
32
Selective mu-calculus: New
Modal Operators for Proving
Properties on Reduced
Transition Systems

Roberto Barbuti
Dipartimento di Informatica. Universitd di Pisa, 56125 Pisa, Italy.
e-mail: barbuti<Odi. unipi. it

Nicoletta De Francesco, Antonella Santone, Gigliola Vaglini
Dipartimento di Ingegneria dell'Informazione. Universita di Pisa,
56126 Pisa, Italy.
e-mail: { nico, san tone, gigliola }<Oiet . uni pi . it

Abstract
In model checking for temporal logic, the correctness of a (concurrent) system
with respect to a desired behavior is verified by checking whether a structure
that models the system satisfies a formula describing the behaviour. Most
existing verification techniques, and in particular those defined for concurrent
calculi like as CCS, are based on a representation of the concurrent system
by means of a labelled transition system. In this approach to verification,
state explosion is one of the most serious problems. In this paper we present
a new temporal logic, the selective mu-calculus, with the property that only
the actions occurring in a formula are relevant to check the formula itself.
We prove that the selective mu-calculus is as powerful as the mu-calculus. We
define the notion of p-bisimulation between transition systems: given a set of
actions p, a transition system p-bisimulates another one if they have the same
behaviour with respect to the actions in p. We prove that, if two transition
systems are p-equivalent, they preserve all the selective mu-calculus formulae
with occurring actions in p. Consequently, a formula with occurring actions
p can be more efficiently checked on a transition system p-equivalent to the
standard one, but smaller than it.

Keywords
Mu-Calculus, State Explosion, Abstraction, CCS

Formal Description Techniques and Protocol Specification, Testing and Verification

T. Mizuno, N. Shiratori, T. Higashino & A. Togashi (Eds.) © 1997 IFIP. Published by Chapman & Hall

520 Part Nine Concurrellt Systems

1 INTRODUCTION

In model checking for temporal logic, the correctness of a (concurrent) system
with respect to a desired behavior is verified by checking whether a structure
that models the system satisfies a formula describing the behaviour. Most ex­
isting verification techniques, and in particular those defined for concurrent
calculi like as CCS [23), are based on a representation of the concurrent system
by means of a labelled transition system [8, 12). In this approach to verifica­
tion, state explosion is one of the most serious problems: systems are often
described by transition systems with a prohibitive number of states. On the
other hand, in several cases, it is sufficient to verify a property on a reduced
transition system containing only the "parts" which "influence the property" .
Thus a solution to state explosion is the definition of suitable abstraction cri­
teria by means of which a reduced transition system can be obtained, which
abstracts from the parts not concerned with the property to be verified. The
works [3, 22, 24, 25, 26, 28, 29) deal with abstractions of transition systems
preserving only properties expressible by sub-languages of a general temporal
logic language, for example avoiding the use of some operators. The works [1)
and [10] present methods for constructing reduced transition systems, where
the reduction is based on a temporal logic formula: the reduced system pre­
serves the truth value of the formula. However, [10) refers only to formulae
written in a subset of CTL logic, while the method in [1) can be applied only
to systems obtained as the composition (product) of smaller ones. In both
cases, the reduced transition system is obtained by means of a non-trivial
algorithm. Other methodologies exist in which abstraction criteria are issued
by the user of the verification environment [6, 7, 12, 13); although useful in
practice, this approach cannot be automated.

Since our aim is to obtain reductions in an automatic way from a formula ex­
pressing a temporal property, we consider two main aspects: the first one is the
definition of a formalism suitable to express such properties; the second one is
the method for extracting, from the definition of a property, the information
sufficient to characterize the reduced transition systems. A suitable formal­
ism to express temporal properties could be the modal mu-calculus extended
with fixpoint formulae [27). However, this formalism, although very powerful,
cannot be used for easily deducing, from a formula, the reduction which can
be performed on the standard transition system to obtain a smaller one on
which the formula can be equivalently checked (this point will be discussed
extensively in the following) .

In order to cope with this problem, we define a different calculus, called selec­
tive mu-calculus, obtained by replacing the modal operators of the mu-calculus
by new "selective modal operators" . This new calculus has the same power of
the original one: the mu-calculus can be expressed by means of the selective
mu-calculus, and viceversa. In addition, each formula written using the selec­
tive operators allows us to immediately point out the parts of the transition

Selective mu-calculus: new modal operators 521

system that can be disregarded in checking the formula. To formalize this
fact, we define the notion of p-equivalence between transition systems: given
a set of actions p, two transition systems T1 and T2 are p-equivalent iff they
present the same behaviour with respect to the actions in p. We prove that,
if two transition systems are p-equivalent, they preserve all the formulae such
that the set of actions occurring inside the modal operators of the formulae is
a subset of p. Thus, to prove a formula, with occurring actions p, we check it
on a transition system which is p-equivalent to the standard one, but which
contains only the actions in p.

