
15

Software architectural
alternatives for user role-based
security policies

S. A. Demurjian, Sr., T. C. Ting, and J. A. Reisner
Computer Science & Engrg. Dept., The University of Connecticut
191 Auditorium Road, Storrs, Connecticut 06269-3155, USA,
860.486. 3719, 860.486.4817, { steve, ting, reisner}@eng2. uconn. edu

Abstract
Security concerned users and organizations must be provided with the means
to protect and control access to object-oriented software, especially with an
exploding interest in designing/developing object-oriented software in Java,
C++, and Ada95. Our user-role based security (URBS) approach has em­
phasized: a customizable public interface that appears differently at different
times for specific users; security policy specification via a role hierarchy to or­
ganize and assign privileges based on responsibilities; and, extensible/reusable
URBS enforcement mechanisms. This paper expands our previous work in
URBS for an object-oriented framework by exploring software architectural
alternatives for realizing enforcement, with the support of assurance and con­
sistency as a key concern for security policies that evolve and change.

Keywords
Software architectures, object-oriented, enforcement mechanisms

1 INTRODUCTION

How will assurance and consistency be attained during the definition and
usage of an application's user-role based security policy, particularly in an
object-oriented context that stresses change and evolution? This question is
interesting, particularly with the explosive growth of object-oriented software
development. While C++ has been a strong player since the late 1980s, Ada95
and Java offer new opportunities that are targeted for diverse and signifi­
cant market segments. Security has and will continue to be a major concern,
especially in Java, where security must be present to control the effects of
platform-independent software. Health care systems require both high lev­
els of consistency and assurance, while simultaneously needing instant access
to data in life-critical situations. In CAD applications, the most up-to-date
specifications on mechanical parts must be available in a shared manner to

Dalabase Security XI T. Y. Lin and Shelly Qian (Eds)
{) 1998 IFIP. Published by Chapman & Hall

248 Part Six Role-based Access Control

promote cooperation and facilitate productivity, making consistency and as­
surance important from a business perspective.

Over the past few years, we have concentrated on discretionary access con­
trol, by defining a user-role based security (URBS) model that can be utilized
in the design and development of object-oriented applications. The current
public interface provided by most object-oriented languages is the union of all
privileges (methods) needed by all users of each class. This allows methods
intended for only specific users to be available to all users. For example, in a
health care application (HCA), a method placed in the public interface to al­
low a Physician (via a GUI tool) to prescribe medication on a patient can't be
explicitly hidden from a Nurse using the same GUI tool. Rather, the software
engineer is responsible for insuring that such access does not occur, since the
object-oriented programming language cannot inherently enforce the required
security access. We have proposed a user-role definition hierarchy (URDH) to
organize responsibilities and to establish privileges. Privileges can be assigned
(can invoke a set of methods) or prohibited (cannot invoke a set of methods)
to roles, thereby customizing the public interfaces of classes on a role-by-role
basis. Our recent efforts have proposed extensible and reusable URBS en­
forcement mechanisms, with the goal to minimize the amount of knowledge
a software engineer must have on URBS. Work on the object-oriented design
model [5] and URBS [1, 4] have been published.

This paper expands our previous work to include assurance and consistency,
particularly since we are committed to a continued exploration of automati­
cally generated URBS enforcement mechanisms. Since class libraries may not
offer a secure enough venue to insure high consistency and assurance, we have
turned to the field of software architectures to investigate potential solutions
to augment our previous enforcement mechanisms work [2, 3]. Software ar­
chitectures [6] expand traditional software engineering by looking at how the
major components of a system can mesh and interact. This is especially rele­
vant for object-oriented software, where a class library for a problem is initially
developed, with software engineers designing and building tools against that
class library to implement the overall capabilities of an application. In such a
model, the URBS enforcement mechanism must interact with both the class
library and the tools for an application, to insure that users utilizing tools
only access those portions of the application on which they have been granted
access. In our approach, this translates to the users only being able to invoke
methods that have been authorized to their respective roles.

The remainder of this paper contains three sections. In Section 2, we discuss
the critical need of consistency for security, as we seek to guarantee a level of
assurance to designers and users utilizing an URBS/object-oriented approach.
In Section 3, we propose and explore software architectural variants that can
offer varying degrees of assurance and consistency, and critique the variants
by comparing and contrasting their capabilities from multiple perspectives.
Section 4 concludes this paper.

