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Abstract 
In model checking for temporal logic, the correctness of a (concurrent) system 
with respect to a desired behavior is verified by checking whether a structure 
that models the system satisfies a formula describing the behaviour. Most 
existing verification techniques, and in particular those defined for concurrent 
calculi like as CCS, are based on a representation of the concurrent system 
by means of a labelled transition system. In this approach to verification, 
state explosion is one of the most serious problems. In this paper we present 
a new temporal logic, the selective mu-calculus, with the property that only 
the actions occurring in a formula are relevant to check the formula itself. 
We prove that the selective mu-calculus is as powerful as the mu-calculus. We 
define the notion of p-bisimulation between transition systems: given a set of 
actions p, a transition system p-bisimulates another one if they have the same 
behaviour with respect to the actions in p. We prove that, if two transition 
systems are p-equivalent, they preserve all the selective mu-calculus formulae 
with occurring actions in p. Consequently, a formula with occurring actions 
p can be more efficiently checked on a transition system p-equivalent to the 
standard one, but smaller than it. 
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1 INTRODUCTION 

In model checking for temporal logic, the correctness of a (concurrent) system 
with respect to a desired behavior is verified by checking whether a structure 
that models the system satisfies a formula describing the behaviour. Most ex­
isting verification techniques, and in particular those defined for concurrent 
calculi like as CCS [23), are based on a representation of the concurrent system 
by means of a labelled transition system [8, 12). In this approach to verifica­
tion, state explosion is one of the most serious problems: systems are often 
described by transition systems with a prohibitive number of states. On the 
other hand, in several cases, it is sufficient to verify a property on a reduced 
transition system containing only the "parts" which "influence the property" . 
Thus a solution to state explosion is the definition of suitable abstraction cri­
teria by means of which a reduced transition system can be obtained, which 
abstracts from the parts not concerned with the property to be verified. The 
works [3, 22, 24, 25, 26, 28, 29) deal with abstractions of transition systems 
preserving only properties expressible by sub-languages of a general temporal 
logic language, for example avoiding the use of some operators. The works [1) 
and [10] present methods for constructing reduced transition systems, where 
the reduction is based on a temporal logic formula: the reduced system pre­
serves the truth value of the formula. However, [10) refers only to formulae 
written in a subset of CTL logic, while the method in [1) can be applied only 
to systems obtained as the composition (product) of smaller ones. In both 
cases, the reduced transition system is obtained by means of a non-trivial 
algorithm. Other methodologies exist in which abstraction criteria are issued 
by the user of the verification environment [6, 7, 12, 13); although useful in 
practice, this approach cannot be automated. 

Since our aim is to obtain reductions in an automatic way from a formula ex­
pressing a temporal property, we consider two main aspects: the first one is the 
definition of a formalism suitable to express such properties; the second one is 
the method for extracting, from the definition of a property, the information 
sufficient to characterize the reduced transition systems. A suitable formal­
ism to express temporal properties could be the modal mu-calculus extended 
with fixpoint formulae [27). However, this formalism, although very powerful, 
cannot be used for easily deducing, from a formula, the reduction which can 
be performed on the standard transition system to obtain a smaller one on 
which the formula can be equivalently checked (this point will be discussed 
extensively in the following) . 

In order to cope with this problem, we define a different calculus, called selec­
tive mu-calculus, obtained by replacing the modal operators of the mu-calculus 
by new "selective modal operators" . This new calculus has the same power of 
the original one: the mu-calculus can be expressed by means of the selective 
mu-calculus, and viceversa. In addition, each formula written using the selec­
tive operators allows us to immediately point out the parts of the transition 
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system that can be disregarded in checking the formula. To formalize this 
fact, we define the notion of p-equivalence between transition systems: given 
a set of actions p, two transition systems T1 and T2 are p-equivalent iff they 
present the same behaviour with respect to the actions in p. We prove that, 
if two transition systems are p-equivalent, they preserve all the formulae such 
that the set of actions occurring inside the modal operators of the formulae is 
a subset of p. Thus, to prove a formula, with occurring actions p, we check it 
on a transition system which is p-equivalent to the standard one, but which 
contains only the actions in p. 