We would like to remark the elegance and the simplicity of our approach: the
selective mu-calculus is very easy to understand and to use, being a slight mod­
ification of standard mu-calculus. Nevertheless, differently from mu-calculus,
its formulae can be proved on reduced transition systems, the structure of
which is suggested by the formulae themselves.

After the preliminaries in Section 2 and an informal overview of the approach
in Section 3, we define the selective mu-calculus in Section 4. Experimental
results are given in Section 5 and Section 6 concludes the work. The proofs of
the theorems are only sketched. The complete proofs can be found in [2].

2 PRELIMINARIES

2.1 The Calculus of Communicating Systems

Let us now quickly recall the main concepts about the Calculus of Commu­
nicating Systems (CCS) [23]. The syntax of process expressions (processes for
short) is the following:

P ::= niliXIa.PIP +PI PIP IP\LIP[f]

where a ranges over a finite set of actions A = { r, a, a, b, b, ... } . The action
r E A is called the internal action. The set of visible actions, £, ranged over
by l,l' .. . , is defined as A- {r}. Each action l E £ (resp. l E £) has a
complementary action l (resp. l). X ranges over a set of constant names: each

constant X is defined by a constant definition X d;j P. We denote the set of

process expressions by £.

An operational semantics is a transition relation ---to <; £ x A x £, where
£is the set of all the processes. If (P, a, Q) E ---to , we write P ~o Q. The
standard semantics of CCS as defined in [23], will be denoted by ---ts.

Given an operational semantics ---to, if 6 E A* and 6 = a 1 .. . an, n ~ 1,

we write P ~o Q to mean P ~o · · · ~o Q. For the empty sequence of

actions A E A* we have P~oP. With Do(P) = {QIP~oQ} we denote
the set of the derivatives of P by ---to.

522 Part Nine Concurrent Systems

A term P is image finite by an operational semantics ----to if each derivative
of P by ----to has a finite number of immediate derivatives, i.e., for each
Q E Vo(P), it holds that the set {Q'IQ ~o Q'} is finite.

A (labelled) transition system is a quadruple (S, T , R, s0) , where S is a set of
states, T is a set of transition labels, s0 E S is the initial state, and R ~
S x T x S is a set of transitions. Given a process P and an operational
semantics ----to, O(P) = (Vo(P),A,-----to,P) is the transition system of
P built by means of the relation ----to; for example, S(P) is the standard
transition system of P . Note that, with abuse of notation, we use ----to for
denoting both the operational semantics and the transition relation among
the states of the transition system.

2.2 The mu-calculus

We use the modal mu-calculus [21] in a slightly extended form [27] as a branch­
ing temporal logic to express behavioural properties. The syntax of the ex­
tended mu-calculus is the following, where K ranges over sets of act ions and
Z ranges over variables:

4> ::= tt I ff IZ I t/>1 V t/>2 I t/>1 A 4>2 I [K]t/> I (K}t/> I vZ.t/> I p,Z.t/>

A fixed point formula has the form p,Z.t/> (vZ.t/>) where p,Z (vZ) binds free
occurrences of Z in 4> and an occurrence of Z is free if it is not within the
scope of a binder p,Z (vZ) . A formula is closed if it contains no free variables.
The formula p,Z.t/> is the least fixpoint of the recursive equation Z = t/>, while
vZ.tj> is the greatest one.

The verification of a formula 4> by a (finite) term P is defined recursively in
the following. In the definition, subformulae containing free variables are dealt
with using valuations, i.e. functions ranged over by V, which assign a subset
V(Z) of processes in£ to each variable Z. Moreover the notion of verification
is given also with respect to a semantics ----to: the verification of 4> by P and
V is denoted by P t=~ tj>. We assume that P is image finite with ----to. The
transition system O(P) verifies a formula 4>, written O(P) pv 4>, if and only
if P p~ 4>, i.e. the initial state verifies 4> by ----to and V.

