
13 
Automatic Checking of 
Aggregation Abstractions 
Through State Enumeration 
Seungjoon Park Satyaki Das David L. Dill 
Computer Systems Laboratory, Stanford University 
Gates {358, 312, 314}, Stanford University, Ca 94305, U. S. A. 
{park@tumip, satyaki@tumip, dill@cs}. stanford. edu 

Abstract 
We present a technique for checking aggregation abstractions automatically 
using a finite-state enumerator. The abstraction relation between implementa­
tion and specification is checked on-the-fly and the verification requires exam­
ining no more states than checking a simple invariant property. This technique 
can be used alone for verification of finite-state protocols, or as preparation 
for a more general aggregation proof using a general-purpose theorem-prover. 
We illustrate the technique on the cache coherence protocol in the FLASH 
multiprocessor system. 

Keywords 
Automatic verification, cache coherence protocols, distributed systems, aggre­
gation abstraction, formal methods 

1 INTRODUCTION 

Formal verification of a system design compares two different descriptions of 
the system: the specification describes the desired behavior, and the imple­
mentation describes the actual behavior of the system. The implementation is 
usually given in some (potentially) executable form. There are many specifi­
cation methods, such as assertions in the implementation code, temporal logic 
or the other logical properties, or automata. However, the most appropriate 
specification for a protocol is often an abstract version of the protocol with 
coarser-grained atomicity. For example, most cache coherence protocols are 
intended to simulate atomic memory operations using non-atomic sequences 
of steps which execute in a distributed environment. Verification of such a 
protocol ultimately requires comparing the implementation protocol with the 
specification protocol with respect to some consistency criterion. 

Previously, we developed a proof methodology called "aggregation" for re­
lating a protocol to its abstract version by providing an abstraction function 

Formal Description Techniques and Protocol Specification, Testing and Verification 
T. Mizuno, N. Shiratori, T. Higashi no & A . Togashi (Eds.) © 1997 IFIP. Published by Chapman & Hall 



208 Part Four Verification Technique 

which reassembles individual implementation steps into atomic transactions 
in a specification protocol [25, 24]. This method addresses the primary diffi­
culty with using theorem proving for verification of real systems, which is the 
amount of human effort required to complete a proof, by making it easier to 
create appropriate abstraction functions. 

The aggregation method is applicable when the description attempts to 
simulate a set of atomic transactions, where each transaction has a commit 
step. The user provides an aggregation function which maps an implementa­
tion state to a specification state by completing any committed but incomplete 
transactions, and correspondence between implementation steps and specifi­
cation steps. Given correct correspondence, an aggregation function, and a 
proper invariant, a theorem prover can finish the proofs automatically (or 
semi-automatically depending on its level of automation). 

Although the aggregation method makes verification using a theorem-prover 
much easier than it would otherwise be, use of theorem provers is still more 
labor-intensive than using algorithmic verification such as finite-state meth­
ods, especially when protocols are incorrect. In particular, finite-state methods 
automate the most difficult part of many verification efforts: the derivation of 
an adequate invariant. 

In this paper, we propose a technique that checks aggregation abstractions 
for finite-state systems automatically using a finite-state enumerator. Were­
duce the problem of checking the aggregation correspondence to the simpler 
problem of checking an invariant (an "AG property" for those familiar with 
CTL [3]) by generating a set of propositional properties from the correspon­
dence requirements of the aggregation method. This method can be used 
alone for verification of finite-state distributed protocols, or to debug aggre­
gation abstractions before theorem proving. Using the finite-state method can 
greatly reduce the amount of human effort required to complete a proof. Of 
course, there is a tradeoff: finite state methods only work for small instances 
of a system design (e.g., a multiprocessor with three processors and one bit 
of memory), while a theorem prover can show the correctness of all instances 
of the system, for any number of processors and arbitrarily large memory. 

Our technique is practical and much less expensive than other finite-state 
methods for proving abstract relations between implementation and speci­
fication (for comparison, see the section on related work). The number of 
states searched during verification using our technique is same as checking 
propositional safety properties on a finite-state system. When the aggrega­
tion correspondence holds, the method generates only the reachable states of 
the implementation. When the aggregation does not hold, state generation 
ceases when the first violating state is detected. The aggregation method is 
more efficient, because the abstraction is between transition rules of source­
level descriptions, not between state transitions in state graphs. While it may 
require more human effort to define the aggregation functions than, say, find-



Automatic checking of aggregation abstractions 209 

ing a simulation relation automatically, this may be an appropriate tradeoff 
when the state explosion problem obstructs a more automatic proof. 