We would like to remark the elegance and the simplicity of our approach: the 
selective mu-calculus is very easy to understand and to use, being a slight mod­
ification of standard mu-calculus. Nevertheless, differently from mu-calculus, 
its formulae can be proved on reduced transition systems, the structure of 
which is suggested by the formulae themselves. 

After the preliminaries in Section 2 and an informal overview of the approach 
in Section 3, we define the selective mu-calculus in Section 4. Experimental 
results are given in Section 5 and Section 6 concludes the work. The proofs of 
the theorems are only sketched. The complete proofs can be found in [2]. 

2 PRELIMINARIES 

2.1 The Calculus of Communicating Systems 

Let us now quickly recall the main concepts about the Calculus of Commu­
nicating Systems (CCS) [23]. The syntax of process expressions (processes for 
short) is the following: 

P ::= niliXIa.PIP +PI PIP IP\LIP[f] 

where a ranges over a finite set of actions A = { r, a, a, b, b, ... } . The action 
r E A is called the internal action. The set of visible actions, £, ranged over 
by l,l' .. . , is defined as A- {r}. Each action l E £ (resp. l E £) has a 
complementary action l (resp. l). X ranges over a set of constant names: each 

constant X is defined by a constant definition X d;j P. We denote the set of 

process expressions by £. 

An operational semantics is a transition relation ---to <; £ x A x £, where 
£is the set of all the processes. If (P, a, Q) E ---to , we write P ~o Q. The 
standard semantics of CCS as defined in [23], will be denoted by ---ts. 

Given an operational semantics ---to, if 6 E A* and 6 = a 1 .. . an, n ~ 1, 

we write P ~o Q to mean P ~o · · · ~o Q. For the empty sequence of 

actions A E A* we have P~oP. With Do(P) = {QIP~oQ} we denote 
the set of the derivatives of P by ---to. 
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A term P is image finite by an operational semantics ----to if each derivative 
of P by ----to has a finite number of immediate derivatives, i.e., for each 
Q E Vo(P), it holds that the set {Q'IQ ~o Q'} is finite. 

A (labelled) transition system is a quadruple ( S, T , R, s0 ) , where S is a set of 
states, T is a set of transition labels, s0 E S is the initial state, and R ~ 
S x T x S is a set of transitions. Given a process P and an operational 
semantics ----to, O(P) = (Vo(P),A,-----to,P) is the transition system of 
P built by means of the relation ----to; for example, S(P) is the standard 
transition system of P . Note that, with abuse of notation, we use ----to for 
denoting both the operational semantics and the transition relation among 
the states of the transition system. 

2.2 The mu-calculus 

We use the modal mu-calculus [21] in a slightly extended form [27] as a branch­
ing temporal logic to express behavioural properties. The syntax of the ex­
tended mu-calculus is the following, where K ranges over sets of act ions and 
Z ranges over variables: 

4> ::= tt I ff IZ I t/>1 V t/>2 I t/>1 A 4>2 I [K]t/> I (K}t/> I vZ.t/> I p,Z.t/> 

A fixed point formula has the form p,Z.t/> (vZ.t/>) where p,Z (vZ) binds free 
occurrences of Z in 4> and an occurrence of Z is free if it is not within the 
scope of a binder p,Z (vZ) . A formula is closed if it contains no free variables. 
The formula p,Z.t/> is the least fixpoint of the recursive equation Z = t/>, while 
vZ.tj> is the greatest one. 

The verification of a formula 4> by a (finite) term P is defined recursively in 
the following. In the definition, subformulae containing free variables are dealt 
with using valuations, i.e. functions ranged over by V, which assign a subset 
V(Z) of processes in£ to each variable Z. Moreover the notion of verification 
is given also with respect to a semantics ----to: the verification of 4> by P and 
V is denoted by P t=~ tj>. We assume that P is image finite with ----to. The 
transition system O(P) verifies a formula 4>, written O(P) pv 4>, if and only 
if P p~ 4>, i.e. the initial state verifies 4> by ----to and V. 

p ~~ ff 
p t=~ tt 

p F~ z iff p E V(Z) 
p F~ 4> A '1/J iff p F~ 4> A p F~ '1/J 

P t=~ 4> v '1/J iff P t=~ 4> v P t=~ '1/J 

P t=B [K]t/> iff VP'.Va E K.if P~oP' then P' F~ 4> 
P t=B (K}t/> iff 3P'.P' t=B tj>.3a E K.P ~o P' 
P t=B vZ.t/> iff P t=B vzn.t/> for all natural numbers n 
P t=B p,Z.t/> iff P t=B p,Zn .tj> for some natural number n 
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where v zn .¢ and p.zn .¢ are defined as: 

vZ0 .¢ = tt J.LZ0 .¢ = ff 
v zn+l .¢ = ¢{ v zn .¢I Z} p.Zn+l .¢ = ¢{p.zn .¢I Z} 

where the notation ¢{1/JIZ} indicates the substitution of 1/J for every free 
occurrence of the variable Z in ¢. 

