
7

Throughput optimization for multimedia
applications over high speed networks

S. Zeadally G. Gheorghiu A.F.l. Levi
Department of Electrical Engineering
University of Southern California
University Park. Los Angeles. California 90089. USA
Phone: (213)740-1450
Fax: (213)740-9280
E-mail: zeadally@marco.usc.edu

Abstract

Digital video services. scientific visualization and other multimedia applications require delivery of high network
throughput to end user applications. In this paper we identify some of the bottlenecks in the data path between high­
speed networks and applications which are responsible for poor application performance. We then present solutions
to overcome these bottlenecks at various levels namely: network. operating system. and user. Finally. we show the
effectiveness of these solutions on the performance of our multimedia applications.

Keywords

Multimedia. networking. operating systems. performance. TCPIlP

I. INTRODUCTION

The past few years have seen development of applications with high bandwidth requirements such as medical image
transfer. video conferencing. scientific process simulation. and visualization. Popular local area networks such as
Ethernet and Token Ring (4 Mbitsls and 16 Mbitsls) are incapable of providing the bandwidth needed by these
multimedia applications. New network technologies such as Fiber Distributed Data Interface (FOOl). Fast Ethernet
(I OOBASE-T). and Asynchronous Transfer Mode (A TM) have emerged and are capable of providing high bandwidth
to users' desktops. However. the challenge remains for operating system designers and application developers to
deliver the bandwidth of these networks to end user applications. In order for applications to reap the benefits of
high-speed networks. the entire path from network to application must be optimized. This involves removing
bottlenecks introduced both at the operating system and application levels as depicted in Figure I.

A. Tantawy (ed.), High Performance Networking VII
© Springer Science+Business Media Dordrecht 1997

102 Part Three Multimedia Traffic

: Kernel space : User space

~ Networ'< LL-Jr""Op-e-ra"'tin-g--.l IJ User
- . ··1 ill System !II AppliCation

'------'I I

Bottleneck region
• •

Figure 1 Illustration of bottlenecks in typical multimedia network-application data path for conventional end­
systems considered in this study.

This paper describes our experiences delivering multimedia services over high-speed networks and our attempts to
optimize network-application throughput. We deal with real-life multimedia applications as opposed to using raw
data. The use of raw data in performance tests provides an upper bound on achievable performance that can be
delivered by the underlying software and hardware. However. raw data does not identify other bottlenecks that are
normally associated with actual applications such as the presentation of information (e.g. video display in a window)
or the effect of running multiple applications concurrently. Some of the work done by other researchers in similar
areas includes (Keller. 1993) (Patel. 1993) (Rowe. 1993). They have focused principally on optimizing only one area
in the network-application data path (e.g. at application level). Our work differs from these efforts in that we apply
optimizations wherever possible to the entire data path between network and applications as opposed to focusing on
just one stage in the transfer whereby later stages introduce other overheads which degrade the overall application
throughput. For instance. no matter how fast the network delivers data to the host. if the operating system itself
cannot transfer the data to the application at a high enough sustained rate. then there will be a bottleneck introduced
in the network-application data path.

The structure of this paper is organized as follows. In section 2. we discuss techniques that we applied to increase
application-application throughput. Section 3 describes the experimental setup we have used for our multimedia
applications. Section 4 presents an analysis of in-host data movement for our scientific graphics visualization
application and digital video playback. Section 5 discusses the results obtained by implementing the various
optimization techniques given in section 2. In section 6. we analyze the overall performance when multiple
applications are running. Finally. section 7 makes some concluding remarks and presents future work.

2. IMPROVING APPLICATION-APPLICATION THROUGHPUT

To achieve high application-application throughput in a network environment. it is essential that high sustained
throughput be delivered by the network. operating system. and application.

Recent advances in the performance of network physical layers have essentially solved the network bandwidth
problem. As a result. it is now feasible to deliver large volumes of data at high rates with minimal loss. In this work.
we have used a conventional Ethernet network. a higher speed FODI network. and an experimental network called
Jetstream (Watson. 94) (section 3) in order to study their impact on application performance. The basic physical
layer characteristics of these networks include: Manchester code Ethernet signalling at 20 Mbits/s giving a maximum
data rate of 10 Mbits/s. 4b/5b coding on FODI signalling at 125 Mbits/s delivering a maximum data rate of 100
Mbits/s. and 16b120b coding for Jetstream signalling at I Gbitls giving a maximum data rate of 800 Mbitsls. These
maximum data rates are reduced by media access control. network subsystem. application. and of course. limitations
imposed by the host architecture.