The method is compatible with theorem proving because the same descrip­
tion of the specification protocol, the implementation protocol, and the aggre­
gation function can be used for both automatic checking and theorem-proving 
of the aggregation abstraction. It allows the user to debug the implementation, 
specification, and aggregation functions quickly before invoking the theorem 
prover for proving the correctness of an unbounded implementation or infi­
nite family of implementations. The state enumerator can also be used to help 
debug invariants and check some lemmas on examples before trying to prove 
them formally. Obviously, the same general technique can be used with any 
program capable of enumerating the reachable states of a system description, 
including BDD-based model checkers* [22] . Indeed, it may outperform other 
methods using abstraction in BDD-based model checkers, for some applica­
tions. 

Background and related work 

The use of abstraction functions and relations of various kinds (also called 
refinements [1, 19], homomorphisms [16], and simulations [23]) to compare 
two descriptions is a fundamental verification technique that can be applied to 
many different problems and representations in many different ways (e.g. [21, 
18, 6]) . 

Impl 
s~ S! 

Rl Rl 
82 s2 

Spec 

Figure 1 Abstraction relation 

Since the details of these methods vary greatly, it is difficult to find a simple 
general principle underlying them all. However, at a very high level, many of 
them can be seen to involve proving a property something like (as shown in 
Figure 1): 

*BDD-ba.sed model checkers use a binary decision diagram (2] to represent a Boolean func­
tion that describes a set of states symbolically. 



210 Part Four Verification Technique 

where Impl is a step of the implementation, Spec is a corresponding step of 

the specification, and R is a binary relation from an implementation domain 

to a specification domain. 
One approach using finite-state methods is to prove that a simulation pre­

order holds between the implementation and specification state graphs. For 
simulation preorder checking, the user provides descriptions of the implemen­

tation and specification state graphs and an initial relation which must contain 

the desired simulation relation. (For example, the initial relation could require 

that whenever an implementation state is paired with a specification state, 
the two states have the same label.) Given this information, the existence 
of a simulation relation (and the most general relation) can be computed by 

iterative elimination of states that cannot satisfy property (1). 
Simulation preorder checking can be computed "on-the-fly" if the state 

graphs are given implicitly as a set of rules or finite-state programs [4, 5, 
15, 14]. Unfortunately, in the worst case, this computation is linear in the 

size of the product of the implementation and specification graphs. In both 

theory and practice, checking simulation preorder between implementation 

and specification graphs is much more expensive than our technique, which 
costs the same as checking a simple safety property on the implementation 

graph alone. 
Simulation preorder checking can also be performed on graphs represented 

by BDDs by using a symbolic fixed-point algorithm [7]. However, this requires 

dealing with relations containing Boolean variables of both the implemen­

tation and specification state graphs, so the cost of verification using this 
method is also much greater than that of checking a simple property on an 
implementation state graph alone. 

Another approach using abstraction with BDDs is found in [20, 10, 9] . The 

method claims that a concrete program satisfies a property specified with 

CTL formulas if the abstracted program satisfies the corresponding property 

by an abstraction relation. To apply this method, the user must find an ab­
straction relation that preserves the property given in CTL formulas. There 

are two problems with this method from our perspective. First, we are inter­

ested in using a protocol as the specification. It is difficult or impossible to 

specify a protocol completely using CTL. Second, this method uses BDDs or 

some similar symbolic representation. Yet, we have found that explicit state 

enumeration greatly outperforms straightforward BDD-based verification for 

some classes of descriptions [13], such as all those described below. 
A direct approach would appear to checking inclusion of the language of a fi­

nite automaton describing implementation behavior in the language of another 

automaton describing specification behavior, possibly using an on-the-fly al­

gorithm. If the specification automaton is nondeterministic, this operation is 
generally exponential in the size of the specification automaton (some indi­
viduals have finessed this problem by requiring the specification automaton 
to be presented in a complemented form [16]). If the specification automaton 



Automatic checking of aggregation abstractions 211 

is deterministic, the algorithm for inclusion checking is basically identical to 
simulation preorder checking. 

Recently, there has been proposed an approach to using a model checker 
for comparing a specification protocol and an implementation protocol [11]. 
However, the technique uses a model checker simply to run the two proto­
cols in parallel without defining a precise abstraction relation between the 
two protocols. Moreover, the size of each state checked by the technique is 
increased by that of a specification protocol. 