Note that closed formulae do not depend on valuations. Thus, in case of a 
closed formula ¢ we can simply write P !=0 (K)¢ in place of P I=~ (K)¢. 
Moreover, the verification of a recursive formula by a term P is given consid­
ering natural numbers, instead of ordinals, since we consider only image finite 
terms (27] . 

In the sequel we will use the following abbreviations (where K range over sets 
of actions and A is the set of CCS actions): 

def def ] def[ ] (o:l,···,an]¢ =[{o:l, .. . ,an}]¢; [-]¢=(A]¢; [-K¢ = A-K¢ 

3 AN INFORMAL OVERVIEW OF THE APPROACH 

In this section we present a brief overview of our approach, together with the 
problems it can solve. For this purpose, we use as an example the following 
CCS description of an automatic cash dispenser. The dispenser is able to 
perform two kinds of operations: to provide two different amounts of cash and 
to give information about a bank account. Each user of the cash dispenser 
owns a credit card with a personal code that must be supplied before requiring 
an operation. If the code is correctly inserted, the operation is accepted and 
executed after the return of the credit card; otherwise, the card is held and 
no operation is performed. In any case, the dispenser is able to go back to the 
state in which other requests can be accepted. After having correctly inserted 
the personal code, the user can ask either for one of two different amounts 
of money or for an account information. Then the dispenser returns the card 
and gives either the money or the requested information. In every case, the 
user must collect the item before the dispenser goes back to the initial state. 

de f -.-
X = card.code.(rzght.(cash.(cash1 _req.reLcard.cash1 .collect.x+ 

cash2_req.reLcard.cash2.collect.x)+ 
account.reLcard.accounLinfo.collect.x)+ 

wrong.hold.x) 

Figure 1 shows S(x), which has 13 states. 

Now, let us suppose we want to verify the (mu-calculus) formula 1/11 below: 

1/11 = vZ.([cashi]ff A [-right]Z) 
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Figure 1 

1/J1 expresses the safety property: "after each action different from right, an 
action cash1 cannot be performed" . 

It is easy to see that 1/J1 it satisfied by the transition system of Figure 1, but it 
has the same truth value if evaluated on the transition system of Figure 2(a), 
which is obtained from the transition system of Figure 1 by keeping only the 
transitions labelled by the actions cash1 and right, and collapsing the states 
consequently. In fact we can note that, in order to check 'ljJ1 , it is sufficient to 
observe only the part of the transition system containing these two actions. 
The problem we want to solve is to devise, given a formula, an automatic 
way for defining a suitable reduced system on which the formula has the same 
truth value of the complete system. In other words, given a formula ¢, we 
look for a method to individuate those actions labelling transitions which do 
not alter the value of¢. Given such a set of actions, we can eliminate from 
the transition system the transitions labelled by them, and reduce the system 
consequently, still preserving the truth value of ¢ . 

Consider again 'ljJ1 . We note that the set of actions to be ignored does not 
coincide with the set of actions not occurring in the formula. In fact, this set 
contains only the action right (recall that -a is a shorthand for A- a) , and 
generates the reduced transition system of Figure 2(b), if interpreted as the 
set of actions to be ignored. The formula 'ljJ1 is not satisfied by this transition 
systems, while it holds on the complete one. 

It is important to note that it does not exist a mu-calculus formula expressing 
the above property and containing only the actions cash1 and right, which 
are the only ones relevant for proving the property. Intuitively, the "cycle" 
vZ.( ... [- right]Z) in 1/J1 means "go ahead over non-interesting actions" ; thus, 
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(b) 

cash 

0 
card 

(a) (c) 

Figure 2 

to express the fact that right is an interesting action, we need to mention all 
the other ones. 