User role-based security policies 249

2 THE NEED FOR CONSISTENCY AND ASSURANCE

Role-based security policies and enforcement mechanisms must have high con­
sistency in order to support a high assurance, secure system. The consistency
must be maintained at all levels within the policy, including individual roles,
role hierarchies, and end-user authorizations, to insure that their creation,
modification, and deletion will always maintain the required URBS policy.
Consistency is the foundation upon which high integrity and assured secure
systems must be built. A set of techniques/tools must be provided that al­
low URBS policies to be analyzed and assured at all times during design,
development, and maintenance of object-oriented software.

In general, URBS policies are application dependent, and consequently, data
security requirements vary widely from application to application. For exam­
ple, sensitive health care data must be both protected from unauthorized
use while simultaneously be almost instantaneously available in emergency
and life critical situations. On the other hand, in some design environments
such as CAD, the most up-to-date specifications on mechanical parts must be
available in a shared manner to promote cooperation. In this case, the URBS
policies may not protect sensitive personal information, but may protect in­
formation which is equally sensitive from a business perspective.

The ultimate responsibility for URBS policies is on the shoulders of the ap­
plication's management personnel and organization's data security officer. In
order to have these critical policy makers take full advantage of URBS, tools
and techniques must be made available. Design techniques are critical to allow
software and security engineers to accurately and precisely specify their appli­
cations' functional and security requirements. To augment these techniques,
a suite of tools is required, that can provide many different and diverse an­
alytical capabilities. These tools should automatically alert these engineers
when potential conflicts occur during the creation or modification of roles,
role hierarchies, and end-user authorizations, thereby heading off possible in­
consistencies. There must also be tools that provide on-demand analyses, al­
lowing engineers to gauge their realized software and/or security requirements
against their specifications. Once the URBS policy has stabilized, the tools
should provide the means to capture and realize it via a URBS enforcement
mechanism that is automatically generated. The overriding intent is to fin­
ish with an object-oriented system that embodies a strong confidence with
respect to the URBS policy and its attainment.

The remainder of this section explores these and other issues from two
perspectives. In Section 2.1, we examine the consistency issues that must be
attainable as roles and dependencies among roles are created and modified.
In Section 2.2, we investigate similar consistency issues as actual individuals
(people) are authorized to play certain roles within an object-oriented appli­
cation or system.

250 Part Six Role-based Access Control

2.1 Consistency for User Roles

When a security engineer is creating and modifying user roles for an object­
oriented application or system, the consistency of the definition is critical in
order to insure that the URBS policy is maintained. This is a time-oriented
issue; changes to the policy are needed, especially in object-oriented situations,
where evolution and extensibility are the norm. Regardless of the changes that
are made, there must be assurance that the privileges of each user role are
adequate to satisfy the functions of the user role. Moreover, the privileges must
not exceed the required capabilities of the user role, to insure that misuse and
corruption do not occur. In addition, since user roles are often interdependent
upon one another (e.g., our approach uses a hierarchy), it may be necessary
to examine their interactions to insure that privileges aren't being passed
inadvertently from role to role, yielding a potentially inconsistent state.

There are many different scenarios of evolution that must be handled. A
security engineer may create new roles for a group of potential users or may
create specific roles that are targeted for a particular end-user for a special
assignment under a special circumstance. Each newly created role must be
internally con6iatent so that no conflicts occur within the role itself. This
is also true when a role is modified, which we term intra-role con6istency.
For the object-oriented case, when privileges are assigned to each role, this
assignment implicitly grants object-access privileges to the role holder (end­
user). Such an assignment process utilizes the least-privilege principle which
grants only necessary access privileges but no more. Only those privileges that
are relevant to the user role are permitted. The policy is intentionally very
conservative and restrictive, requiring that the URBS policy be validated by
either the software engineer, security engineer, or both. In some organizations,
there are dedicated security officers who possess the ultimate responsibility
with respect to security requirements/policies for all applications.

To complement the least-privilege principle, user roles often must satisfy
mutual ezclusion conditions. Here, there must be a careful balance between
permitting access to certain objects while simultaneously prohibiting access to
other, special objects. For example, in HCA, an individual assigned the role of
Pharmacist can read the prescription of a patient, update the number of refills
after processing the prescription, but is explicitly prohibited from modifying
the dosage or drug of the prescription. Thus, access and modification to some
information is balanced against exclusion from other information. This strong
mutual exclusion situation is clearly observed by the medical profession and is
mandated by law. The URBS policy must ensure that security requirements
such as these are not violated. In our approach, these mutual exclusions are
supported in the URDH by allowing the security engineer to define prohibited
methods, which provides the means to insure that the prohibited privileges of
a role do not contradict with the assigned privileges.