p ~~ ff
p t=~ tt

p F~ z iff p E V(Z)
p F~ 4> A '1/J iff p F~ 4> A p F~ '1/J

P t=~ 4> v '1/J iff P t=~ 4> v P t=~ '1/J

P t=B [K]t/> iff VP'.Va E K.if P~oP' then P' F~ 4>
P t=B (K}t/> iff 3P'.P' t=B tj>.3a E K.P ~o P'
P t=B vZ.t/> iff P t=B vzn.t/> for all natural numbers n
P t=B p,Z.t/> iff P t=B p,Zn .tj> for some natural number n

Selective mu-calculus: new modal operators 523

where v zn .¢ and p.zn .¢ are defined as:

vZ0 .¢ = tt J.LZ0 .¢ = ff
v zn+l .¢ = ¢{ v zn .¢I Z} p.Zn+l .¢ = ¢{p.zn .¢I Z}

where the notation ¢{1/JIZ} indicates the substitution of 1/J for every free
occurrence of the variable Z in ¢.

Note that closed formulae do not depend on valuations. Thus, in case of a
closed formula ¢ we can simply write P !=0 (K)¢ in place of P I=~ (K)¢.
Moreover, the verification of a recursive formula by a term P is given consid­
ering natural numbers, instead of ordinals, since we consider only image finite
terms (27] .

In the sequel we will use the following abbreviations (where K range over sets
of actions and A is the set of CCS actions):

def def] def[] (o:l,···,an]¢ =[{o:l, .. . ,an}]¢; [-]¢=(A]¢; [-K¢ = A-K¢

3 AN INFORMAL OVERVIEW OF THE APPROACH

In this section we present a brief overview of our approach, together with the
problems it can solve. For this purpose, we use as an example the following
CCS description of an automatic cash dispenser. The dispenser is able to
perform two kinds of operations: to provide two different amounts of cash and
to give information about a bank account. Each user of the cash dispenser
owns a credit card with a personal code that must be supplied before requiring
an operation. If the code is correctly inserted, the operation is accepted and
executed after the return of the credit card; otherwise, the card is held and
no operation is performed. In any case, the dispenser is able to go back to the
state in which other requests can be accepted. After having correctly inserted
the personal code, the user can ask either for one of two different amounts
of money or for an account information. Then the dispenser returns the card
and gives either the money or the requested information. In every case, the
user must collect the item before the dispenser goes back to the initial state.

de f -.-
X = card.code.(rzght.(cash.(cash1 _req.reLcard.cash1 .collect.x+

cash2_req.reLcard.cash2.collect.x)+
account.reLcard.accounLinfo.collect.x)+

wrong.hold.x)

Figure 1 shows S(x), which has 13 states.

Now, let us suppose we want to verify the (mu-calculus) formula 1/11 below:

1/11 = vZ.([cashi]ff A [-right]Z)

524 Part Nine Concurrent Systems

Figure 1

1/J1 expresses the safety property: "after each action different from right, an
action cash1 cannot be performed" .

It is easy to see that 1/J1 it satisfied by the transition system of Figure 1, but it
has the same truth value if evaluated on the transition system of Figure 2(a),
which is obtained from the transition system of Figure 1 by keeping only the
transitions labelled by the actions cash1 and right, and collapsing the states
consequently. In fact we can note that, in order to check 'ljJ1 , it is sufficient to
observe only the part of the transition system containing these two actions.
The problem we want to solve is to devise, given a formula, an automatic
way for defining a suitable reduced system on which the formula has the same
truth value of the complete system. In other words, given a formula ¢, we
look for a method to individuate those actions labelling transitions which do
not alter the value of¢. Given such a set of actions, we can eliminate from
the transition system the transitions labelled by them, and reduce the system
consequently, still preserving the truth value of ¢ .

Consider again 'ljJ1 . We note that the set of actions to be ignored does not
coincide with the set of actions not occurring in the formula. In fact, this set
contains only the action right (recall that -a is a shorthand for A- a) , and
generates the reduced transition system of Figure 2(b), if interpreted as the
set of actions to be ignored. The formula 'ljJ1 is not satisfied by this transition
systems, while it holds on the complete one.

It is important to note that it does not exist a mu-calculus formula expressing
the above property and containing only the actions cash1 and right, which
are the only ones relevant for proving the property. Intuitively, the "cycle"
vZ.(... [- right]Z) in 1/J1 means "go ahead over non-interesting actions" ; thus,

Selective mu-calculus: new modal operators 525

(b)

cash

0
card

(a) (c)

Figure 2

to express the fact that right is an interesting action, we need to mention all
the other ones.

Consider now the following formula '¢2, whose informal description is "it holds
repeatedly that: there is a finite path leading to a right action and, after
executing it, there is a finite path leading to a cash1 action".