2 THE AGGREGATION ABSTRACTION 

This section describes the aggregation method in general. The verification 
method begins with logical descriptions of state graphs of the implementation 
and the specification. The implementation description contains a set of state 
variables; the set Q of states of the implementation is the set of assignments 
of values to the state variables. The specification description may contain 
a subset of the state variables of the implementation. Each description also 
specifies a transition relation between a state and its possible successors rep­
resented by a set of functions. An implementation step Impli maps a given 
implementation state to its next state. Similarly, a specification step Speci 
maps a given specification state to its next state. The specification contains 
idle transitions which map a state to itself. 

The aggregation abstraction works when the computation can be thought 
of as implementing a set of transactions and each transaction has an identifi­
able commit step. Based on the reasoning about the commit steps, the user 
defines an aggregation function aggr which maps an implementation state to 
a specification state by first completing any committed but incomplete trans­
actions, then hiding variables that do not appear in the specification. The 
commit steps in the implementation correspond to atomic transactions in the 
specification, and the other steps in the implementation correspond to an idle 
transition in the specification. For each pair of corresponding implementation 
step and specification step (for convenience, we assumed Impli corresponds to 
Speci), the aggregation function should satisfy the following commutativity 
requirement, 

Vq E Q: aggr(Impli(q)) = Speci(aggr(q)). (2) 

The number of proofs required is equal to the number of transition functions 
in the implementation. 

The requirements (2) will generally not hold for some absurd states that 
cannot actually occur during a computation. Hence, it is usually necessary 
to provide an invariant predicate, which characterizes a superset of all the 



212 Part Four Verification Technique 

reachable states. If the invariant is Inv, the requirement can then be weakened 
to 

Vq E Q: Inv(q) =? aggr(Impli(q)) = Speci(aggr(q)) . (3) 

In other words, aggr only needs to commute when q satisfies the Inv. 
Use of an invariant incurs some additional proof obligations. First, we must 

find a proper invariant that makes (3) satisfied, and second, we must prove 
that the invariant is true in the implementation description by showing that 
the invariant holds at initial states and each implementation step preserves 
the invariant. From our experience, finding and proving an inductive invariant 
is the most time consuming part of many verification problems. It is especially 
difficult to debug faulty invariants using only a theorem prover. One of the 
great advantages of finite-state verification methods is that they compute the 
required invariant (the reachable state space) automatically. 

3 CHECKING AGGREGATION ABSTRACTIONS ON-THE-FLY 

To check the aggregation abstraction automatically, we use a finite-state enu­
merator which explores all and only the reachable states of the implementation 
on-the-fly. Because state enumeration generates the exact invariant of the sys­
tem while searching the state space, the user can check property (2) above 
without proving property (3). 

Given a purported aggregation function and correspondence between im­
plementation steps and specification steps, the requirements are expressed as 
a Boolean condition on the implementation state which consists of a set of 
conjuncts corresponding to each implementation step: 

1\ aggr(Impli(q)) = Speci(aggr(q)). (4) 

The aggregation abstraction holds if the Boolean condition is true on all the 
reachable states in the implementation. Therefore, the aggregation abstrac­
tion can be automatically checked using any finite-state enumerator which 
is able to check such propositional properties. Although we used the Murcp 
verifier [8] for this purpose, the technique could be used with other model 
checkers, including model checkers based on BDDs [22] or other symbolic 
representations. 

3.1 Mur1p description language and verifier system 

Murcp is a high-level description language for modeling finite-state asynchronous 
concurrent systems. The description allows the declaration of familiar data 



Automatic checking of aggregation abstractions 213 

types, including subranges of integers, arrays, records, and user-defined enu­
merations. Additionally, procedures and functions can be declared. A Murcp 
program is an implicit description of a state graph, which consists of a col­
lection of state variables and transition rules. The states of the graph are 
assignments to each global state variables with a value in the range of the 
declared type. The transition rules transform states to states by assigning to 
the state variables, so they define the edges of the state graph. Each rule has 
an enabling condition, which is a Boolean expression on the state variables, 
and an action, which is a statement that modifies the values of the state vari­
ables, generating a new state: 

Rule condition ==> action_statement Endrule. 
The action statement is an arbitrarily complex statement in a fairly conven­
tional programming language with assignment , if-then-else, loops, procedure 
calls, and local variables. 