Consider now the following formula '¢2, whose informal description is "it holds 
repeatedly that: there is a finite path leading to a right action and, after 
executing it, there is a finite path leading to a cash1 action". 

'¢2 = vZ.(J..LX.(-right)X V (right)tt)/\ 
(vW.[right](J..LY.(-cash1 )Y V (cash1 )Z) 1\ [-right]W) 

All the actions occur in this formula; nevertheless, it can be equivalently 
checked on the transition system of Figure 2(a). Thus, also in this case, all 
actions, apart from right and cash1, can be ignored. The above formulae 
seem to suggest that the interesting actions are only the ones occurring in 
the formula both in the form K and - K inside the modal operators. It is 
sufficient the trivial formula '¢3 = [card](cash)tt to realize that this is false. 
This formula is not satisfied by the transition system of Figure 1 but it is 
verified by the reduced transition system of Figure 2(c). 

The above examples show that it does not exists an intuitive algorithm for 
extracting the set of actions to be ignored from a mu-calculus formula. On the 
other hand, they suggest the introduction of new modalities for expressing 
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properties, such that the actions which are relevant for proving a formula 
are the only ones explicitly mentioned by the modal operators occurring in 
the formula itself. For instance, we would like to express the property t/J1 
by a formula in which the only occurring actions are cash1 and right. To 
this purpose, we define the (selective) modal operator [K]R, where K and R 
are set of actions, such that [K]R ¢ is verified by a process which, for every 
performance of a sequence of actions not belonging to R U K, followed by an 
action in K, evolves in a process obeying ¢. With this new modal operator 
the property t/J1 can be expressed by the formula: tPs1 = [casht]{right}ff, in 
which the set of occurring actions is exactly { cash1, right} . The new modality 
(K} R ¢ can be is defined analogously. 
The idea of the selective mu-calculus is very simple although powerful. For­
mulae written using the new modalities can be checked equivalently, either on 
the complete transition system or on the one obtained by disregarding all the 
actions not occurring in the formula itself. A formula in selective mu-calculus 
corresponding to t/J2 is tPs2 = v Z. (right}0 tt 1\ [right]0 (cash1 }0 Z. The actions 
occurring in this formula "say" that it can be checked on the system of Figure 
2(a). 
For what regards tf;3 , we obtain the following formula in selective mu-calculus: 
tPs3 = [cardJ{A-card} (cash}{A-cash} tt. The occurring actions in this formula 
are the whole set A; according to the fact that the formula is not checkable 
on the reduced system of Figure 2(c). 

4 THE SELECTIVE MU-CALCULUS 

The selective mu-calculus substitutes the modal operators [K] and (K} with 
the selective operators (K}R and [K]R, with R, K ~A, the definition of which 
is the following: 

PI=~ [K]R ¢ iff 'v'P'.'v'£5 E (A- (RU K))*. 

'v'o: E K.if P ~o Q ~o P' then P' I=~ t/J 

PI=~ (K}R ¢ iff 3P'.3t5 E (A- (R UK))* . 

3o: E K.P ~o Q ~o P' and P' I=~ t/J 
Informally, these new operators require that the formula ¢ is verified after the 
execution of an action of K, provided that it is not preceded by any action in 
R U K. More precisely: 

[K]R ¢is verified by a process which, for every performance of a sequence 
of actions not belonging to R U K, followed by an action in K, evolves to 
a process obeying ¢. 
(K} R ¢ is verified by a process which can evolve to a process obeying ¢ 
after performing a sequence of actions not belonging to R UK, followed by 
an action in K. 
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The selective mu-calculus is equivalent to the mu-calculus. In fact it is easy 
to see that the standard mu-calculus operators can be defined by means of 
the selective operators subscribed by the whole set of actions A: 

[K)¢ = [K]A 4> and (K}¢ = (K}A 4> 

On the other hand, the selective operators can be expressed in standard mu­
calculus as follows: 

(K}R 4> = JLZ.(K}¢ V (-(R U K)}Z and [K]R 4> = vZ.[K]¢ 1\ [-(R U K)]Z 

Note that the mu-calculus formulae obtained by translating the selective mu­
calculus operators have a structure recalling the one of formulae expressing, 
respectively, weak liveness and safety properties, as classified in [27]. 

