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Abstract 
Security concerned users and organizations must be provided with the means 
to protect and control access to object-oriented software, especially with an 
exploding interest in designing/developing object-oriented software in Java, 
C++, and Ada95. Our user-role based security (URBS) approach has em­
phasized: a customizable public interface that appears differently at different 
times for specific users; security policy specification via a role hierarchy to or­
ganize and assign privileges based on responsibilities; and, extensible/reusable 
URBS enforcement mechanisms. This paper expands our previous work in 
URBS for an object-oriented framework by exploring software architectural 
alternatives for realizing enforcement, with the support of assurance and con­
sistency as a key concern for security policies that evolve and change. 
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1 INTRODUCTION 

How will assurance and consistency be attained during the definition and 
usage of an application's user-role based security policy, particularly in an 
object-oriented context that stresses change and evolution? This question is 
interesting, particularly with the explosive growth of object-oriented software 
development. While C++ has been a strong player since the late 1980s, Ada95 
and Java offer new opportunities that are targeted for diverse and signifi­
cant market segments. Security has and will continue to be a major concern, 
especially in Java, where security must be present to control the effects of 
platform-independent software. Health care systems require both high lev­
els of consistency and assurance, while simultaneously needing instant access 
to data in life-critical situations. In CAD applications, the most up-to-date 
specifications on mechanical parts must be available in a shared manner to 
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promote cooperation and facilitate productivity, making consistency and as­
surance important from a business perspective. 

Over the past few years, we have concentrated on discretionary access con­
trol, by defining a user-role based security (URBS) model that can be utilized 
in the design and development of object-oriented applications. The current 
public interface provided by most object-oriented languages is the union of all 
privileges (methods) needed by all users of each class. This allows methods 
intended for only specific users to be available to all users. For example, in a 
health care application (HCA), a method placed in the public interface to al­
low a Physician (via a GUI tool) to prescribe medication on a patient can't be 
explicitly hidden from a Nurse using the same GUI tool. Rather, the software 
engineer is responsible for insuring that such access does not occur, since the 
object-oriented programming language cannot inherently enforce the required 
security access. We have proposed a user-role definition hierarchy (URDH) to 
organize responsibilities and to establish privileges. Privileges can be assigned 
(can invoke a set of methods) or prohibited (cannot invoke a set of methods) 
to roles, thereby customizing the public interfaces of classes on a role-by-role 
basis. Our recent efforts have proposed extensible and reusable URBS en­
forcement mechanisms, with the goal to minimize the amount of knowledge 
a software engineer must have on URBS. Work on the object-oriented design 
model [5] and URBS [1, 4] have been published. 

This paper expands our previous work to include assurance and consistency, 
particularly since we are committed to a continued exploration of automati­
cally generated URBS enforcement mechanisms. Since class libraries may not 
offer a secure enough venue to insure high consistency and assurance, we have 
turned to the field of software architectures to investigate potential solutions 
to augment our previous enforcement mechanisms work [2, 3]. Software ar­
chitectures [6] expand traditional software engineering by looking at how the 
major components of a system can mesh and interact. This is especially rele­
vant for object-oriented software, where a class library for a problem is initially 
developed, with software engineers designing and building tools against that 
class library to implement the overall capabilities of an application. In such a 
model, the URBS enforcement mechanism must interact with both the class 
library and the tools for an application, to insure that users utilizing tools 
only access those portions of the application on which they have been granted 
access. In our approach, this translates to the users only being able to invoke 
methods that have been authorized to their respective roles. 

The remainder of this paper contains three sections. In Section 2, we discuss 
the critical need of consistency for security, as we seek to guarantee a level of 
assurance to designers and users utilizing an URBS/object-oriented approach. 
In Section 3, we propose and explore software architectural variants that can 
offer varying degrees of assurance and consistency, and critique the variants 
by comparing and contrasting their capabilities from multiple perspectives. 
Section 4 concludes this paper. 
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2 THE NEED FOR CONSISTENCY AND ASSURANCE 

Role-based security policies and enforcement mechanisms must have high con­
sistency in order to support a high assurance, secure system. The consistency 
must be maintained at all levels within the policy, including individual roles, 
role hierarchies, and end-user authorizations, to insure that their creation, 
modification, and deletion will always maintain the required URBS policy. 
Consistency is the foundation upon which high integrity and assured secure 
systems must be built. A set of techniques/tools must be provided that al­
low URBS policies to be analyzed and assured at all times during design, 
development, and maintenance of object-oriented software. 