When one extrapolates to consider the interdependence of user roles, such as

User role-based security policies 251

within our URDH, the internal consistency as captured by least privilege and
mutual exclusion, must be expanded to inter-role consistency. In any approach
with interdependence among user roles, there is the potential for user roles to
acquire privileges (both positive and negative privileges) from other roles. In
addition, to provide versatile design tools to the security engineer, it should be
possible to establish superior, inferior, and equivalence relationships among
different user roles. These relationships must also be validated as privileges
are defined, acquired, and change. From the perspective of the entire URDH,
intra-hierarchy conaistency must be attained.

To support a URBS definition process with least privilege and mutual exclu­
sion, the security engineer must be provided with a set of techniques and tools.
There must be tools for meaningful comprehension on user roles, including all
positive privileges, negative privileges, and relationships to other roles, sup­
porting intra-role consistency. Once any initial definition has occurred, there
must be tools to support analyses for both internal and inter-role consistency.
Automated analysis tools are necessary for an exhaustive search to follow
all possible object access paths as required by all of the positive and negative
privileges in the security definition. Conflicts discovered during the search will
have to be resolved by the application's management personnel and security
engineer. Feedback must be available to assist the human designer in arriving
at a viable resolution to any conflicts or inconsistencies. Analyses are avail­
able in the ADAM environment for the application's content/context, and for
its security requirements [4, 5]. Capabilities analyses allows one to review the
permissions given to a chosen URDH node on an application's OTs, meth­
ods, and/or private data, supporting the intra-role or internal consistency of
the URBS policy. Authorization analyses allows one to investigate which user
roles have what kinds of access to an OT, a method, or a private data item,
supporting inter-role and intra-hierarchy consistency.

2.2 Consistency in End-User Authorization

When considering consistency in end-user authorization, the assumptions of
the policy must be clearly understood. For example, in any organization where
end-users can be assigned multiple roles, there are two scenarios of permissible
behavior against an application: 1. end-users can only play exactly one role at
any given time; and, 2. end-users can play multiple roles concurrently at any
given time. The first assumption does not cause significant problems, since for
an end-user, only one role is active. As long as that role is intra-role and inter­
role consistent, there is no problem. However, the first assumption alone does
not provide the needed security, but instead raises a number of interesting
issues that are addressed by the second assumption.

Namely, when an end-user may play multiple user roles simultaneously at
any given time within an application and within the organization, a level of
end-user consistency in introduced. In end-user consistency, the privileges of
the multiple roles for are aggregated, which may introduce conflicts between

252 Part Six Role-based Access Control

positive and negative privileges that span multiple roles. Further, when a new
privilege is assigned to an established user role, with internal and inter-role
consistency assured, it may still impact the end-user consistency. Automated
tools are needed for the user authorization model in a secure data system so
that no URBS policy violations are possible for any end-user in the organiza­
tion. Thus, the techniques/tools in Section 2.1 must be extended to consider
end-user consistency, allowing the security engineer to focus on the conflicts
of privileges for single end-users with multiple concurrent roles.

Once intra-role, inter-role, and intra-hierarchy, and end-user consistency
have been attained at a definitional level, there are two remaining require­
ments: (1) the defined URBS policy must be captured within the object­
oriented application; and (2) once captured, at both compile time and run­
time, the policy must be enforced. For both requirements, our previous work
on URBS enforcement approaches (2, 3] is intended to support, in part, the
consistency and assurance of the URBS policy. However, as we will see in
Section 3, through software architectures we can provide a higher level of as­
surance regarding the guarantee that must be met concerning a defined URBS
policy for an object-oriented application.

3 SOFTWARE ARCHITECTURES AND URBS MECHANISMS

To understand our efforts in this section, it is critical that we define our
assumptions concerning the composition of object-oriented software. Basi­
cally, the crux of an object-oriented system is an underlying, shared object
type/class library to represent the kernel or core functionality. Once such a
library has been developed, other software engineers will use it to design and
develop tools. Thus, end-users are not able to write programs to access data
directly. Rather, end-users utilize tools that embody the apropos security code
to enforce the required URBS policy.