Note also that, the translation from mu-calculus to selective mu-calculus pro­
duces formulae in which all the actions (A) occur. This is not necessary in 
principle: we use this translation only to show how to pass, in a simple way, 
from one calculus to the other. Of course, it is possible to define more clever 
algorithms, which base the translation on the structure of mu-calculus formu­
lae, such that the resulting formulae do not contain all the actions A. 

Given a set of actions p ~ A and a semantics ---to, we define a transition 
relation ignoring all actions in A - p. 

Definition 1 Given a set of actions p ~ A and an operational semantics 
---to , we define the relation ---top in the following way: 

for each a E p and 6 E (A- p)* P~op P' = 3Q.P~oQ ~oP'. 
By P ~OP P' we express the fact that it is possible to pass from P toP' (ac­
cording to the operational semantics ---to) by performing a (possibly empty) 
sequence of actions not belonging to p and then the action a in p. Note 
that ---+sA = ---+s. Using the ---top relation we now give the notions of 
p-bisimulation and p-equivalence between transition systems. Informally, two 
transition systems are p-equivalent iff they behave in the same way with re­
spect to the actions in p. 

Definition 2 (p-bisimulation, p-equivalence) Let p ~ A be a set of actions 
and ---to and ---+n two operational semantics. Let O(P) = (S1 , A, ---to, P) 
and fl(P') = (82, A, ---+n, P') the transition systems built for the terms P 
and P' using the two semantics. 

- A p-bisimulation, B, is a binary relation on sl X s2 such that RBQ implies: 
{i) R ~OP R' implies Q ~OP Q' with R'BQ'; and 
{ii) Q ~QP Q' implies R ~OP R' with R' BQ' 

- O(P) and fl(P') are p-equivalent ( O(P) ~P fl(P')) iff there exists a p­
bisimulation B containing the pair (P, P') . 
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To indicate that two CCS terms P and Q are p-equivalent with respect to an 
operational semantics ~o (i.e. it occurs O(P) ~P O(Q)), we write P ~~ Q. 

Note that ~:1 coincides with Milner's strong equivalence; while ~~, defined 
by considering only the visible actions, does not coincide with observational 
equivalence. In fact, r actions are completely ignored by ~~, but this does 
not occur in the case of observational equivalence. For example, the processes 
a.nil + r.nil and a.nil are £-equivalent, while they are not observationally 
equivalent. On the other hand, a.nil + a.(c.nil + r.nil) and a.(c.nil + r.nil) 
are observationally equivalent, but they are not £-equivalent. Actually, ~~ is 
the same as the T * a equivalence defined in [14, 17], and implies the safety 
equivalence defined in [5]. 

Now we can formulate the main theorem of the paper, stating that two tran­
sition systems verify a formula </> of the selective mu-calculus iff there exists 
a p-bisimulation between them, where p contains the set of actions occurring 
in </>. This means that the set of formulae with occurring actions contained in 
p completely characterizes p-equivalence, as well as the set of all mu-calculus 
formulae characterizes strong equivalence [27]. 

Definition 3 (occurring actions) Given a formula </> of the selective mu­
calculus, the set C(</>) of the actions occurring in </> is inductively defined 
as follows: 

- C(tt) = C(ff) = C(Z) = 0 
- C((K)R </>) = C((K]R </>)=KURU C(</>) 
- C(</>1 v </>2) = C(</>1 II. </>2) = C(</>I) u C(¢2) 
- C(vZ.</>) = C(JLZ.</>) = C(</>) 

Theorem 4 Let P and Q be two CCS terms and let ~o and ~o be two 
operational semantics. Suppose that P is image finite by ~o and Q is image 
finite by ~o. For each p ~ A: 

O(P) ~P O(Q) if and only if 
P f:P </> {:} Q f=0 </>, for every </> such that C ( </>) ~ p. 

Proof Sketch. 
(only if) By natural induction on the depth of a formula </> of the selective 
mu-calculus, where the depth of</> is the number of nested selective operators 
((K) R and (K]R) in </> . 
(if) By contradiction, i.e. by supposing that O(P) 'f:,p O(Q) and by finding a 
formula </> such that P f=0 </> and Q ~0 <f> . 