In general, URBS policies are application dependent, and consequently, data 
security requirements vary widely from application to application. For exam­
ple, sensitive health care data must be both protected from unauthorized 
use while simultaneously be almost instantaneously available in emergency 
and life critical situations. On the other hand, in some design environments 
such as CAD, the most up-to-date specifications on mechanical parts must be 
available in a shared manner to promote cooperation. In this case, the URBS 
policies may not protect sensitive personal information, but may protect in­
formation which is equally sensitive from a business perspective. 

The ultimate responsibility for URBS policies is on the shoulders of the ap­
plication's management personnel and organization's data security officer. In 
order to have these critical policy makers take full advantage of URBS, tools 
and techniques must be made available. Design techniques are critical to allow 
software and security engineers to accurately and precisely specify their appli­
cations' functional and security requirements. To augment these techniques, 
a suite of tools is required, that can provide many different and diverse an­
alytical capabilities. These tools should automatically alert these engineers 
when potential conflicts occur during the creation or modification of roles, 
role hierarchies, and end-user authorizations, thereby heading off possible in­
consistencies. There must also be tools that provide on-demand analyses, al­
lowing engineers to gauge their realized software and/or security requirements 
against their specifications. Once the URBS policy has stabilized, the tools 
should provide the means to capture and realize it via a URBS enforcement 
mechanism that is automatically generated. The overriding intent is to fin­
ish with an object-oriented system that embodies a strong confidence with 
respect to the URBS policy and its attainment. 

The remainder of this section explores these and other issues from two 
perspectives. In Section 2.1, we examine the consistency issues that must be 
attainable as roles and dependencies among roles are created and modified. 
In Section 2.2, we investigate similar consistency issues as actual individuals 
(people) are authorized to play certain roles within an object-oriented appli­
cation or system. 
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2.1 Consistency for User Roles 

When a security engineer is creating and modifying user roles for an object­
oriented application or system, the consistency of the definition is critical in 
order to insure that the URBS policy is maintained. This is a time-oriented 
issue; changes to the policy are needed, especially in object-oriented situations, 
where evolution and extensibility are the norm. Regardless of the changes that 
are made, there must be assurance that the privileges of each user role are 
adequate to satisfy the functions of the user role. Moreover, the privileges must 
not exceed the required capabilities of the user role, to insure that misuse and 
corruption do not occur. In addition, since user roles are often interdependent 
upon one another (e.g., our approach uses a hierarchy), it may be necessary 
to examine their interactions to insure that privileges aren't being passed 
inadvertently from role to role, yielding a potentially inconsistent state. 

There are many different scenarios of evolution that must be handled. A 
security engineer may create new roles for a group of potential users or may 
create specific roles that are targeted for a particular end-user for a special 
assignment under a special circumstance. Each newly created role must be 
internally con6iatent so that no conflicts occur within the role itself. This 
is also true when a role is modified, which we term intra-role con6istency. 
For the object-oriented case, when privileges are assigned to each role, this 
assignment implicitly grants object-access privileges to the role holder (end­
user ). Such an assignment process utilizes the least-privilege principle which 
grants only necessary access privileges but no more. Only those privileges that 
are relevant to the user role are permitted. The policy is intentionally very 
conservative and restrictive, requiring that the URBS policy be validated by 
either the software engineer, security engineer, or both. In some organizations, 
there are dedicated security officers who possess the ultimate responsibility 
with respect to security requirements/policies for all applications. 

To complement the least-privilege principle, user roles often must satisfy 
mutual ezclusion conditions. Here, there must be a careful balance between 
permitting access to certain objects while simultaneously prohibiting access to 
other, special objects. For example, in HCA, an individual assigned the role of 
Pharmacist can read the prescription of a patient, update the number of refills 
after processing the prescription, but is explicitly prohibited from modifying 
the dosage or drug of the prescription. Thus, access and modification to some 
information is balanced against exclusion from other information. This strong 
mutual exclusion situation is clearly observed by the medical profession and is 
mandated by law. The URBS policy must ensure that security requirements 
such as these are not violated. In our approach, these mutual exclusions are 
supported in the URDH by allowing the security engineer to define prohibited 
methods, which provides the means to insure that the prohibited privileges of 
a role do not contradict with the assigned privileges. 