Software architectures [6] is an emerging discipline whose intent is to force
software engineers to view software as a collection of interacting components.
Interactions occur both locally (within each component) and globally (be­
tween components). In understanding interactions, the key consideration is
to identify the communication and synchronization requirements which will
allow the functionality of the system to be precisely captured. By taking
a broader view of the problem definition process, software architectures per­
mits database needs, performance/scaling issues, and security requirements, to
be considered. These considerations are critical as large-scale object-oriented
software design, development, and usage becomes increasingly dominant.

Our purpose in this section is to present and critique multiple software
architectural variants for URBS enforcement of object-oriented software, with
a constant focus on the attainment of consistency and assurance. Our intent
in this section is to step back from our previous work (3] and consider the
ways that these approaches can fit into an overall architectural scheme to

User role-based security policies 253

security enforcement for object-oriented software. Nevertheless, we start this
section by briefly reviewing two of our previous approaches, since they set
the context for our subsequent discussion related to software architectures.
Then, we focus on two architectural styles: layered systems, which are most
known from ISO layers; and, communicating processes, which underlie today's
client/server paradigm. For both styles, multiple variants are presented and
analyzed. The final section critiques the six different variants by comparing
and contrasting their capabilities.

3.1 UCLA and GEA Approaches

The URDH-claaa-library approach {UCLA} employs inheritance to implement
the enforcement mechanism by treating a class hierarchy for the URDH. For
each URDH node, positive method access is based on the defined assigned
methods. At runtime, a user's role guides the invocation of the appropri­
ate methods that are used to verify whether the user's role has the required
permissions. From an evolvability perspective, as user roles are added, or as
privileges are changed, only the URDH class library must be recompiled.

The generic ezception approach {GEA} utilizes reusable template classes to
realize a significant core of generic code that encapsulates the URBS policy.
In GEA, when a method is invoked, the user role of the current user is checked
to verify if access can be granted. If the user's role doesn't permit access, an
exception is thrown, and the invoking method will not allow its functionality
to be executed and affect instances. The code in the GEA security template
is hidden from the software engineer. Software reuse is promoted since the
template is reused by all classes that require URBS enforcement.

3.2 Architectural Alternatives

From a software architecture perspective, the URBS enforcement mechanism
can be located in many different places and function in many different ways.
It can be integral part of the OT/class library, to be automatically included
when any tool utilizes a portion of the library. Alternatively, it may be an
independent and self-contained library that is compiled with each application
tool, similar in concept to a math library being included. Other choices could
have a separately executing process through which all security requests must
be handled. Regardless of the choice, the key underlying characteristics must
be the attainment of high consistency and assurance. This must be balanced
against the need to minimize the amount of knowledge a software engineer
must have on URBS and to have an approach that is evolvable, since object­
oriented software and its security policy will change over time.

254 Part Six Role-based Access Control

To standardize terminology regarding the assumptions on object-oriented
systems given in the introduction of Section 3, we define:

AppCL: Represents the shared, object-oriented class library for an application.
SCL: Represents the security class library for an application that embodies

URBS definition and enforcement.
TCL: Represents the tool class library for individual tools (e.g., a patient GUI,

an admissions subsystem, etc.) against the application.

Note that when the Lis dropped from either AppCL or SCL, we are referring to
an individual class of the library. The remainder of this section explores lay­
ered systems, and communicating processes and the client/server paradigm,
as software architectural alternatives for URBS enforcement. For each alter­
native, multiple variants are presented and discussed, and then analyzed with
respect to: the level of consistency and assurance that each variant provides
for security concerned users; the dimensions of evolvability, which is critical
since both the URBS policy and object-oriented software tend to be dynamic
over time; and, the impact of the absence/presence of a persistent store.

(a) Layered Systems
Layered 1y1tema are a classic technique for software architectures, where layers
of functionality are built upon one another to provide a controlled environment
for access to information. In Figure 1, there are two layered system variants
for URBS enforcement: LS1 an application-based approach on the left, and
LS2 a class-based approach on the right. In both variants, security is at the
level of the method invocation, which is processed by the SCL prior to its
actual runtime call against an instance of a class in the AppCL. In either case,
the SCL can be either the UCLA or GEA approach. In the LS2 variant, each
individual class handles the method invocations that apply to its instances
as they are received by the various tools. The difference is one of granularity.
In LS1, security is managed at the application level overall, and once it has
been determined that the tool can invoke a method, it is passed through to
the involved instance or instances. In LS2, security is managed at the instance
level only. This may cause a problem when instances refer to other instances,
i.e., a security request by the tool involves multiple instances of either the
same or different classes.