'¢2 = vZ.(J..LX.(-right)X V (right)tt)/\
(vW.[right](J..LY.(-cash1)Y V (cash1)Z) 1\ [-right]W)

All the actions occur in this formula; nevertheless, it can be equivalently
checked on the transition system of Figure 2(a). Thus, also in this case, all
actions, apart from right and cash1, can be ignored. The above formulae
seem to suggest that the interesting actions are only the ones occurring in
the formula both in the form K and - K inside the modal operators. It is
sufficient the trivial formula '¢3 = [card](cash)tt to realize that this is false.
This formula is not satisfied by the transition system of Figure 1 but it is
verified by the reduced transition system of Figure 2(c).

The above examples show that it does not exists an intuitive algorithm for
extracting the set of actions to be ignored from a mu-calculus formula. On the
other hand, they suggest the introduction of new modalities for expressing

526 Part Nine Concurrent Systems

properties, such that the actions which are relevant for proving a formula
are the only ones explicitly mentioned by the modal operators occurring in
the formula itself. For instance, we would like to express the property t/J1
by a formula in which the only occurring actions are cash1 and right. To
this purpose, we define the (selective) modal operator [K]R, where K and R
are set of actions, such that [K]R ¢ is verified by a process which, for every
performance of a sequence of actions not belonging to R U K, followed by an
action in K, evolves in a process obeying ¢. With this new modal operator
the property t/J1 can be expressed by the formula: tPs1 = [casht]{right}ff, in
which the set of occurring actions is exactly { cash1, right} . The new modality
(K} R ¢ can be is defined analogously.
The idea of the selective mu-calculus is very simple although powerful. For­
mulae written using the new modalities can be checked equivalently, either on
the complete transition system or on the one obtained by disregarding all the
actions not occurring in the formula itself. A formula in selective mu-calculus
corresponding to t/J2 is tPs2 = v Z. (right}0 tt 1\ [right]0 (cash1 }0 Z. The actions
occurring in this formula "say" that it can be checked on the system of Figure
2(a).
For what regards tf;3 , we obtain the following formula in selective mu-calculus:
tPs3 = [cardJ{A-card} (cash}{A-cash} tt. The occurring actions in this formula
are the whole set A; according to the fact that the formula is not checkable
on the reduced system of Figure 2(c).

4 THE SELECTIVE MU-CALCULUS

The selective mu-calculus substitutes the modal operators [K] and (K} with
the selective operators (K}R and [K]R, with R, K ~A, the definition of which
is the following:

PI=~ [K]R ¢ iff 'v'P'.'v'£5 E (A- (RU K))*.

'v'o: E K.if P ~o Q ~o P' then P' I=~ t/J

PI=~ (K}R ¢ iff 3P'.3t5 E (A- (R UK))* .

3o: E K.P ~o Q ~o P' and P' I=~ t/J
Informally, these new operators require that the formula ¢ is verified after the
execution of an action of K, provided that it is not preceded by any action in
R U K. More precisely:

[K]R ¢is verified by a process which, for every performance of a sequence
of actions not belonging to R U K, followed by an action in K, evolves to
a process obeying ¢.
(K} R ¢ is verified by a process which can evolve to a process obeying ¢
after performing a sequence of actions not belonging to R UK, followed by
an action in K.

Selective mu-calculus: new modal operators 527

The selective mu-calculus is equivalent to the mu-calculus. In fact it is easy
to see that the standard mu-calculus operators can be defined by means of
the selective operators subscribed by the whole set of actions A:

[K)¢ = [K]A 4> and (K}¢ = (K}A 4>

On the other hand, the selective operators can be expressed in standard mu­
calculus as follows:

(K}R 4> = JLZ.(K}¢ V (-(R U K)}Z and [K]R 4> = vZ.[K]¢ 1\ [-(R U K)]Z

Note that the mu-calculus formulae obtained by translating the selective mu­
calculus operators have a structure recalling the one of formulae expressing,
respectively, weak liveness and safety properties, as classified in [27].

Note also that, the translation from mu-calculus to selective mu-calculus pro­
duces formulae in which all the actions (A) occur. This is not necessary in
principle: we use this translation only to show how to pass, in a simple way,
from one calculus to the other. Of course, it is possible to define more clever
algorithms, which base the translation on the structure of mu-calculus formu­
lae, such that the resulting formulae do not contain all the actions A.

Given a set of actions p ~ A and a semantics ---to, we define a transition
relation ignoring all actions in A - p.