When one extrapolates to consider the interdependence of user roles, such as 
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within our URDH, the internal consistency as captured by least privilege and 
mutual exclusion, must be expanded to inter-role consistency. In any approach 
with interdependence among user roles, there is the potential for user roles to 
acquire privileges (both positive and negative privileges) from other roles. In 
addition, to provide versatile design tools to the security engineer, it should be 
possible to establish superior, inferior, and equivalence relationships among 
different user roles. These relationships must also be validated as privileges 
are defined, acquired, and change. From the perspective of the entire URDH, 
intra-hierarchy conaistency must be attained. 

To support a URBS definition process with least privilege and mutual exclu­
sion, the security engineer must be provided with a set of techniques and tools. 
There must be tools for meaningful comprehension on user roles, including all 
positive privileges, negative privileges, and relationships to other roles, sup­
porting intra-role consistency. Once any initial definition has occurred, there 
must be tools to support analyses for both internal and inter-role consistency. 
Automated analysis tools are necessary for an exhaustive search to follow 
all possible object access paths as required by all of the positive and negative 
privileges in the security definition. Conflicts discovered during the search will 
have to be resolved by the application's management personnel and security 
engineer. Feedback must be available to assist the human designer in arriving 
at a viable resolution to any conflicts or inconsistencies. Analyses are avail­
able in the ADAM environment for the application's content/context, and for 
its security requirements [4, 5]. Capabilities analyses allows one to review the 
permissions given to a chosen URDH node on an application's OTs, meth­
ods, and/or private data, supporting the intra-role or internal consistency of 
the URBS policy. Authorization analyses allows one to investigate which user 
roles have what kinds of access to an OT, a method, or a private data item, 
supporting inter-role and intra-hierarchy consistency. 

2.2 Consistency in End-User Authorization 

When considering consistency in end-user authorization, the assumptions of 
the policy must be clearly understood. For example, in any organization where 
end-users can be assigned multiple roles, there are two scenarios of permissible 
behavior against an application: 1. end-users can only play exactly one role at 
any given time; and, 2. end-users can play multiple roles concurrently at any 
given time. The first assumption does not cause significant problems, since for 
an end-user, only one role is active. As long as that role is intra-role and inter­
role consistent, there is no problem. However, the first assumption alone does 
not provide the needed security, but instead raises a number of interesting 
issues that are addressed by the second assumption. 

Namely, when an end-user may play multiple user roles simultaneously at 
any given time within an application and within the organization, a level of 
end-user consistency in introduced. In end-user consistency, the privileges of 
the multiple roles for are aggregated, which may introduce conflicts between 
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positive and negative privileges that span multiple roles. Further, when a new 
privilege is assigned to an established user role, with internal and inter-role 
consistency assured, it may still impact the end-user consistency. Automated 
tools are needed for the user authorization model in a secure data system so 
that no URBS policy violations are possible for any end-user in the organiza­
tion. Thus, the techniques/tools in Section 2.1 must be extended to consider 
end-user consistency, allowing the security engineer to focus on the conflicts 
of privileges for single end-users with multiple concurrent roles. 

Once intra-role, inter-role, and intra-hierarchy, and end-user consistency 
have been attained at a definitional level, there are two remaining require­
ments: (1) the defined URBS policy must be captured within the object­
oriented application; and (2) once captured, at both compile time and run­
time, the policy must be enforced. For both requirements, our previous work 
on URBS enforcement approaches (2, 3] is intended to support, in part, the 
consistency and assurance of the URBS policy. However, as we will see in 
Section 3, through software architectures we can provide a higher level of as­
surance regarding the guarantee that must be met concerning a defined URBS 
policy for an object-oriented application. 

3 SOFTWARE ARCHITECTURES AND URBS MECHANISMS 

To understand our efforts in this section, it is critical that we define our 
assumptions concerning the composition of object-oriented software. Basi­
cally, the crux of an object-oriented system is an underlying, shared object 
type/class library to represent the kernel or core functionality. Once such a 
library has been developed, other software engineers will use it to design and 
develop tools. Thus, end-users are not able to write programs to access data 
directly. Rather, end-users utilize tools that embody the apropos security code 
to enforce the required URBS policy. 