The last few years have witnessed significant hardware improvements that have led to the development of powerful
computers. Some of these improvements include: increased CPU performance. high bus bandwidth. large memories.
and fast disk systems. However. there has been little change in the structure of conventional operating systems such
as UNIX. consequently the availability of new hardware technologies has not been exploited to the fullest. This has
made existing operating systems become a bottleneck in end systems. Well-known overheads include data copying.

Throughout optimization for multimedia applications 103

network protocol processing, context switches, and interrupts (Kanakia, 1988) (Pasquale, 1992) (Ousterhout, 1990).
Several techniques have been proposed and implemented to avoid these overheads (Druschel, 1993) (Dittia, 1995)
(Jacobson, 1990) (Pasquale, 1994). In this work, we minimized data copying by using a UNIX kernel which supports
'single-copy' TCPIIP, a modified version of TCPIIP. Throughout this paper, we refer to 'two-copy' TCPIIP as the
standard version that normally comes with UNIX operating systems. In this case, data transfer between network and
application normally involves two copies: the first copy is between a network buffer and kernel buffer followed by a
copy from the kernel buffer to a user application (for an incoming packet). The reverse takes place for an outgoing
packet. However, in the case of a single-copy TCPIIP implementation we use for our experiments in this paper, there
is only one data copy between network and application thereby eliminating the copy to kernel buffer. Moreover, the
single-copy implementation of TCP also supports RFC 1323 window scaling (Jacobson, 1992), and is capable of
calculating checksum during data movement.

It is not easy to come up with general techniques to increase throughput at the application level. The main reason is
that different applications have different requirements and each is implemented in its own way. However, it is true
that multimedia applications have a common element: they all present information (e.g. video display) to the end
user. Most desktop applications running on UNIX platforms are built on standard X window systems to increase their
ease of use, and offer a common look and feel to users. The X window system has become the de facto standard
graphical user interface for UNIX systems. We argue that there is scope for improving application performance in
the X environment in the area of data presentation. In this context, we note that without careful tuning, data display
by the X server can degrade performance in the final delivery of information to the user. Our choice was to use the X
shared memory extensions (Corbet, 1991) in order to speed up image display.

The usual way to display an image is to use the X II library call XPutlmage() on an application's data. The call to
XPutlmage() moves data from the application's buffer via Inter-Process Communication (!PC) to a private buffer of
the X server (using UNIX domain sockets when the X client and the X server are on the same machine). The data is
then moved by the X server to the frame buffer. With X shared memory extensions support, there is no data
movement involved between the application and the X server. Instead the image data is placed into a memory
segment that is shared between the application and the X server. In this case, a call to XShmPutlmage() allows the X
server to move data directly from the shared memory segment containing the application image data to the frame
buffer.

3. EXPERIMENTAL ARRANGEMENT FOR MULTIMEDIA APPLICATIONS

The experiments described in this section have been carried out between two HP 9000 Series 700 workstations (99
MHz PA-RISC) which reside on the Jetstream network. Jetstream is a Gbitls token-ring network which uses copper
coaxial or fibre optic cable for the physical link. The network adapter for the HP 9000 Series 700 workstations is
made up of two cards - one is called Afterburner which is equipped with I MByte of video random access memory
used in a dual ported configuration. Afterburner is the host interface; the other card, Jetstream, is the link adapter.
The shared memory present on the Afterburner board enables the support of single-copy implementations of network
protocols such as TCPIIP and UDPIIP. Further details of Afterburner and Jetstream are given in (Watson, 1994) and
(Dalton, 1993).

The hardware architecture of the host is illustrated in Figure 3. The Standard Graphics Connector (SGC) (DeBaets,
1992) is the system bus used on the HP 9000 Series 700 workstation and has a maximum data transfer rate of a
Gbitls. However, it is only possible to achieve a maximum of 400 Mbitsls transfer rate by the CPU between memory
and inputloutput (VO) space (e.g. graphics devices or network interface) (Frink, 1992). A principal feature of the
hardware architecture is the memory and system bus controller chip which connects the CPU to memory and the VO
system components. The system bus controller chip communicates to the SGC bus via two system bus interface
chips. The workstations used in our experiments have 128 MByte of main memory and two GByte of hard disk. The
operating system used was HP-UX 9.01 with single-copy TCPIIP support.