Definition 1 Given a set of actions p ~ A and an operational semantics
---to , we define the relation ---top in the following way:

for each a E p and 6 E (A- p)* P~op P' = 3Q.P~oQ ~oP'.
By P ~OP P' we express the fact that it is possible to pass from P toP' (ac­
cording to the operational semantics ---to) by performing a (possibly empty)
sequence of actions not belonging to p and then the action a in p. Note
that ---+sA = ---+s. Using the ---top relation we now give the notions of
p-bisimulation and p-equivalence between transition systems. Informally, two
transition systems are p-equivalent iff they behave in the same way with re­
spect to the actions in p.

Definition 2 (p-bisimulation, p-equivalence) Let p ~ A be a set of actions
and ---to and ---+n two operational semantics. Let O(P) = (S1 , A, ---to, P)
and fl(P') = (82, A, ---+n, P') the transition systems built for the terms P
and P' using the two semantics.

- A p-bisimulation, B, is a binary relation on sl X s2 such that RBQ implies:
{i) R ~OP R' implies Q ~OP Q' with R'BQ'; and
{ii) Q ~QP Q' implies R ~OP R' with R' BQ'

- O(P) and fl(P') are p-equivalent (O(P) ~P fl(P')) iff there exists a p­
bisimulation B containing the pair (P, P') .

528 Part Nine Concurrent Systems

To indicate that two CCS terms P and Q are p-equivalent with respect to an
operational semantics ~o (i.e. it occurs O(P) ~P O(Q)), we write P ~~ Q.

Note that ~:1 coincides with Milner's strong equivalence; while ~~, defined
by considering only the visible actions, does not coincide with observational
equivalence. In fact, r actions are completely ignored by ~~, but this does
not occur in the case of observational equivalence. For example, the processes
a.nil + r.nil and a.nil are £-equivalent, while they are not observationally
equivalent. On the other hand, a.nil + a.(c.nil + r.nil) and a.(c.nil + r.nil)
are observationally equivalent, but they are not £-equivalent. Actually, ~~ is
the same as the T * a equivalence defined in [14, 17], and implies the safety
equivalence defined in [5].

Now we can formulate the main theorem of the paper, stating that two tran­
sition systems verify a formula </> of the selective mu-calculus iff there exists
a p-bisimulation between them, where p contains the set of actions occurring
in </>. This means that the set of formulae with occurring actions contained in
p completely characterizes p-equivalence, as well as the set of all mu-calculus
formulae characterizes strong equivalence [27].

Definition 3 (occurring actions) Given a formula </> of the selective mu­
calculus, the set C(</>) of the actions occurring in </> is inductively defined
as follows:

- C(tt) = C(ff) = C(Z) = 0
- C((K)R </>) = C((K]R </>)=KURU C(</>)
- C(</>1 v </>2) = C(</>1 II. </>2) = C(</>I) u C(¢2)
- C(vZ.</>) = C(JLZ.</>) = C(</>)

Theorem 4 Let P and Q be two CCS terms and let ~o and ~o be two
operational semantics. Suppose that P is image finite by ~o and Q is image
finite by ~o. For each p ~ A:

O(P) ~P O(Q) if and only if
P f:P </> {:} Q f=0 </>, for every </> such that C (</>) ~ p.

Proof Sketch.
(only if) By natural induction on the depth of a formula </> of the selective
mu-calculus, where the depth of</> is the number of nested selective operators
((K) R and (K]R) in </> .
(if) By contradiction, i.e. by supposing that O(P) 'f:,p O(Q) and by finding a
formula </> such that P f=0 </> and Q ~0 <f> .

Note that, as well as for mu-calculus and strong equivalence, the only if di­
rection in the theorem above holds also for non-image finite terms, while the
if direction holds only if the terms are image finite [2].

Selective mu-calculus: new modal operators

5 USING SELECTIVE MD-CALCULUS TO REDUCE STATE
EXPLOSION

529

The selective mu-calculus has the property that, in each formula, the occurring
actions are the only ones relevant to check the formula itself. In this section we
discuss how state explosion can be reduced using selective mu-calculus. First
of all we state the following proposition, relating transition systems obtained
by using different operational semantics defined by 0 with different sets p of
actions. We recall that, given a term Panda semantics --+o, QP(P) is the
transition system generated by the operational semantics --+oP .

Proposition 5 Given a term P and p,p' ~A, if p ~ p', QP(P) ~P QP' (P).
Proof Sketch. By showing that --+(OP')P = --+oP.