Software architectures [6] is an emerging discipline whose intent is to force 
software engineers to view software as a collection of interacting components. 
Interactions occur both locally (within each component) and globally (be­
tween components). In understanding interactions, the key consideration is 
to identify the communication and synchronization requirements which will 
allow the functionality of the system to be precisely captured. By taking 
a broader view of the problem definition process, software architectures per­
mits database needs, performance/scaling issues, and security requirements, to 
be considered. These considerations are critical as large-scale object-oriented 
software design, development, and usage becomes increasingly dominant. 

Our purpose in this section is to present and critique multiple software 
architectural variants for URBS enforcement of object-oriented software, with 
a constant focus on the attainment of consistency and assurance. Our intent 
in this section is to step back from our previous work (3] and consider the 
ways that these approaches can fit into an overall architectural scheme to 
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security enforcement for object-oriented software. Nevertheless, we start this 
section by briefly reviewing two of our previous approaches, since they set 
the context for our subsequent discussion related to software architectures. 
Then, we focus on two architectural styles: layered systems, which are most 
known from ISO layers; and, communicating processes, which underlie today's 
client/server paradigm. For both styles, multiple variants are presented and 
analyzed. The final section critiques the six different variants by comparing 
and contrasting their capabilities. 

3.1 UCLA and GEA Approaches 

The URDH-claaa-library approach {UCLA} employs inheritance to implement 
the enforcement mechanism by treating a class hierarchy for the URDH. For 
each URDH node, positive method access is based on the defined assigned 
methods. At runtime, a user's role guides the invocation of the appropri­
ate methods that are used to verify whether the user's role has the required 
permissions. From an evolvability perspective, as user roles are added, or as 
privileges are changed, only the URDH class library must be recompiled. 

The generic ezception approach {GEA} utilizes reusable template classes to 
realize a significant core of generic code that encapsulates the URBS policy. 
In GEA, when a method is invoked, the user role of the current user is checked 
to verify if access can be granted. If the user's role doesn't permit access, an 
exception is thrown, and the invoking method will not allow its functionality 
to be executed and affect instances. The code in the GEA security template 
is hidden from the software engineer. Software reuse is promoted since the 
template is reused by all classes that require URBS enforcement. 

3.2 Architectural Alternatives 

From a software architecture perspective, the URBS enforcement mechanism 
can be located in many different places and function in many different ways. 
It can be integral part of the OT/class library, to be automatically included 
when any tool utilizes a portion of the library. Alternatively, it may be an 
independent and self-contained library that is compiled with each application 
tool, similar in concept to a math library being included. Other choices could 
have a separately executing process through which all security requests must 
be handled. Regardless of the choice, the key underlying characteristics must 
be the attainment of high consistency and assurance. This must be balanced 
against the need to minimize the amount of knowledge a software engineer 
must have on URBS and to have an approach that is evolvable, since object­
oriented software and its security policy will change over time. 
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To standardize terminology regarding the assumptions on object-oriented 
systems given in the introduction of Section 3, we define: 

AppCL: Represents the shared, object-oriented class library for an application. 
SCL: Represents the security class library for an application that embodies 

URBS definition and enforcement. 
TCL: Represents the tool class library for individual tools (e.g., a patient GUI, 

an admissions subsystem, etc.) against the application. 

Note that when the Lis dropped from either AppCL or SCL, we are referring to 
an individual class of the library. The remainder of this section explores lay­
ered systems, and communicating processes and the client/server paradigm, 
as software architectural alternatives for URBS enforcement. For each alter­
native, multiple variants are presented and discussed, and then analyzed with 
respect to: the level of consistency and assurance that each variant provides 
for security concerned users; the dimensions of evolvability, which is critical 
since both the URBS policy and object-oriented software tend to be dynamic 
over time; and, the impact of the absence/presence of a persistent store. 