104 Part Three Multimedia Traffic

Figure 2 Visualization application.

We have used two different applications in our experiments: one is a scientific visualization application and the
other is digital video playback.

The visualization application uses a series of gray scale images (8 bit/pixel) of a volume rendered CAT-scan
medical image of a child head as shown in Figure 2. The head can be rotated and viewed at different angles. In our
experiment. the images are stored on a remote server and sent over the network to the client machine which displays
the images. The image set consists of 20 image frames each of size 512x512 pixels (almost 2.1 Mbits per frame) and
stored in pixmap fonnal. This makes direct display by the X server possible without requiring any further
manipulation. The user interface to the visualization application supports simple operations such as play. stop. and
rewind.

The video application uses the PowerVide0700 hardware video codec (compression I decompression) from
Parallax (Parallax. 1994) which supports motion-IPEG. MOlion-lPEG applies lPEG (Joint Photographic Experts
Group. a standardized image compression technique for still images) to individual frames of a video sequence. The
video board is capable of handling high quality video at 30 frames per second in real-time during either recording or
playback sessions. The PowerVide0700 is an overlay card which resides in one of the EISA slots of the EISA
interface attached to the SGC bus as shown in Figure 2. We have used the MovieTool software from Parallax for
recording and playing digital video stored as motion IPEG files.

For our experiments. the files used during video playback were stored on the hard disk of a remote machine. This
disk was mounted on the host machine using NFS via the letstream interface (details are given in section 4). In a
typical video playback session. the use of NFS enables the host machine to receive compressed video clips over the
letstream network. The video board decompresses the incoming compressed video stream. The analog signals
originating from the graphics card are digitized and the result is overlaid with the uncompressed video image. After
the overlay is completed. the entire frame is converted back to analog and sent to the monitor (Figure 3).

In all measurement tests for both the video and scientific visualization applications. we use average playback frame
rate as our quantitative metric to characterize application perfonnance. Moreover. in all experiments. these
applications were run as nonnal user processes. along with the usual system processes and daemons in the
background.

Throughout optimization for multimedia applications

....... ~III_X ' --... .""" .. 4'._""" ..