H 0 = S and p' = A, the transition system generated by --+ SP is p-equivalent
to the one obtained by --+SA = --+ s, that is the standard transition system.
As a consequence of the above proposition, a strategy to check a property ¢
on S(P) may be that of checking it on SP(P), where p = C(¢). In fact, in
general, SP(P) is smaller than S(P), even if it may be not the minimum one
p-equivalent to S(P) . In order to furtherly reduce the state space, SP(P) can
be minimized by known techniques finding the minimum transition system
with respect to strong equivalence (see for example [12, 17]).

Example 6 Reconsider the CCS specification of the cash dispenser in Section
3 and let us express some other properties using the selective mu-calculus.

'IPt = [holdJ{wrong}ff: "the card is not held if the wrong code is not inserted".

'l/J2 = [right]0 ((cash)0 tt V (accaunt)0 tt): "if the right code is inserted, it is
possible to perform either a cash request or an account information".

'ljJ3 = vZ.[card]0(ZA[card]{collect,hold}ff): "a card can be inserted only if either
the previously inserted card, if any, has been held or the previous operation,
if any, has been successfully executed" .

Each formula '1/Ji, i E [1..3], can be checked on the transition systems SP• (x)
(reduced with respect to strong equivalence), where Pi = C('I/Ji): p1 = {hold,
wrong}, P2 = {right,cash,accaunt}, p3 = {card,collect,hold}. Figure 3
shows SP• (x) (reduced w.r.t. strong equivalence) for each i.

In order to effectively apply the above methodology to processes with any
number of states, we need a tool able to build the reduced transition system
SP(P), for a CCS term Panda set p of actions. We can simulate such a tool
by using existing verification environments and standard notions of bisimula­
tions. In fact, we can use the facilities for hiding actions (i.e. renaming some
actions as r), offered by most existing verification environments, and build

530 Part Nine Concurrent Systems

hold

Q9
cash

®
hold
~

Q:9
wrong account collect

Figure 3

the minimum transition system with respect to a bisimulation ignoring T ac­
tions. To experimentally evaluate the degree of reduction induced by selective
mu-calculus, we used a known environment with its notions of bisimulation,
i.e. the CADP environment [14, 17]. We applied the following methodology
to build a reduced transition system for checking a formula with occurring
actions p.

1. hide the actions in .4 - p in the specification, using the hiding facilities of
CADP;

2. build the transition system with the -imin option of aldebaran, issuing
r* a equivalence reduction.

In order to show that the above strategy is correct, we state the following
proposition:

Proposition 7 Let us denote by Hp(P) the transition system obtained by
S(P) by substituting r to all actions in .4 - p. We have Hp(P) ~P S(P).
Moreover H-;in(P) ~P S(P), where H-;in(P) is the minimum transition sys­
tem r*a equivalent to Hp(P).
Proof Sketch. By Proposition 5 and by transitivity of ~P·

Example 8 Let us consider the task scheduling system, taken from (23] : n
processes wish to perform a task repeatedly, and a scheduler is required to
ensure that they begin the task in cyclic order starting with the first pro­
cess. The different task-performances need not exclude each other in time (for
example the second process can begin before the first one finishes), but the
scheduler is required to ensure that each agent finishes one performance be­
fore it begins the following. The action ai signals to the i-th process that it
can perform the task, whereas b; signals its completion. The execution of each
task is scheduled by a single process:

Ad~ a.C Cd~ c.E Ed~ b.D + d.B Bd~ b.A Dd~ d.A

def [] de/ [] [/ _ If we define Ai = A/;, Di = D /;,etc., where It= ai a, b;/b, cifc, cnfclj,

and/;= [a;ja, b;jb, c;jc, Ci-1/clj, for 1 < i ~ n, ann-task scheduler is:

Selective mu-calculus: new modal operators 531

Schedn d:3'(A1 I D2 I · · · I Dn)\c

where c denotes the set { c1, ... , Cn}. The sort of the scheduler is { ai, bi I 1 ::=;
i::=;n}.
The properties we wish to prove about the scheduler are the following.

1. the start-task actions a1 , ... , an are performed cyclically starting with a1;
2. for each i, the start-task action ai and the end-task action b; are performed

alternately.

A selective mu-calculus formula expressing (1) is:

¢ = vZ. [a- a1]{al} ff 1\ [a1]0

([a- a2]{a2 } ff 1\ [a2]0
([a- a3]{as} ff 1\ ... 1\ [an-1]0
([a- an]{an} ff 1\ [an]0 z) 0 0 0))

while the formulae expressing (2) are, for each 1 ::=; i :S n, of the form

'1/Ji = vZ.([bi]{a;} ff 1\ [ai]0([a;]{b;} ff 1\ [bi]0 Z))
Note that the property expressed by ¢ is rather weak, since it implies that
the ai 's are performed in cyclic order, but it does not imply that each ai is
ever executed.