(a) Layered Systems 
Layered 1y1tema are a classic technique for software architectures, where layers 
of functionality are built upon one another to provide a controlled environment 
for access to information. In Figure 1, there are two layered system variants 
for URBS enforcement: LS1 an application-based approach on the left, and 
LS2 a class-based approach on the right. In both variants, security is at the 
level of the method invocation, which is processed by the SCL prior to its 
actual runtime call against an instance of a class in the AppCL. In either case, 
the SCL can be either the UCLA or GEA approach. In the LS2 variant, each 
individual class handles the method invocations that apply to its instances 
as they are received by the various tools. The difference is one of granularity. 
In LS1, security is managed at the application level overall, and once it has 
been determined that the tool can invoke a method, it is passed through to 
the involved instance or instances. In LS2, security is managed at the instance 
level only. This may cause a problem when instances refer to other instances, 
i.e., a security request by the tool involves multiple instances of either the 
same or different classes. 

From a consistency/assurance perspective, it appears that LS1 has the ad­
vantage, since all of the method invocations must pass forward through the 
security layer for authentication and all results must pass back for enforce­
ment. That is, when utilizing a tool and its various options, users end up 
calling various methods based on his/her UR and under the control of the 
tool. However, variant LS2's view of allowing each instance to maintain its 
own security is superior to LS1 from a software evolution perspective, since 
changes to the security policy of one class may not effect the policies of other 
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+-----------+ 
LS1 I SCL I 

+---+ I I +---+ 
ITCLl<------>I +-------+ l<-->ITCLI 
+---+ I I I I +---+ 

I I AppCL I I 
I I I I +---+ 

+---+ I +-------+ l<->ITCLI 
I TCL I<---> I I +---+ 
+---+ +-----------+ 

LS2 +--------+ 
+---+ SC I 
ITCLl<------>I +----+ I 
+---+ I IAppCI I 

+----->I +----+ I 
I +--------+ 
v 

••• etc ••• 

+--------+ 
+---+ I SC I 
ITCLl<----------------->I +----+ I 
+---+ +---+ I I AppC I I 

ITCLl<----->I +----+ I 
+---+ +--------+ 

Figure 1 Application-Based (LS1) and Class-Based (LS2) Approaches. 

classes. When a persistent store is included, LS1 has the edge, since all ac­
cesses must proceed via a common security layer. In LS2, there are potential 
concurrent access issues if some or all AppCs are connected to a database. 

(b} Communicating Processes - C/S Paradigm 
In the communicating proce66ea approach to URBS enforcement, a process­
oriented, client/server (C/S) paradigm is adopted. TCL, SCL, and AppCL are 
integrated into single and/ or multiple processes, resulting in a total of four 
different variants: CPl, CP2, CP3, and CP4. The variants differ in their num­
ber of processes and the grouping of the TCL, SCL, and/or AppCL into various 
processes. Note that for both CP1 and CP2, each SCL and/or AppCL represents 
the minimal subset needed by the tool/TCL to support its functionality and 
enforce its security policy. 

In Figure 2, variant CP1 is given, which is similar to LS1, except that each 
tool is compiled as a separate, standalone process. In this case, SCL and AppCL 
are analogous to a math library that is compiled when needed by the software. 
Functionally, within each process, TCL sends method invocations to SCL which 
in turn passes them through to AppCL according to the URBS policy. Results 
are passed back from AppCL to SCL, which may then filter the response before 
passing them back to TCL. Note that SCL and AppCL in each process represents 
those subsets of the class libraries needed by each tool, and that either UCLA 
or BEA can be the enforcement mechanism realized within SCL. 

+------+··----+-------+ +------+-----+-------+ +------+-----+-------+ 
I TCL1 I SCL I AppCL I I TCL2 I SCL I AppCL I I TCLn I SCL I AppCL I 
+------+-----+-------+ +------+-----+-------+ +------+-----+-------+ 

Figure 2 CP1: A Single Process, Non-C/S Approach. 

