =(WIL)MA/(W/L)M and y=(WIL)Ms/(WIL)M. 
W and L are the width and length of the channel, respectively. 
The z-transformation of (2.a) and (2.b) gives: 

1«1>0 
OA 1 
--=-a-~-

1«l>o 1-z-1 
IN 

l «l>o 
OB z-1 

--=y--=--:.-
1«1>0 1-z-1 
IN 

(2.a) 

(2.b) 

(3.a) 

(3.b) 

The timing of the clock waveforms is shown in Figure 2 (c). This switching 
sequence is necessary to avoid the loss of information during clock transition in a 
practical implementation. 
A lossy Sl integrator can be realized using the dotted feedback path shown in 
Figure 2 (b). The z-domain transfer functions are: 

(4.a) 

(4.b) 

The proposed second generation Sl integrator has the same sensitivities to 
transistor mismatches as the conventional Sl integrator (Hughes, 1989). 

3 EXPERIMENTAL RESULTS 

The Sl lossy integrator shown in Figure 2 (b) was implemented using operational 
amplifiers TL 082, MOS integrated transistors (W=48J.lm, L=l.2 J.lffi ), MOS 
switches CD 4007 and holding capacitors of 1.8nF. The loss factor(~) was set by 
a 6-bit MOSFET-Only Current Divider (MOCD) (Bult, 1992) whose scheme is 
shown in Figure3 (a). The 6-bit MOCD was integrated on a Sea of Transistors 
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(SoT) array, in a l.2J..Lm technology from ES2 (Gon~alves, 1996 B). The MOCD 
layout is shown in Figure 3 (b). 

v 
DO 

_L 

DUMP 
-----+--~~--------+---~---

SUM 

N-1 

~= L(<l>.b)i_;N 
i=O 

(a) 

(b) 
Figure 3 (a)Switched MOCD and Its Symbol. 

(b) MOCD layout on an SoT array. 

The MOCD input impedance is independent of both the digital word and the 
clock phase, thus providing a constant load impedance to the op amps. The 
MOCD is switched by "ANDing" the digital word and the even phase waveforms 
{ <l>e-b(~-t ...... b0 )} . The experimental time response of the integrator is shown in 
Figure 4 (a) (~=21164) for a 1.196kHz input signal. Note that the output signal 
does not present glitches. This important property is due to the constant voltage 
switching of the memory cell. The integrator has been simulated using the ASIZ 
program (Queiroz, 1993). The simulated and experimental frequency responses 
presented in Figure 4 (b) show excellent agreement. 
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(b) 
Figure 4- Experimental output (Fs=15kHz). 

(a) time response (~=21164). 
(b) Frequency responses, 
..... -Theoretical and _-Experimental. 
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4 SECOND ORDER SECTION 

As an application of the second generation SI integrator we built a biquadratic 
section, designed using backward LDI transformation (Silva-Martinez, 1989). 
This transformation leads to smaller frequency prewarping errors than the Euler 
transformations. The biquad circuit is presented in Figure 5. The center frequency 
c.o., and the quality factor Q can be controlled independently if the sampling 
frequency is much higher than the center frequency. In this case: 

0\,T::a (S.a) 
and 

Q ::1/f (5.b) 

A discrete prototype of the filter has been implemented and tested. In 
this experimental work, the transistors were replaced by resistors. The 
programmability of the filter was obtained by scaling the resistances. The unit 
resistor is 20k0, and the holding capacitors are C=lOOpF. The band pass filter 
has been programmed for center frequencies fo=150, 300 and 600Hz. The 
sampling frequency was 15kHz and the quality factor was equal to 8. The 
simulation and experimental results are shown in Fig 6. In the case of very low 
c.o., T, the error in the center frequency is large due to the variability of the 
resistors. To adjust this error we have to decrease the variability of the resistance 
or, for an IC implementation, increase the resolution of the MOCD. 

Figure 5 - Biquadratic section using second-generation SI integrator. 

The DC output caused by the op amp offsets is 

(6) 

where Goc is the low frequency gain (KuJa), 
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Yom is the op amp (A11) offset and 
A. Vis the offset mismatch{V0m(Au)-V0m (A12)}. 

The DC component of the output, as given by (6), is not large provided that the 
sampling frequency is not very much higher than the center frequency of the 
biquad or the offset mismatch is not high. Dynamic techniques (Vittoz, 1994) can 
also be employed to reduce the effects of the offset mismatch. 

·60 L---l..----l.-..l--L-.J-....J... ___ .._--L--'---' 
1 00 200 300 400 500 600 700 800 900 

f(Hz) 

Figure 6 Magnitudes of the bandpass filter, 
... -Theoretical and _-Experimental 
f0=150, 300 and 600Hz (Q=8 and fs=15kHz) 

5 CONCLUSIONS 

A second generation SI integrator has been reported in this work. The main 
advantage of the integrator presented here, when compared to the conventional 
one, is its applicability in low voltage circuits. Moreover, the constant voltage 
switching provides the circuit with a signal-independent charge injection. The 
programmability of the SI integrator has been tested using a digitally 
programmable MOCD. A bandpass SI filter has been implemented with discrete 
elements and tested at different center frequencies. 
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