Table 1 summarizes the experimental results obtained using CADP, showing
the number of states of the standard transition systems and of the reduced
ones, for some values of the number n of processes. In the table we use the
following symbols:

- 81: number of states of the standard transition system;
- 82 : number of states of the standard transition system minimized using the

T* a bisimulation;
- 83: number of states of H;J'in(8chedn), where p = C(¢) = {a1 , ... , an};

- 84: number of states of n;::in(Schedn), where Pi = C('l/;;) = {ai, bi}, for
each 1 ~ i ::=; n.

Note that we obtain for the scheduler's example a reduction comparable to
the one in [7]. The difference is that, while we derive the interesting actions
from the formula, in [7] the hiding of the bi actions is based on informal
reasonings and consequently must be proved correct. Actually, our work can
be seen as proving a general framework to extensively use practical techniques
for process abstraction, driven by temporal logic formulae.

Finally, note that the above methodology cannot be used when T E p; however,
this is not a great limitation because in general it is not important to observe
T.

532 Part Nine Concurrellt Systems

n 81 82 83 84

2 13 8 2 2
3 37 24 3 2
8 3073 2048 8 2
10 15361 10240 10 2

Table 1

6 CONCLUSION

In this paper we present a new temporal logic, the selective mu-calculus, with
the property that the actions relevant to check a formula are only the ones
occurring in the formula itself.

The degree of reduction we obtain depends on the actions occurring in a
formula. This means that there are cases, i.e. when the actions occurring in
the formula are almost the whole set A of actions, for which we do not obtain
significant reductions. This occur when checking properties which must hold
for every state of the transition system as, for example, deadlock-freeness. In
fact our calculus deals with a specific kind of abstraction, namely deleting
all paths in which some actions do not occur. Other kinds of abstractions
were proposed in the literature, which are general abstractions or cope with
a specific property, as, for example, deadlock freeness [7, 11, 28].

The selective mu-calculus is useful in practice because it allows the use a
reduced transition system in property verification. Thus all the verification
systems which base their behaviour on the analysis of transition systems can
profit from the method. In particular, our approach can be integrated with
an on-the-fly methodology [9, 15, 16, 19, 20], where on-the-fly means that the
system is verified during its generation. Other approaches to model checking
fall inside the automata-theoretic framework [4, 18, 30, 31), in which each
temporal logic formula is associated with a (either word or tree) automaton
accepting exactly all computations that satisfy the (negation of the) formula.
To check whether a transition system satisfies a formula, a product is done
between the transition system and the automaton describing the formula.
Our approach can be also used in conjunction with this methodology, thus
obtaining a more efficient verification.

REFERENCES

[1] A. Aziz, T.R. Shiple, V. Singhal, A.L. Sangiovanni-Vincentelli. Formula­
Dependent Equivalence for Compositional CTL Model Checking. In
Proceedings of Workshop on Computer Aided Verification (CAV'94),

Selective mu-calculus: new modal operators 533

LNCS 818, 1994. 324- 337.
[2] R. Barbuti, N. De Francesco, A. Santone, G. Vaglini. Formula-Based Re­

duction of Transition Systems. Internal Report IR-3/97, Dipartimento
di Ingegneria dell'Informazione, Univ. of Pisa.

[3] S. Bensalem, A. Bouajjani, C. Loiseaux, J. Sifakis. Property Preserving
Simulations. In Proceedings of Workshop on Computer Aided Verifi­
cation (CAV'92), LNCS 663, 1992. 260-273.

[4] 0. Bernholtz, M.Y. Vardi, P. Wolper. An Automata-Theoretic Approach
to Branching-Time Model Checking. In Proceedings of Workshop on
Computer Aided Verification (CAV'94), LNCS 818, 1994. 142-155.

[5] A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, J . Sifakis. "Safety
for Branching Time Semantics". In Proceedings of the 18th Interna­
tional Colloquium on Automata, Languages and Programming. LNCS
510, 1991. 76- 92.

[6] G. Bruns. A Case Study in Safety-Critical Design. In Proceedings of
Workshop on Computer Aided Verification (CAV'92), LNCS 663, 1992.
220-233.