From a consistency/ assurance per.spective, it would be a requirement that 
each tool be compiled into a single process with SCL and AppCL included. Thus, 
the level of assurance and consistency that is attained is tied to the accuracy 
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and completeness of the URBS policy. But, note that since each tool may have 
a only a portion of the overall URBS policy, consistency becomes a prominent 
concern whenever changes need to be made, i.e., updates must be made to 
all tools that use the portion of the policy that changed. Extensibility in CP1 
presents major problems. While it is easy to add new tools, and new tools when 
added won't effect existing tools, changes to either the SCL or AppCL definitely 
cause problems. If changes to the SCL are localizable to data files that can be 
dynamically loaded, then URBS policy changes should be supportable. But, 
if the changes require the SCL to be rebuilt, unless the compilation/runtime 
environment supports dynamically linkable class libraries, all affected tools 
must be recompiled. Changes to AppCL have a dramatic impact for all affected 
tools and all affected portions of the SCL. In addition, since the AppCL is 
compiled with each tool, it is unclear whether this approach can successful 
work when AppCL is linked to a database. 

Variants CP2 and CP3, shown in Figure 3, are both multi-process approaches 
with clearly defined client/server separation offunctionality. In CP2, shown in 
the left side of Figure 3, each client is a TCL/SCL pair that interacts with a 
shared AppCL server. In this case, each SCL represents that subset of the overall 
URBS policy/ enforcement that is needed by the specific tool, i.e., if a tool only 
uses one or two classes, the SCL is that subset of the overall URBS policy for 
those needed classes. Thus, the URBS policy/ enforcement is specifically bound 
to each tool. Like CP1, the level of consistency/assurance that is attained 
depends on the realization of the URBS policy within SCL. The fact that 
the policy is spread across multiple tools does introduce potential consistency 
concerns when changes to the policy are made. Changes to the URBS policy 
impact SCL in the same way as CPL However, there are improvements in 
changes to AppCL; since it is in a separate process, careful planning will allow 
some changes to have no impact on the joint TCL/SCL clients. Drastic changes 
to AppCL (e.g., deletion of classes, additions of classes, major functionality 
upgrades) are likely to impact SCL thereby requiring the recompilation of tools. 
UCLA and GEA are tightly linked to AppCL, making them inappropriate for 
CP2. From a database perspective, the presence of a persistent store within or 
coupled to AppCL should be supportable and invisible to the clients. 

In CP3, shown in the right side of Figure 3, the client is each individual 
tool (TCL), with the server containing the joint SCL/ AppCL functionality. By 
decoupling the URBS policy/ enforcement from each tool, the tool becomes 
relatively independent from changes to the security policy. Each tool simply 
makes requests to the joint server and the way that those requests are sat­
isfied can be hidden using typical object-oriented design approaches. Thus, 
unlike CP1 and CP2, changes to the URBS policy shouldn't impact tool code. 
The placement of the entire URBS policy/ enforcement in one location greatly 
improves consistency and assurance, since all changes to the policy occur in 
one place. This is superior to both the CP1 and CP2 variants. Like CP1, SCL 
can be realized with UCLA or GEA .. 
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+------+-----+ 
I TCLl I SCL I<--------+ 
+------+-----+ I CP2 

v 

+------+-----+ +-------+ 
I TCL2 I SCL l<----->I AppCL I 
+------+-----+ +-------+ 

I 
I 

+------+-----+ I 
I TCLn I SCL (<--------+ 
+------+-----+ 

+------+ 
I TCLl (<----------+ 
+------+ I CP3 

v 

+------+ +-----+-------+ 
I TCL2 (<------>( SCL I AppCL I 
+------+ +-----+-------+ 

I 
I 

+------+ I 
I TCLn !<----------+ 
+------+ 

Figure 3 Multi-Process C/S Approaches. 

Changes to the URBS policy and/or the AppCL may require that the joint 
server be periodically rebuilt, i.e., changes to AppCL may still impact SCL. 
As long as those changes don't alter the signatures of the various meth­
ods/protocols that tools utilize, there should be no impact on the tool code. 
Basically, the dimension of evolvability allows the easy addition of new tools 
or new users utilizing existing tools. Database integration of AppCL is the same 
as CP2. However, from a performance perspective, since all security requests 
are processed by a joint server, there is the potential that the server will be­
come a bottleneck as the throughput of the system increases, i.e., with more 
tools, or more users utilizing existing tools. 

Variant CP4, as shown in Figure 4, is presented as a means to alleviate the 
remaining consistency, assurance, and performance concerns of CP3. Variant 
CP4 is truly a multi-process, multi-leveled, client/server architecture. In this 
case, each TCL is a client to an SCL server that provides security for the entire 
AppCL, i.e., the SCLi's are replicated. Each SCL, in turn, is a client to the 
shared AppCL. Like CP2, SCLi's separation from AppCL negates UCLA and 
GEA as appropriate solutions. 