From a consistency/assurance perspective, it appears that LS1 has the ad­
vantage, since all of the method invocations must pass forward through the
security layer for authentication and all results must pass back for enforce­
ment. That is, when utilizing a tool and its various options, users end up
calling various methods based on his/her UR and under the control of the
tool. However, variant LS2's view of allowing each instance to maintain its
own security is superior to LS1 from a software evolution perspective, since
changes to the security policy of one class may not effect the policies of other

User role-based security policies 255

+-----------+
LS1 I SCL I

+---+ I I +---+
ITCLl<------>I +-------+ l<-->ITCLI
+---+ I I I I +---+

I I AppCL I I
I I I I +---+

+---+ I +-------+ l<->ITCLI
I TCL I<---> I I +---+
+---+ +-----------+

LS2 +--------+
+---+ SC I
ITCLl<------>I +----+ I
+---+ I IAppCI I

+----->I +----+ I
I +--------+
v

••• etc •••

+--------+
+---+ I SC I
ITCLl<----------------->I +----+ I
+---+ +---+ I I AppC I I

ITCLl<----->I +----+ I
+---+ +--------+

Figure 1 Application-Based (LS1) and Class-Based (LS2) Approaches.

classes. When a persistent store is included, LS1 has the edge, since all ac­
cesses must proceed via a common security layer. In LS2, there are potential
concurrent access issues if some or all AppCs are connected to a database.

(b} Communicating Processes - C/S Paradigm
In the communicating proce66ea approach to URBS enforcement, a process­
oriented, client/server (C/S) paradigm is adopted. TCL, SCL, and AppCL are
integrated into single and/ or multiple processes, resulting in a total of four
different variants: CPl, CP2, CP3, and CP4. The variants differ in their num­
ber of processes and the grouping of the TCL, SCL, and/or AppCL into various
processes. Note that for both CP1 and CP2, each SCL and/or AppCL represents
the minimal subset needed by the tool/TCL to support its functionality and
enforce its security policy.

In Figure 2, variant CP1 is given, which is similar to LS1, except that each
tool is compiled as a separate, standalone process. In this case, SCL and AppCL
are analogous to a math library that is compiled when needed by the software.
Functionally, within each process, TCL sends method invocations to SCL which
in turn passes them through to AppCL according to the URBS policy. Results
are passed back from AppCL to SCL, which may then filter the response before
passing them back to TCL. Note that SCL and AppCL in each process represents
those subsets of the class libraries needed by each tool, and that either UCLA
or BEA can be the enforcement mechanism realized within SCL.

+------+··----+-------+ +------+-----+-------+ +------+-----+-------+
I TCL1 I SCL I AppCL I I TCL2 I SCL I AppCL I I TCLn I SCL I AppCL I
+------+-----+-------+ +------+-----+-------+ +------+-----+-------+

Figure 2 CP1: A Single Process, Non-C/S Approach.

From a consistency/ assurance per.spective, it would be a requirement that
each tool be compiled into a single process with SCL and AppCL included. Thus,
the level of assurance and consistency that is attained is tied to the accuracy

256 Part Six Role-based Access Control

and completeness of the URBS policy. But, note that since each tool may have
a only a portion of the overall URBS policy, consistency becomes a prominent
concern whenever changes need to be made, i.e., updates must be made to
all tools that use the portion of the policy that changed. Extensibility in CP1
presents major problems. While it is easy to add new tools, and new tools when
added won't effect existing tools, changes to either the SCL or AppCL definitely
cause problems. If changes to the SCL are localizable to data files that can be
dynamically loaded, then URBS policy changes should be supportable. But,
if the changes require the SCL to be rebuilt, unless the compilation/runtime
environment supports dynamically linkable class libraries, all affected tools
must be recompiled. Changes to AppCL have a dramatic impact for all affected
tools and all affected portions of the SCL. In addition, since the AppCL is
compiled with each tool, it is unclear whether this approach can successful
work when AppCL is linked to a database.