Note that, as well as for mu-calculus and strong equivalence, the only if di­
rection in the theorem above holds also for non-image finite terms, while the 
if direction holds only if the terms are image finite [2]. 
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5 USING SELECTIVE MD-CALCULUS TO REDUCE STATE 
EXPLOSION 

529 

The selective mu-calculus has the property that, in each formula, the occurring 
actions are the only ones relevant to check the formula itself. In this section we 
discuss how state explosion can be reduced using selective mu-calculus. First 
of all we state the following proposition, relating transition systems obtained 
by using different operational semantics defined by 0 with different sets p of 
actions. We recall that, given a term Panda semantics --+o, QP(P) is the 
transition system generated by the operational semantics --+oP . 

Proposition 5 Given a term P and p,p' ~A, if p ~ p', QP(P) ~P QP' (P). 
Proof Sketch. By showing that --+(OP')P = --+oP. 

H 0 = S and p' = A, the transition system generated by --+ SP is p-equivalent 
to the one obtained by --+SA = --+ s, that is the standard transition system. 
As a consequence of the above proposition, a strategy to check a property ¢ 
on S(P) may be that of checking it on SP(P), where p = C(¢). In fact, in 
general, SP(P) is smaller than S(P), even if it may be not the minimum one 
p-equivalent to S(P) . In order to furtherly reduce the state space, SP(P) can 
be minimized by known techniques finding the minimum transition system 
with respect to strong equivalence (see for example [12, 17]). 

Example 6 Reconsider the CCS specification of the cash dispenser in Section 
3 and let us express some other properties using the selective mu-calculus. 

'IPt = [holdJ{wrong}ff: "the card is not held if the wrong code is not inserted". 

'l/J2 = [right]0 ( (cash)0 tt V (accaunt)0 tt): "if the right code is inserted, it is 
possible to perform either a cash request or an account information". 

'ljJ3 = vZ.[card]0(ZA[card]{collect,hold}ff): "a card can be inserted only if either 
the previously inserted card, if any, has been held or the previous operation, 
if any, has been successfully executed" . 

Each formula '1/Ji, i E [1..3], can be checked on the transition systems SP• (x) 
(reduced with respect to strong equivalence), where Pi = C('I/Ji): p1 = {hold, 
wrong}, P2 = {right,cash,accaunt}, p3 = {card,collect,hold}. Figure 3 
shows SP• (x) (reduced w.r.t. strong equivalence) for each i. 

In order to effectively apply the above methodology to processes with any 
number of states, we need a tool able to build the reduced transition system 
SP(P), for a CCS term Panda set p of actions. We can simulate such a tool 
by using existing verification environments and standard notions of bisimula­
tions. In fact, we can use the facilities for hiding actions (i.e. renaming some 
actions as r), offered by most existing verification environments, and build 
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hold 

Q9 
cash 

® 
hold 
~ 

Q:9 
wrong account collect 

Figure 3 

the minimum transition system with respect to a bisimulation ignoring T ac­
tions. To experimentally evaluate the degree of reduction induced by selective 
mu-calculus, we used a known environment with its notions of bisimulation, 
i.e. the CADP environment [14, 17]. We applied the following methodology 
to build a reduced transition system for checking a formula with occurring 
actions p. 

1. hide the actions in .4 - p in the specification, using the hiding facilities of 
CADP; 

2. build the transition system with the -imin option of aldebaran, issuing 
r* a equivalence reduction. 

In order to show that the above strategy is correct, we state the following 
proposition: 

Proposition 7 Let us denote by Hp(P) the transition system obtained by 
S(P) by substituting r to all actions in .4 - p. We have Hp(P) ~P S(P). 
Moreover H-;in(P) ~P S(P), where H-;in(P) is the minimum transition sys­
tem r*a equivalent to Hp(P). 
Proof Sketch. By Proposition 5 and by transitivity of ~P· 

Example 8 Let us consider the task scheduling system, taken from (23] : n 
processes wish to perform a task repeatedly, and a scheduler is required to 
ensure that they begin the task in cyclic order starting with the first pro­
cess. The different task-performances need not exclude each other in time (for 
example the second process can begin before the first one finishes), but the 
scheduler is required to ensure that each agent finishes one performance be­
fore it begins the following. The action ai signals to the i-th process that it 
can perform the task, whereas b; signals its completion. The execution of each 
task is scheduled by a single process: 