The relationship between each TCLi . j and its respective SCLi acquires the 
advantages of CP3 with respect to: the independence of the tool code from 
SCL (and AppCL); the ability to add new tools; and, the lack of impact of 
changes to SCL (and AppCL) on the tool code. The multiple SCL servers to the 
TCL clients also alleviate a level of performance concerns from CP3, allowing 
more SCLs to be added as more tools (and hence, more users) need to be 
served. Consistency and assurance in CP4 maintain the benefits of CP3 over 
the other two variants: each SCL has the entire URBS policy/enforcement, so 
any changes to the policy can be made and replicated. CP4 still may have per­
formance bottlenecks with respect to access to AppCL. But those bottlenecks 
have now been delineated from the SCLs, and can be handled by replacing 
AppCL by a distributed object-oriented class library with database support. 



258 Part Six Role-based Access Control 

+------+ 
ITCL1.11<-----+ 
+------+ I CP4 

+------+ 
+------>ITCL2.1I 
I +------+ 

v v 
+------+ +------+ +-------+ +------+ +------+ 
ITCL1.2l<-->I SCL1 l<---->I AppCL l<---->I SCL2 l<-->ITCI.2.21 
+------+ +------+ +-------+ +------+ +------+ 

+------+ I 
I TCI.1.x I<-----+ 
+------+ 

v 
I +------+ 
+------>ITCL1.yl 

+------+ +------+ 
+---->I SCLm I<---------+ 
I +------+ I 
I I 
I I 
v v v 

+------+ +------+ +------+ 
ITCLm.11 ITCLm.21 ..• ITCLm.zl 
+------+ +------+ +------+ 

Figure 4 A Multi-Process, Replicated SCL/Shared AppCL Approach. 

3.3 Critiquing the Architectural Variants 

This sections summarizes the evaluative statements for the six variants into 
a cohesive discussion that clearly compares and contrasts their capabilities. 
Our first critique is based on the location and structure of the URBS pol­
icy /enforcement within each variant, as shown in Table 1. This is important 
from a consistency and assurance perspective. In LS1, CP3, and CP4, the entire 
policy/enforcement is present and captured within SCL (replicated in CP4). In 

Table 1 Critiquing Security Policy Location and Structure. 

LS1, CP3, CP4 Full/Entire Policy 

LS2, CP1, CP2 Partial-Distributed Across Tools 

Assessment Key is Modularity of Security Policy 

LS2, CP1, and CP2, the policy is partially captured, to the level required by the 
tool/TCL. From a consistency perspective, whenever the URBS policy changes, 
there must be assurance that the policy is still enforced by all existing tools. 
The centralized nature of LS1, CP3, and CP4, lends itself to a maintenance of 
the assurance after the change. In the case ofLS2, CP1, and CP2, the tools/TCLs 
must be recompiled to insure that all SCLs are updated. Also, since the policy 
is spread across multiple SC/AppC pairs (in LS2) or is unique to each process 
(in CP1 and CP2), there is a chance that inconsistencies can arise that impact 
on assurance, if all recompilations are not carefully performed. 

Our second critique, shown in Table 2, involves the impact of changes on 
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each variant when either the security policy or application classes a.re changed. 
For LS1, LS2, CPS, and CP4, as long as accepted object-oriented design tech­
niques (abstraction, representation independence, etc.) have been followed, it 
should only be necessary to recompile SCLs and/or AppCLs; there should be no 
impact on tools/TCL. In fa.ct, depending on the actual enforcement approach 

Table 2 Critiquing Changes to Policy or Application 

LS1, LS2, CPS, CP4 Recompile Tools Only 

CP1, CP2 Rebuild/Change Code Possible 
Since SCL Linked with TCL 

Assessment Understand Change Potential 

(UCLA, GEA, or other), two situations might occur: when the security policy 
changes, SCL or SCL/ AppCL may need recompilation; and, when some applica­
tion classes change, AppCL or AppCL/SCL may need recompilation. Both situ­
ations are dependent on the interrelation of the enforcement approach to the 
application classes. For other variants: when the policy changes, CP1 and CP2 
must be rebuilt, since SCL is within the same process/client as the tool/TCL; 
when some application classes change, each tool/TCL in CP1 that uses the 
subset that has changed must be recompiled. CP2 behaves in a similar fashion 
to CPS and CP4 for changes to the AppCL. 