Variants CP2 and CP3, shown in Figure 3, are both multi-process approaches
with clearly defined client/server separation offunctionality. In CP2, shown in
the left side of Figure 3, each client is a TCL/SCL pair that interacts with a
shared AppCL server. In this case, each SCL represents that subset of the overall
URBS policy/ enforcement that is needed by the specific tool, i.e., if a tool only
uses one or two classes, the SCL is that subset of the overall URBS policy for
those needed classes. Thus, the URBS policy/ enforcement is specifically bound
to each tool. Like CP1, the level of consistency/assurance that is attained
depends on the realization of the URBS policy within SCL. The fact that
the policy is spread across multiple tools does introduce potential consistency
concerns when changes to the policy are made. Changes to the URBS policy
impact SCL in the same way as CPL However, there are improvements in
changes to AppCL; since it is in a separate process, careful planning will allow
some changes to have no impact on the joint TCL/SCL clients. Drastic changes
to AppCL (e.g., deletion of classes, additions of classes, major functionality
upgrades) are likely to impact SCL thereby requiring the recompilation of tools.
UCLA and GEA are tightly linked to AppCL, making them inappropriate for
CP2. From a database perspective, the presence of a persistent store within or
coupled to AppCL should be supportable and invisible to the clients.

In CP3, shown in the right side of Figure 3, the client is each individual
tool (TCL), with the server containing the joint SCL/ AppCL functionality. By
decoupling the URBS policy/ enforcement from each tool, the tool becomes
relatively independent from changes to the security policy. Each tool simply
makes requests to the joint server and the way that those requests are sat­
isfied can be hidden using typical object-oriented design approaches. Thus,
unlike CP1 and CP2, changes to the URBS policy shouldn't impact tool code.
The placement of the entire URBS policy/ enforcement in one location greatly
improves consistency and assurance, since all changes to the policy occur in
one place. This is superior to both the CP1 and CP2 variants. Like CP1, SCL
can be realized with UCLA or GEA ..

User role-based security policies 257

+------+-----+
I TCLl I SCL I<--------+
+------+-----+ I CP2

v

+------+-----+ +-------+
I TCL2 I SCL l<----->I AppCL I
+------+-----+ +-------+

I
I

+------+-----+ I
I TCLn I SCL (<--------+
+------+-----+

+------+
I TCLl (<----------+
+------+ I CP3

v

+------+ +-----+-------+
I TCL2 (<------>(SCL I AppCL I
+------+ +-----+-------+

I
I

+------+ I
I TCLn !<----------+
+------+

Figure 3 Multi-Process C/S Approaches.

Changes to the URBS policy and/or the AppCL may require that the joint
server be periodically rebuilt, i.e., changes to AppCL may still impact SCL.
As long as those changes don't alter the signatures of the various meth­
ods/protocols that tools utilize, there should be no impact on the tool code.
Basically, the dimension of evolvability allows the easy addition of new tools
or new users utilizing existing tools. Database integration of AppCL is the same
as CP2. However, from a performance perspective, since all security requests
are processed by a joint server, there is the potential that the server will be­
come a bottleneck as the throughput of the system increases, i.e., with more
tools, or more users utilizing existing tools.

Variant CP4, as shown in Figure 4, is presented as a means to alleviate the
remaining consistency, assurance, and performance concerns of CP3. Variant
CP4 is truly a multi-process, multi-leveled, client/server architecture. In this
case, each TCL is a client to an SCL server that provides security for the entire
AppCL, i.e., the SCLi's are replicated. Each SCL, in turn, is a client to the
shared AppCL. Like CP2, SCLi's separation from AppCL negates UCLA and
GEA as appropriate solutions.

The relationship between each TCLi . j and its respective SCLi acquires the
advantages of CP3 with respect to: the independence of the tool code from
SCL (and AppCL); the ability to add new tools; and, the lack of impact of
changes to SCL (and AppCL) on the tool code. The multiple SCL servers to the
TCL clients also alleviate a level of performance concerns from CP3, allowing
more SCLs to be added as more tools (and hence, more users) need to be
served. Consistency and assurance in CP4 maintain the benefits of CP3 over
the other two variants: each SCL has the entire URBS policy/enforcement, so
any changes to the policy can be made and replicated. CP4 still may have per­
formance bottlenecks with respect to access to AppCL. But those bottlenecks
have now been delineated from the SCLs, and can be handled by replacing
AppCL by a distributed object-oriented class library with database support.