Ad~ a.C Cd~ c.E Ed~ b.D + d.B Bd~ b.A Dd~ d.A 

def [ ] de/ [ ] [ / _ If we define Ai = A/;, Di = D /;,etc., where It= ai a, b;/b, cifc, cnfclj, 

and/;= [a;ja, b;jb, c;jc, Ci-1/clj, for 1 < i ~ n, ann-task scheduler is: 
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Schedn d:3'(A1 I D2 I · · · I Dn)\c 

where c denotes the set { c1, ... , Cn}. The sort of the scheduler is { ai, bi I 1 ::=; 
i::=;n}. 
The properties we wish to prove about the scheduler are the following. 

1. the start-task actions a1 , ... , an are performed cyclically starting with a1; 
2. for each i, the start-task action ai and the end-task action b; are performed 

alternately. 

A selective mu-calculus formula expressing (1) is: 

¢ = vZ. [a- a1]{al} ff 1\ [a1]0 

([a- a2]{a2 } ff 1\ [a2]0 
([a- a3]{as} ff 1\ ... 1\ [an-1]0 
([a- an]{an} ff 1\ [an]0 z) 0 0 0)) 

while the formulae expressing (2) are, for each 1 ::=; i :S n, of the form 

'1/Ji = vZ.([bi]{a;} ff 1\ [ai]0([a;]{b;} ff 1\ [bi]0 Z)) 
Note that the property expressed by ¢ is rather weak, since it implies that 
the ai 's are performed in cyclic order, but it does not imply that each ai is 
ever executed. 

Table 1 summarizes the experimental results obtained using CADP, showing 
the number of states of the standard transition systems and of the reduced 
ones, for some values of the number n of processes. In the table we use the 
following symbols: 

- 81: number of states of the standard transition system; 
- 82 : number of states of the standard transition system minimized using the 

T* a bisimulation; 
- 83: number of states of H;J'in(8chedn), where p = C(¢) = {a1 , ... , an}; 

- 84: number of states of n;::in(Schedn), where Pi = C('l/;;) = {ai, bi}, for 
each 1 ~ i ::=; n. 

Note that we obtain for the scheduler's example a reduction comparable to 
the one in [7]. The difference is that, while we derive the interesting actions 
from the formula, in [7] the hiding of the bi actions is based on informal 
reasonings and consequently must be proved correct. Actually, our work can 
be seen as proving a general framework to extensively use practical techniques 
for process abstraction, driven by temporal logic formulae. 

Finally, note that the above methodology cannot be used when T E p; however, 
this is not a great limitation because in general it is not important to observe 
T. 
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n 81 82 83 84 

2 13 8 2 2 
3 37 24 3 2 
8 3073 2048 8 2 
10 15361 10240 10 2 

Table 1 

6 CONCLUSION 

In this paper we present a new temporal logic, the selective mu-calculus, with 
the property that the actions relevant to check a formula are only the ones 
occurring in the formula itself. 

The degree of reduction we obtain depends on the actions occurring in a 
formula. This means that there are cases, i.e. when the actions occurring in 
the formula are almost the whole set A of actions, for which we do not obtain 
significant reductions. This occur when checking properties which must hold 
for every state of the transition system as, for example, deadlock-freeness. In 
fact our calculus deals with a specific kind of abstraction, namely deleting 
all paths in which some actions do not occur. Other kinds of abstractions 
were proposed in the literature, which are general abstractions or cope with 
a specific property, as, for example, deadlock freeness [7, 11, 28]. 

The selective mu-calculus is useful in practice because it allows the use a 
reduced transition system in property verification. Thus all the verification 
systems which base their behaviour on the analysis of transition systems can 
profit from the method. In particular, our approach can be integrated with 
an on-the-fly methodology [9, 15, 16, 19, 20], where on-the-fly means that the 
system is verified during its generation. Other approaches to model checking 
fall inside the automata-theoretic framework [4, 18, 30, 31), in which each 
temporal logic formula is associated with a (either word or tree) automaton 
accepting exactly all computations that satisfy the (negation of the) formula. 
To check whether a transition system satisfies a formula, a product is done 
between the transition system and the automaton describing the formula. 
Our approach can be also used in conjunction with this methodology, thus 
obtaining a more efficient verification. 
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