[7] G. Bruns. A Practical Technique for Process Abstraction. In Proceedings
of International Conference on Concurrency Theory (CONCUR'93),
LNCS 714, 1993. 37-49.

[8] R. Cleaveland, J. Parrow, B. Steffen. The concurrency workbench: oper­
ating instructions. Tech. Notes Sussex University, 1988.

[9] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis. Memory Efficient
Algorithms for the Verification of Temporal Properties. In Workshop
on Computer Aided Verification, DIMACS 90, June 1990.

[10] D. Dams, 0. Grumberg, R. Gerth. Generation of reduced models for
checking fragments of CTL. In Proceedings of Workshop on Computer
Aided Verification (CAV'93), LNCS 697, 1993. 479-490.

[11] N. De Francesco, A. Santone, G. Vaglini. A Non-Standard Seman­
tics for Generating Reduced Transition Systems. In Proceedings of
LOMAPS'96, LNCS 1192, 1996. 370-387.

[12] R. De Simone, D. Vergamini. Aboard AUTO. INRIA Technical Report
111, 1989.

[13] R. De Simone, A. Ressouche. Compositional semantics of ESTEREL and
verification by compositional reductions. In Proceedings of Workshop
on Computer Aided Verification (CAV'94), LNCS 818, 1994. 441-454.

[14] J.C. Fernandez, A. Kerbrat, L. Mounier. Symbolic Equivalence Checking.
In Proceedings of the 5th International Conference on Computer-Aided
Verification, LNCS 697, 1993. 85-96.

[15] J.C. Fernandez, L. Mounier. Verifying bisimulation on the fly. In
Third International Conference on Formal Description Techniques,
FORTE'90, Madrid, November 1990.

[16] J.C. Fernandez, L. Mounier. "On th Fly" Verification of Behavioural
Equivalences and Preorders. In Proceedings of the Third International

534 Part Nine Concurrent Systems

Conference on Computer-Aided Verification, LNCS 575, 1991. 181-191.
[17] J.C. Fernandez et al. "CADP A Protocol Validation and Verification

Toolbox". In Proceedings of the Third International Conference on
Computer-Aided Verification, LNCS 1102, 1996. 437-440.

[18] T.A. Henzinger, 0. Kupferman, M.Y. Vardi. A Space-Efficient On-the-fly
Algorithm for Real-Time Model Checking. In Proceedings of Interna­
tional Conference on Concurrency Theory (CONCUR'96), LNCS 1119,
1996. 514-529.

[19] C. Jard, T . Jeron. On-Line Model-Checking for Finite Linear Temporal
Logic Specifications. In International Workshop on Automatic Verifi­
cation Methods for Finite State Systems, LNCS 407, 1989. 189- 196.

[20] C. Jard, T. Jeron. Bounded-memory Algorithms for Verification On­
the-fly. In Proceedings of the Third International Conference on
Computer-Aided Verification, LNCS 575, 1991. 192-201.

[21] D. Kozen. Results on the propositional mu-calculus. Theoretical Com­
puter Science, 27, (1983). 333- 354.

[22] Y.S. Kwong. On reduction of asynchronous systems. Theoretical Com­
puter Science 5, 1977. 25- 50.

[23] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[24] D. Peled. All from one, one for all, on model-checking using repre­

sentatives. In Proceedings of the Fifth International Conference on
Computer-Aided Verification(CAV'93), LNCS 679, 1993. 409-423.

[25] D. Peled. Combining Partial Order Reductions with On-the Fly Model-
Checking. In Proceedings of the 6th International Conference on
Computer-Aided Verification(CAV'94), LNCS 818, 1994. 377- 390.

[26] J. Sifakis. Property Preseroing Homomorphisms of Transition Systems.
In Logics of Programs, LNCS 164, 1983.

[27] C. Stirling. An Introduction to modal and temporal logics for CCS In
Concurrency: Theory, Language, and Architecture, LNCS 391, 1989.

[28] A. Valmari. A stubborn attack on state explosion. In Proceedings of
International Conference on Computer-Aided Verification (CAV'90),
LNCS 531, 1990. 156- 165.

[29] A. Valmari, M. Clegg. Reduced Labelled Transition Systems Save Ver­
ification Effort. In Proceedings of the International Conference on
Concurrency Theory (CONCUR'91), LNCS, 1991. 526-540.

[30] M.Y. Vardi, P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic
Computer Science, Cambridge, 1986. 322- 331,

[31] M.Y. Vardi, P. Wolper. An automata-theoretic techniques for modal log­
ics of programs. Journal of Computer and System Science, 32(2):182-
21, April 1986.