258 Part Six Role-based Access Control

+------+
ITCL1.11<-----+
+------+ I CP4

+------+
+------>ITCL2.1I
I +------+

v v
+------+ +------+ +-------+ +------+ +------+
ITCL1.2l<-->I SCL1 l<---->I AppCL l<---->I SCL2 l<-->ITCI.2.21
+------+ +------+ +-------+ +------+ +------+

+------+ I
I TCI.1.x I<-----+
+------+

v
I +------+
+------>ITCL1.yl

+------+ +------+
+---->I SCLm I<---------+
I +------+ I
I I
I I
v v v

+------+ +------+ +------+
ITCLm.11 ITCLm.21 ..• ITCLm.zl
+------+ +------+ +------+

Figure 4 A Multi-Process, Replicated SCL/Shared AppCL Approach.

3.3 Critiquing the Architectural Variants

This sections summarizes the evaluative statements for the six variants into
a cohesive discussion that clearly compares and contrasts their capabilities.
Our first critique is based on the location and structure of the URBS pol­
icy /enforcement within each variant, as shown in Table 1. This is important
from a consistency and assurance perspective. In LS1, CP3, and CP4, the entire
policy/enforcement is present and captured within SCL (replicated in CP4). In

Table 1 Critiquing Security Policy Location and Structure.

LS1, CP3, CP4 Full/Entire Policy

LS2, CP1, CP2 Partial-Distributed Across Tools

Assessment Key is Modularity of Security Policy

LS2, CP1, and CP2, the policy is partially captured, to the level required by the
tool/TCL. From a consistency perspective, whenever the URBS policy changes,
there must be assurance that the policy is still enforced by all existing tools.
The centralized nature of LS1, CP3, and CP4, lends itself to a maintenance of
the assurance after the change. In the case ofLS2, CP1, and CP2, the tools/TCLs
must be recompiled to insure that all SCLs are updated. Also, since the policy
is spread across multiple SC/AppC pairs (in LS2) or is unique to each process
(in CP1 and CP2), there is a chance that inconsistencies can arise that impact
on assurance, if all recompilations are not carefully performed.

Our second critique, shown in Table 2, involves the impact of changes on

User role-based security policies 259

each variant when either the security policy or application classes a.re changed.
For LS1, LS2, CPS, and CP4, as long as accepted object-oriented design tech­
niques (abstraction, representation independence, etc.) have been followed, it
should only be necessary to recompile SCLs and/or AppCLs; there should be no
impact on tools/TCL. In fa.ct, depending on the actual enforcement approach

Table 2 Critiquing Changes to Policy or Application

LS1, LS2, CPS, CP4 Recompile Tools Only

CP1, CP2 Rebuild/Change Code Possible
Since SCL Linked with TCL

Assessment Understand Change Potential

(UCLA, GEA, or other), two situations might occur: when the security policy
changes, SCL or SCL/ AppCL may need recompilation; and, when some applica­
tion classes change, AppCL or AppCL/SCL may need recompilation. Both situ­
ations are dependent on the interrelation of the enforcement approach to the
application classes. For other variants: when the policy changes, CP1 and CP2
must be rebuilt, since SCL is within the same process/client as the tool/TCL;
when some application classes change, each tool/TCL in CP1 that uses the
subset that has changed must be recompiled. CP2 behaves in a similar fashion
to CPS and CP4 for changes to the AppCL.

A third critique involves the utility of our existing enforcement mechanism
approaches (UCLA and GEA) for the architectural variants. As currently
designed, both UCLA and GEA are tightly coupled to AppCL. That is, it would
be difficult to cleanly and completely separate out the SCL from the AppCL.
This being the case, it is apparent that some variants are more conducive
to the two approaches than others. Namely, LS1, LS2, CP1, and CPS, can all
function with either UCLA or GEA as SCL, since SCL is linked to AppCL. On the
other hand, neither CP2 nor CP4 can support UCLA and GEA for the AppCL,
without changes to UCLA and GEA that decisively separate the security
policy/enforcement from the application class library. It will be necessary to
either rework UCLA/GEA, or design new variants to support CP2/CP4.

Our final critique, shown in Table 3, focuses on the case when data.base
interactions are required from the AppCL to a persistent store. LS1, CP2, CPS,
and CP4 all separate AppCL from the tools/TCL, meaning that a persistent store
can be easily supported. LS2 and CP1 have problems, since each approach uti­
lizes a partial AppCL, for only those classes that are needed by each tool/TCL.
Thus, for LS2 and CP1, if data.base access was to occur, it would likely require
that the tools interact to synchronize their requests, which raises many major
roadblocks. From a. performance perspective, a.11 but CP4 have potential bot­
tlenecks at either the SCL, AppCL, or both. CP4 offers the best solution, and if

260 Part Six Role-based Access Control

needed, the AppCL can be expanded to a distributed object-oriented database
to satisfy increases in either tools or users.