"'"
~~~~m-----~I---------~--~a-----~.I~ 

lOS 

Figure 3 HP 9000 Series 700 architecture data paths for applications displaying network data and video playback. 
A network adapter connects the workstation to the Jetstream network. A Parallax video board perfonns video 
decompression and drives the monitor. Graphics data is passed from main memory to the graphics board and 
overlayed on the monitor by the Parallax video board. 

4. ANALYSIS OF IN-HOST DATA MOVEMENT 

In this section, we identify the data paths used when running the video and visualization applications based on the 
architecture presented in Figure 3. 

To understand the impact of the underlying architecture on application performance, we measured the throughput 
at different stages when moving data from the network to the X window display for the visualization application. The 
major aim of perfonning such analysis is to identify areas where performance can be improved, and at the same time 
assess the suitability of the HP 9000 Series 700 workstation architecture in supporting high-speed network 
applications. Our observations are applicable to other similar networked multimedia applications (e.g. medical 
imaging, video conferencing). 

Equation I summarizes the inverse of total throughput R for typical applications that read data from the network 
and use the X window system for display: 

I ------+ +------
R- Z Z Z 

Nerworl: - Application Applicorion- Xserver Xsuvu- Fra~bu1!u 

(Equation I), 

where Z represents the throughput at different key stages of the data path from network to frame buffer as depicted in 
Figure 3. Furthennore, Equation 1 applies to conventional bus-based systems of the type used in our experiments. 

To verify the correctness of the above equation, we ran the graphics visualization application via Jetstream and 
obtained a frame rate of 33 frames/second. This corresponds to a throughput of 69.3 Mbitsls (33 frames per second 



106 Part Three Multimedia Traffic 

multiplied by 2.1 Mbits per frame) . We then measured the throughput values corresponding to the three stages of the 
data path of Equation I as follows: 

The application reads data from a socket into its buffer. The fact that we are using a single-copy TCPIIP stack 
allows direct data transfer from a network interface buffer to the application's buffer (avoiding the additional 
copy to a kernel buffer). The throughput obtained was 200 Mbits/s (2 Networlt-Applic.,ion). 

The application acting as an X client sends the data to the X server using inter-process communication. The rate 

of data movement is 240 Mbitsls (2 Applicanon-X" ",u). 

The X server then moves the data to the frame buffer. The transfer rate obtained along this path is 230 Mbits/s 

(2 X,,,,,,,-F,.,,,,b.fJer). 

Using the measured throughput values, we calculated the total throughput R from Equation I and obtained 74 
Mbits/s. This value is slightly higher than the observed Jetstream throughput of 69.3 Mbits/s. The difference of 4.7 
Mbits/s is due to the fact that we did not take into account various overheads such as system calls, context switches, 
interrupts and memory allocation by the X server during data copying. 

To understand the impact of running multiple network applications on the performance of the end system, we have 
chosen to simultaneously run both the video and the visualization applications over Jetstream. For this to be possible 
in the case of the video application, we used NFS over the Jetstream network interface as shown in Figure 4. This 
enables playback of digital video clips stored on a remote disk which has been mounted on the host machine (used as 
an NFS client). Our UNIX kernel suppons NFS 2.0 which uses UDP. 

NFS - NII~ne S~!fTI 

TCP- T~ConIJOIPrgtoctt 

tJOP -~ o.~gQI11 Prccoool 
IP - ln~mt1 PrOCOOCl 

Figure 4 Protocol stacks with one-copy and two-copy support. IP layer has been modified to allow NFS support 
(which uses two-copy UDPIIP) to co-exist with applications using single-copy UDPIIP. 

Although the UNIX kernel we have used does support both single-copy TCPIIP and single-copy UDPIIP stacks, it 
was not possible for NFS to use the single-copy UDPIIP stack. This is because NFS does not understand the buffer 
structures used in the single-copy implementation of UDPIIP. We did not consider it worth modifying NFS to allow 
it to support our single-copy protocol stacks. The justification was that we do not see significant throughput 
improvement with a version of NFS that allows single-copy protocols since the disk (at the NFS server) will still be 



Throughout optimization for multimedia applications 107 

the bottleneck (although latency would be slightly better). For our experiments. it would have been sufficient to use a 
single-copy TCPIIP stack (for the visualization application) and a two-copy UOPIIP stack (for video application over 
NFS) by simply disabling single-copy support for UOPIIP in the UNIX kernel. However. the disadvantage of this 
approach is that it prevents other applications from using single-copy UDPIIP. Our solution was to modify the IP 
layer in order to distinguish packets destined for NFS which will use two-copy UOPIIP from all other incoming 