A third critique involves the utility of our existing enforcement mechanism 
approaches (UCLA and GEA) for the architectural variants. As currently 
designed, both UCLA and GEA are tightly coupled to AppCL. That is, it would 
be difficult to cleanly and completely separate out the SCL from the AppCL. 
This being the case, it is apparent that some variants are more conducive 
to the two approaches than others. Namely, LS1, LS2, CP1, and CPS, can all 
function with either UCLA or GEA as SCL, since SCL is linked to AppCL. On the 
other hand, neither CP2 nor CP4 can support UCLA and GEA for the AppCL, 
without changes to UCLA and GEA that decisively separate the security 
policy/enforcement from the application class library. It will be necessary to 
either rework UCLA/GEA, or design new variants to support CP2/CP4. 

Our final critique, shown in Table 3, focuses on the case when data.base 
interactions are required from the AppCL to a persistent store. LS1, CP2, CPS, 
and CP4 all separate AppCL from the tools/TCL, meaning that a persistent store 
can be easily supported. LS2 and CP1 have problems, since each approach uti­
lizes a partial AppCL, for only those classes that are needed by each tool/TCL. 
Thus, for LS2 and CP1, if data.base access was to occur, it would likely require 
that the tools interact to synchronize their requests, which raises many major 
roadblocks. From a. performance perspective, a.11 but CP4 have potential bot­
tlenecks at either the SCL, AppCL, or both. CP4 offers the best solution, and if 
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needed, the AppCL can be expanded to a distributed object-oriented database 
to satisfy increases in either tools or users. 

Table 3 Critiquing Security Policy Location and Structure. 

LS1, CP3, CP4 Full/Entire Policy 

LS2, CP1, CP2 Partial-Distributed Across Tools 

Assessment Key is Modularity of Security Policy 

Finally, based on Tables 1, 2, and 3, we can compare/contrast the capa­
bilities of the variants, as given in Table 4. In Table 4, LS1 has a definite 
edge over LS2, with respect to attaining assurance/consistency and support­
ing persistence, since LS1 is very central in nature with one copy of AppC and 
SCL. However, the distributed nature of AppC and SCL in LS2 gives it an edge 
when security policy changes occur. In Table 4, CP3 and CP4 are superior and 
comparable. From assurance/consistency and security policy evolution per­
spectives, both CP1 and CP2 suffer from partially replicated/distributed SCL 
and the interactions between tools and the SCL. The partial replication of 
AppCL hinders CP1 regarding persistency support. CP2 is comparable to CP3 
and CP4 since AppCL is not directly linked to TCL nor SCL. 

Table 4 Comparing Communication Process Variants. 

Assurance/ Security Policy Persistency 
Consistency Evolution Support 

LS1 Superior Superior 

LS2 Superior 

CP1 Prob. - SCL Major Changes AppCL Part. 
is Partially Possible Due & Replicat. 

CP2 Replicated & to Links of Superior 
Distributed TCL & SCL 

CP3 .t CP4 Superior Superior Superior 

4 CONCLUDING REMARKS AND FUTURE WORK 

Consistency and assurance for object-oriented systems is critical, since it is 
their nature to evolve and change over time. When both the application class 
library and the URBS policy are dynamic, those changes have the potential 
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to significantly impact on the application's tools, which in turn, impacts on 
actual users. The emerging discipline of software architectures can be utilized 
to examine alternative architectural variants for the tools, URBS policy, and 
application class library. Three variants that we have presented rank compa­
rably: LS1 - a layered system with a shared, URBS policy/enforcement and 
application class library that is utilized by multiple application tools; CP3 a 
client/server solution where each tool is a client to a server that consists of a 
joint process containing the URBS policy/enforcement and application class 
library; CP4 a multi-level, client server solution where each tool is a client, the 
URBS policy/enforcement is replicated as a server, and the application class 
library has its own independent server. Of the three, CP4 lends itself to most 
easily evolving from a centralized to a distributed object-oriented database. 
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