Table 3 Critiquing Security Policy Location and Structure.

LS1, CP3, CP4 Full/Entire Policy

LS2, CP1, CP2 Partial-Distributed Across Tools

Assessment Key is Modularity of Security Policy

Finally, based on Tables 1, 2, and 3, we can compare/contrast the capa­
bilities of the variants, as given in Table 4. In Table 4, LS1 has a definite
edge over LS2, with respect to attaining assurance/consistency and support­
ing persistence, since LS1 is very central in nature with one copy of AppC and
SCL. However, the distributed nature of AppC and SCL in LS2 gives it an edge
when security policy changes occur. In Table 4, CP3 and CP4 are superior and
comparable. From assurance/consistency and security policy evolution per­
spectives, both CP1 and CP2 suffer from partially replicated/distributed SCL
and the interactions between tools and the SCL. The partial replication of
AppCL hinders CP1 regarding persistency support. CP2 is comparable to CP3
and CP4 since AppCL is not directly linked to TCL nor SCL.

Table 4 Comparing Communication Process Variants.

Assurance/ Security Policy Persistency
Consistency Evolution Support

LS1 Superior Superior

LS2 Superior

CP1 Prob. - SCL Major Changes AppCL Part.
is Partially Possible Due & Replicat.

CP2 Replicated & to Links of Superior
Distributed TCL & SCL

CP3 .t CP4 Superior Superior Superior

4 CONCLUDING REMARKS AND FUTURE WORK

Consistency and assurance for object-oriented systems is critical, since it is
their nature to evolve and change over time. When both the application class
library and the URBS policy are dynamic, those changes have the potential

User role-based security policies 261

to significantly impact on the application's tools, which in turn, impacts on
actual users. The emerging discipline of software architectures can be utilized
to examine alternative architectural variants for the tools, URBS policy, and
application class library. Three variants that we have presented rank compa­
rably: LS1 - a layered system with a shared, URBS policy/enforcement and
application class library that is utilized by multiple application tools; CP3 a
client/server solution where each tool is a client to a server that consists of a
joint process containing the URBS policy/enforcement and application class
library; CP4 a multi-level, client server solution where each tool is a client, the
URBS policy/enforcement is replicated as a server, and the application class
library has its own independent server. Of the three, CP4 lends itself to most
easily evolving from a centralized to a distributed object-oriented database.

REFERENCES

[1] S. Demurjian and T.C. Ting, "The Factors that Influence Apropos Se­
curity Approaches for the Object-Oriented Paradigm", Workahopa in
Computing, Springer-Verlag, 1994.

[2] S. Demurjian, T.C. Ting, and M.-Y. Hu, "Security for Object-Oriented
Databases, Systems, and Applications", in Progre11 in Object-Oriented
Databaaea, Prater (ed.), Ablex, 1997.

[3] S. Demurjian, T.C. Ting, M. Price, and M.-Y. Hu, "Extensible and
Reusable Role-Based Object-Oriented Security", in Databaae Security,
X: Statu and Proapecta, Spooner, Samarati, and Sandhu (eds.), Chap­
man Hall, 1997.

[4] M.-Y. Hu, S. Demurjian, and T.C. Ting, "Unifying Structural and Secu­
rity Modeling and Analyses in the ADAM Object-Oriented Design En­
vironment", in Databaae Security, VIII: Statua and Proapecta, Biskup,
Landwehr, and Morgenstern (eds.), Elsevier Science, 1994.

[5] D. Needham, et al., " ADAM: A Language-Independent, Object­
Oriented, Design Environment for Modeling Inheritance and Relation­
ship Variants in Ada 95, c++, and Eiffel", Proc. of 1996 TriAda Con/.,
Philadelphia, PA, December 1996.

[6] M. Shaw and D. Garlan, "Software Architecture: Perspectives on an
Emerging Discipline", Prentice-Hall, 1996.

5 BIOGRAPHY

Steven A. Demurjian is an Associate Professor of CS&E, and in interested in
object-oriented design, security, and reuse. T.C. Ting is a Professor of CS&E,
and is interested in security, networks, and engineering/design databases. Ma­
jor John A. Reisner is in the Air Force and is pursuing his doctorate at UConn.