network packets which will use single-copy UOPIIP or single-copy TCPIIP (Figure 4). 

5. NETWORK MEASUREMENTS AND RESULTS 

Initial experiments were conducted using raw data to investigate how much of the available network bandwidth can 
actually be delivered to the application. Figure 5 presents the observed throughput using a two-copy TCP/lP stack 
over Ethernet. FOOl and Jetstream. The laboratory Ethernet has been used for Ethernet tests. In the case of FOOl. an 
EISA FODI adapter designed for HP 9OOOnOO EISA systems was used to attach to an FOOl network. Performance 
measurements were made with a tool called netperj (Jones. 1993) which measures the transfer of data from a 
producer process (generating the data) to a consumer (receiving data) running on a remote machine. A socket buffer 
size of 32 KBytes (KB) has been used at both workstations. We have chosen this socket buffer size because it is 
close to the limit possible on standard UNIX systems (usually 48 KB) and we wanted to demonstrate the throughput 
achievable with an unmodified kernel. The maximum network data bandwidths for Ethernet. FODI. and Jetstream 
are 10 Mbitsls. 100 Mbitsls. and 800 Mbitsls respectively. However. the maximum raw data throughput values 
obtained using two-copy TCPIIP in our experiments were around 9.6 Mbitsls. 74 Mbitsls and 90 Mbitsls for Ethernet. 
FOOl. and Jetstream respectively. These results confirm our initial assumption that the end system has become the 
bottleneck in a high-speed network environment. 

I 
} 

'" ,,,,-_._ .. - ............ - ... _ ..... _._ .......... -.---.. _-

: De· ·. ·· 

o • ., " '" "'-*eI_~) 

Figure 5: Measured raw data throughput over Ethernet. FOOl and JelStream using two-copy TCPIIP and 32 KB 
socket buffer size. 

Figure 6 shows raw data application throughput using single-copy TCPIIP over the Jetstream network. The use of a 
single-copy kernel increases throughput by almost 56% using 32 KB socket buffer size. Increasing the socket buffer 
size. if the kernel allows it. results in higher throughput values. For instance. the single-copy kernel enabled us to 
specify a socket buffer size of 256 KB. In this case the maximum throughput achieved was around 200 Mbitsls. 



108 Part Three 

I ,.,. 
i • 

Multimedia Traffic 

U ... _~_2Slo,-_ 
1JowooO_·fUIw_12~ _ 

°o~~--~--7-~.,--~,,---~~~~-7--~~ 
~N'~) 

Figure 6 Measured raw data throughput over Jetstream using single-copy TCPIIP and socket buffer sizes of 32 KB 
and 256 KB. 

Having established the achievable throughput possible using raw data, we then used the visualization application to 
measure the maximum throughput for a real application running over various networks. In contrast to raw data 
throughput results, we obtained frame rates and corresponding throughput values given in Table I. Two important 
observations can be made: first, performance based on raw data is not enough to characterize application throughput; 
second, in the case of slow networks like Ethernet, software (e.g. operating system) on end systems is able to deliver 
most of the available network bandwidth to the application. However, as network speed increases, the discrepancy 
between network bandwidth and actual application throughput is increasing. 

Table 1 Measured graphics visualization application frame rate and the equivalent throughput using two-copy 
TCPIIP and 32 KB socket buffer size over Ethernet, FDDI and Jetstream 

Network type Frame rate (framesls) Throughput (Mbitsls) 

Ethernet 4 8.4 

FDDI II 23.1 

Jetstream 22 46.2 

We now discuss how the various optimizations mentioned in previous sections can be applied to the data path 
described by the three terms of Equation I. 

Network: We use the Jetstream Gbitls network capable of supporting high bandwidth applications. 

Operating system: A UNIX kernel that supports single-copy TCPIIP has been used. This allows direct data 
copy from the network to the application. As a result, data movement. considered to be the major bottleneck in 
current operating systems. is minimized. Moreover. network protocol overheads such as checksum calculations have 
also been significantly reduced. We have therefore optimized the first term of Equation I with Z Ne/Wo,,-AppiicQlion 

being 200 Mbitsls. This value is the maximum throughput obtained when using raw data as illustrated in Figure 6. 

Application: We have used the X shared memory extensions to eliminate data movement from the 
application to the X server. This optimizes the overall throughput by eliminating the second term Z AppiicQlion- x...,,,u 

of Equation I. It is also worth noting that applications should exploit the capability of using large socket buffer size 



Throughout optimization for multimedia applications 109 

whenever the kernel allows it. Although this is done at application level. it influences the throughput between 
network and application at the operating system level. 

Figure 7 summarizes the effects of the various optimization approaches on the performance of the visualization 
application. It is interesting to note from the graph that for socket buffer sizes up to 48 KB (the maximum allowable 
by standard UNIX kernels). the application performs better using two-copy TCPIIP and X shared memory extensions 
than using single-copy TCPIIP without X shared memory extensions. 

70 

65 

60 

55 

50 

~ 
45 .. 
40 E e 

"'" 35 
~ .. 30 E e 
u. 25 

20 

15 

10 

5 

0 
0 

. .• G •. ::._.::!-----~---.-------+-----------... -----------____________ -r-------

JI"- ...... -
~)( .. ~x-.,\(--.- . -)( 

" 

20 40 60 80 100 120 140 160 180 200 220 240 260 
Sockel buffer siZe (KBYle) 

Figure 7 Measured effect of single-copy TCPIIP. X shared memory extensions. and socket buffer size on final 
throughput for the graphics visualization application. 

The underlying architecture did not allow further optimization of the last term of Equation I. This is because the 
system and memory bus controller shown in Figure 3 becomes the bottleneck when subjected to intensive data traffic 
to and from main memory and system bus. This is not a problem for one way traffic between main memory and a 
peripheral device or vice-versa. However. it becomes a limitation in the case of networked multimedia applications 
where data flows in continuously from network to main memory and back out from main memory to graphics 
display. A possible solution is to transfer data directly from a network device to the frame buffer over the system bus. 
a mechanism commonly referred as kernel-level streaming (Murphy. 1996) (Fall, 1993). Unfortunately, the SGC bus 
implementation in the machines used for our experiments does not allow the needed slave-slave bus transactions. 

After applying all the above optimizations. Equation I becomes: 

I 
R--Z--------+---------

Nerwork-ApplicQt;on Z Xstrvtr-Framebuffer 

(Equation 2). 

Calculating the value of R from Equation 2, using 200 Mbitsls for Z Ntrwori-Appli""iDn and 230 Mbitsls for 

Z Xm",-Fram<bujft" we obtain an overall expected throughput of \07 Mbitsls. To verify the correctness of Equation 2, 

we measured the average frame rate for the visualization application after we implemented all the above 
optimizations. The value obtained was 50 frames/second which translates to a throughput of \05 Mbitsls. The 



110 Part Three Multimedia Traffic 

difference between the measured and the expected values is smaller (2 Mbitsls) than that obtained in section 4 (i.e. 
4.7 Mbits/s). This is because the elimination of the second term of Equation I has also reduced overheads such as 
memory allocation by the X server. 

6. OVERALL PERFORMANCE FOR MULTIPLE APPLICA nONS 

To quantify the impact of running both video and visualization applications on overall performance. we used the 
following metrics: CPU usage. frame rate (visualization application). and percentage of frames dropped (video 
application). CPU usage was measured using Glance (Hewlett-Packard. 1992). a performance monitor tool that 
comes with standard HP-UX operating system. For the video application. the number of frames dropped was 
obtained from the diagnostics information generated by the device driver of the Parallax video board (Parallax. 
1994). Table 2 summarizes the results obtained using the Jetstream network. All tests have been performed on a 
kernel that supports single-copy TCPIIP. For the visualization application. we used a socket buffer size of 256 KB. 
Digital video playback was via NFS at 30 frames/second. the size of each frame being 512x380 pixels and 24 bit 
color per pixel. 

To beller understand the degradation in performance when both applications are running concurrently. we first 
make some observations on their performance when executed on their own. When the video application is running by 
itself. there are no video frames dropped. For the visualization application. the frame rate without using X shared 
memory is 33 frames/second. However. when running both applications. there was a 39% drop of frames displayed 
with video and the frame rate observed for visualization decreased to 26 frames/second as shown in the Table 2. The 
degradation of video performance is due to the high percentage of CPU time (56%) spent in system mode. This is 
because the visualization application uses IPC to move data to the X server which involves multiple kernel-user 
interactions. The 34% of CPU cycles left for user mode are not sufficient for the demands of video. which requires 
42% user-mode CPU time. On the other hand. 56% of CPU time spent in system mode is not sufficient for the needs 
of the visualization application which requires the CPU to spend 66% of its time in system mode. Thus. it is evident 
that the conflicting requirements of the two applications affect their overall performance. 

Table 2 Measurement of impact of CPU utilization on video and graphics visualization applications performance. 

%CPUin %CPUin Frame rate % frames dropped 

user mode system mode (jrames/s) 

VIDEO 42 48 0 

GRAPHICS 27 66 33 

VIDEO & GRAPHICS 34 56 26 39 

GRAPHICS-SHMEM 40 54 50 

VIDEO & 

GRAPHICS-SHMEM 41 50 35 10 

VIDEO video playback application 
GRAPHICS visualization application without X shared memory extensions 
GRAPHICS-SHMEM visualization application with X shared memory extensions 



Throughout optimization for multimedia applications 111 

From Table 2. we note that with X shared memory extension support. not only the visualization application has a 
higher frame rate on its own. but there is also an improvement in overall performance when both applications run. 
That is. only 10% of frames are dropped by the video application and the frame rate increased from 26 to 35 frames 
per second for the visualization application. The use of shared memory significantly reduces kernel-user interactions 
by eliminating data movement by IPC. As a result. less time is spent in system mode (50%) thereby increasing the 
availability of CPU for user mode (41%). This obviously benefits the video application. Also. the frame rate increase 
for the visualization application can be explained by the fact that with shared memory it requires 54% of CPU in 
system mode as opposed to 66% when not using X shared memory. 

7. CONCLUSIONS AND FUTURE WORK 

In this paper. we demonstrate that to achieve high application-application throughput in a high-speed network 
environment. we need to solve bottlenecks at all levels: network. operating system. and application. We have shown 
how using various optimization techniques. it is possible to increase network-application performance. These 
techniques include the use of a Gbitls network. single-copy schemes (including improved protocol processing). and X 
shared memory extensions. Figure 8 summarizes the throughput optimizations for the visualization application. At 
each level of the data path between network and application. we apply the optimizations from the previous level. 
Thus. the final throughput of 105 Mbitsls for Jetstream is the result obtained after applying optimizations at all 
levels. Compare this to the results shown in Table I. where without any optimization. the throughput was 8.4 Mbitsls 
for Ethernet. 23.1 Mbitsls for FDDl. and 46.2 Mbits/s for Jetstream. 

Throughput j 
Optimization 

(MbiVs) 

Network level 

EthemellFDDI 

Jetstream 

10/100 

1000 

Operating system level 

Two-copy 

Single-copy 

90 

200 

Application level 

Without shared memory 69.3 

Wrth shared memory tOS 

Figure 8 Summary of all applied optimizations. Each level includes the optimizations from the previous level. 

As pointed out in section 4. the hardware architecture prevents the set up of a direct data path between network 
adapter and display for those network applications that require minimal or no data processing. Furthermore. as 
depicted in Figure 9. the system and memory bus controller interconnects CPU. memory. and the I/O subsystem. 
thereby typically becoming the bottleneck during concurrent access or transfer of data between these components. 
This can limit the performance of network multimedia applications which involve simultaneous data transfer from 
network to main memory. and from memory to display device. 

Figure 9 Simplified HP 9000 Series 700 architecture. 

We are investigating new architectures which will better cope with the demands of multimedia applications in the 
context of high-speed networks. We anticipate that new switch-based bus architectures will allow greater flexibility 
in setting up different data paths between components of the system. Historically. switching logic and interconnect 



112 Part Three Multimedia Traffic 

components were expensive thereby limiting their use in systems. However, progress in silicon and packaging 
technology has changed the relative cost of interconnections and now it is possible to build general purpose computer 
systems based on switched bus architectures (Boxer, 1995). In this context, the data path used to derive Equation I 
no longer holds since in the case of these architectures, many paths can be used simultaneously to improve 
performance. 

We believe that the next generation of networked multimedia applications will require more than just network 
displays: in addition, it should be possible to manipulate the multimedia data before storing, displaying or 
transmitting over the network. In this context, we are exploring a design space that will provide the user with the 
capability of setting up data paths between devices and also the flexibility of selecting portions of multimedia data in 
transit (e.g. from network card to display) and performing any manipulation required. 

ACKNOWLEDGMENTS 

The authors wish to thank the many employees of Hewlett Packard laboratories, Bristol, UK for their support and 
encouragement during the course of this project, in particular we are grateful to Aled Edwards for his valuable 
discussions on many aspects of this work. We thank Dr. Ulrich Neumann for his help in developing the visualization 
application. We also thank Kaleb Keithley of The X Consortium for his explanations on the X shared memory 
extensions. We are grateful to the anonymous reviewers for their comments on the paper. This research has been 
funded in part by the Integrated Media System Center, a National Science Foundation Engineering Research Center 
with additional support from the Annenberg Center for Communication at the University of Southern California, the 
California Trade and Commerce Agency, and the DARPA POLO consortium agreement MDA972-94-3-0038. 

REFERENCES 

Boxer, A. (1995) Where buses cannot go. IEEE Spectrum, 41-45. 

Corbet, J. and Packard, K. (1991) The MIT Shared Memory Extension. MIT Consortium. 

Dalton, c., Watson, G., Banks, D., Calamvokis, c., Edwards, A. and Lumley, 1. (1993) Afterburner. IEEE Network, 
Vol. 7 No.4, 36-43. 

DeBaets, A. and Wheeler, K. (1992) Midrange PA-RISC Workstations with PricelPerformance Leadership. Hewlett­
Packard Journal, 6-11. 

Dittia, Z., Cox Jr., J. and Parulkar, G. (1995) Design of the APIC: A High Performance ATM Host-Network 
Interface Chip, in Proceedings of IEEE INFOCOM. 

Druschel, P. and Peterson, L. (1993) Fbufs: A High-Bandwidth Cross-Domain Transfer Facility, in Proceedings of 
Fourteenth Symposium on Operating System Principles. 

Fall, K. and Pasquale, 1. (1993) Exploiting In-Kernel Data Paths to Improve I/O Throughput and CPU Availability, 
in Proceedings of Usenix Winter Technical Conference. 

Frink c., Hammond, R., Dykstal, J. and Soltis D. (1992) High-Performance Designs for the Low-Cost PA-RlSC 
Desktop, Hewlett-Packard Journal, 55-63. 

Hewlett-Packard (1992) HP Visual User Environment 3.0 User's Guide, Hewlett-Packard Company. 

Jacobson V. (1990) Efficient Protocol Implementation, ACM SIGCOMM Tutorial. 



Throughout optimization for multimedia applications 113 

Jacobson. V .• Braden R. and Borman D. (1992) TCP Extensions for High Performance. RFC 1323. 

Jones. R. (1993) Netperf: A Network Performance Benchmark. Revision 1.7. Infonnation Networks Division. 
Hewlell Packard. 

Kanakia. H. and Cheriton. D. (1988) The VMP Network Adapter Board (NAB): High-Performance Network 
Communications for Multiprocessors. in Proceedings ACM SIGCOMM. Symposium on Communication 
Architectures and Protocols. 175-187. 

Keller. R .• Effelsberg. W. and Lamparter. B. (1993) Performance Bottlenecks in Digital Movie Systems. in 
Proce.,Hngs of the 4th International Workshop on Network and Operating System Support for Digital Audio and 
Video. Lancaster House. Lancaster. UK, 163-174. 

Murphy. B. J .• Zeadally. S. and Adams. C. J. (1996) An Analysis of Process and Memory Models to Suppon High­
Speed Networking in a UNIX Environment. in Proceedings of Usenix Winter Technical Conference. 

Ousterhout. J. K. (1990) Why Aren\ Operating Systems Getting Faster as Fast as Hardware ? in Proceedings of 
Usenix Summer Conference. 247-256. 

Parallax Hardware Guide (1994). XVideo700. MultiVideo700. and PowerVideo700. Parallax Graphics Inc. Santa 
Clara. CA. 

Pasquale. J .• Anderson. E. and Muller. P.K. (1994) Container Shipping - Operating System Suppon for UO Intensive 
Applications. IEEE Computer. Vol. 27 No.3. 84-93. 

Pasquale. J .• Polyzos. G .• Anderson. E. and Kompella. V. (1992) A Digital Video-conferencing Experiment Using 
DECstation 5000 Workstation and an FDDI Network. Internal Report. Department of Computer Science and 
Engineering. University of California, San Diego. CA. 

Patel. K .• Smith. B. and Rowe. L. (1993) Performance of a Software MPEG Video Decoder. in Proceedings of First 
ACM International Conference on Multimedia. Los Angeles. CA. 75-82. 

Rowe. L. and Smith. B. (1993) A Continuous Media Player. in Proceedings .ofthe 3rd International Workshop on 
Network and Operating System Support for Digital Audio and Video, Lecture Notes in Computer Science. Springer 
Verlag. Berlin. 376-386. 

Watson. G .• Banks. D .• Calamvokis. c.. Dalton. c.. Edwards. A. and Lumley J. (1994) AAL5 at a Gigabit for a 
Kilobuck. Journal of High Speed Networks. Vol. 3 No.2. 127-145. 

BIOGRAPHY 

Sherali Zeadally is a researcher in the Electrical Engineering Department at the University of Southern California. 
He received the B.A. degree in Computer Science from University of Cambridge. England. in 1991. and the Ph.D. 
degree in Computer Science from University of Buckingham. England. in 1996. His current research interests 
include operating systems internals. distributed systems. high speed networks and multimedia. 



114 Part Three Multimedia Traffic 

Grig Gheorghiu is a Ph.D. candidate in the Computer Science Department at the University of Southern California. 
He received the B.S. degree in Computer Science from University of Bucharest. Romania. in 1993. His research 
interests include distributed systems and multimedia applications over high speed networks. 

Anthony F. J. Levi is a Professor of Electrical Engineering at the University of Southern California. He received the 
B.S. degree from the University of Sussex. England in 1980 and the Ph.D. degree from University of Cambridge. 
England. in 1982. He is a Fellow of the Optical Society of America and a member of the American Physical Society. 
From January 1984 to mid-I993 Dr. Levi worked at AT&T Bell Laboratories. Murray Hill. New Jersey. In mid-1993 
he left AT&T to take up a position as Professor of Electrical Engineering at the University of Southern California. 
Professor Levi's research interests include scaling of photonic devices to sub-micron dimensions. integration of 
electronic and photonic devices for high-speed network applications. and optimization of networks for high-sustained 
throughput applications. To date. he has published over 150 refereed journal papers and holds 9 U . S. patents in these 
and related research subjects. 