Mur<p has an automatic verifier which generates all of the reachable states 
of the described system. Execution of a Mur<p program begins with one of a 
set of initial states of the graph. Then the following loop is executed forever: 
some rule whose condition is satisfied by the current state is chosen and its 
action evaluated, yielding a new current state. If there are no rules whose 
conditions are true, the execution halts. Although the action may be a com­
pound statement consisting of a sequence of smaller statements, conditionals, 
and loops, it is executed atomically-no other rule can be executed before the 
action completes. When several rule conditions are true at the same time, a 
choice is made arbitrarily, resulting in several possible executions. The Mur<p 
verifier tries them exhaustively by depth-first or breadth-first search. 

Several types of errors can be detected while the verifier explores the state 
graph. An invariant which is a Boolean expression on the global state variables 
is checked in any reachable state. An assert statement, which is a Boolean 
condition specified in an action statement, can also be checked whenever the 
verifier gets to the specified point to execute the description. The system can 
detect deadlock states, which are states that have no other states as successors. 
If a problem of any type is detected, the verifier prints out a diagnostic trace, 
which is a sequence of states that leads to a state exhibiting the problem. 

3.2 Checking aggregation abstractions using Murcp 

Normally, a description of a single protocol implementation is specified in 
Mur<p, and simple properties such as invariants and in-line assertions are 
checked. For aggregation, we need also to include a specification protocol 
and an aggregation function. First, we embed all of the implementation state 
variables in a single record type; similarly, we embed the specification pro­
tocol state variables in a second record type. The aggregation function aggr 
is written as a function in Mur<p. The specification steps are also written as 



214 Part Four Verification Technique 

functions, which take a specification state (record) as an argument and which 
return a modified specification state. 

A straightforward way of checking the Boolean condition {4) is using an 
invariant of Mur<p. We specify the propositional predicate {which may be 
a big Boolean expression) as a single invariant and then run the verifier to 
check it on every reachable state. Similarly, this can be done using other model 
checkers: e.g., a CTL model checker by specifying the same condition as an 
AG property. 

However, the requirements can be checked more efficiently if we exploit 
the property that each requirement {2) for an implementation step matters 
only when the step is enabled and that not all the implementation steps are 
enabled from a state. Using in-line assert commands of Mur<p, each conjunct 
of the Boolean predicate can be checked separately on-the-fly only when the 
corresponding step is enabled and generates a next state by executing its 
action statement. To this end, we add an assert statement to each rule of the 
implementation description as shown in the following (the original rule was 
of the form Rule CONDITION==> Begin ACTION-STATEMENT; Endrule;): 

Rule "Transition relation for Impl_i" 
CONDITION 

==> 
Var iO, i1: ImplState; 
Begin 

iO := current_state; ACTION-STATEMENT; i1 := current_state; 
Assert Spec_i(aggr(iO)) = aggr(i1); 

Endrule; 

The two local variables i 0 and i 1 contain the implementation state before and 
after the execution of the rule respectively. The assert statement expresses 
the corresponding commutativity requirement using the functions defined for 
specification steps and the aggregation function. 

The Munp verifier will automatically check the assertions on-the-fly on all 
the reachable states while exploring the state space of the implementation 
description. Note that the specification steps are written as functions and 
called and computed in local variables inside the assert statements, while 
the implementation steps are written as statements which are executed to 
generate next states in the description. The specification state is not saved 
between rule executions-only the implementation contributes to the states. 
Therefore, the number of states explored by the verifier is still the same as 
that of the implementation description. Consequently, the amount of memory 
needed to check the abstraction is the same as that needed to check the 
reachable states of the implementation only. 



Automatic checking of aggregation abstractions 215 

4 EXAMPLE: FLASH CACHE COHERENCE PROTOCOL 

This section illustrates our technique on the cache coherence protocol used in 
the Stanford FLASH multiprocessor system [17, 12]. 

4.1 Informal description of the protocol 

The system consists of a set of nodes, each of which contains a processor, 
caches, and a portion of global memory of the system. The distributed nodes 
communicate using asynchronous messages through a point-to-point network. 
The state of a cached copy is in either invalid, shared (readable), or exclusive 
(readable and writable). The cache coherence protocol is directory-based so 
that it can support a large number of distributed processing nodes. Each 
cache line-sized block in memory is associated with directory header which 
keeps information about the line. For a memory line, the node on which that 
piece of memory is physically located is called home; the other nodes are 
called remote. The home maintains all the information about memory lines 
in its main memory in the corresponding directory headers. 

If a read miss occurs in a processor, the corresponding node sends out a 
GET request to the home (this step is not necessary if the requesting processor 
is in the home). Receiving the GET request, the home consults the directory 
corresponding to the memory line to decide what action the home should take. 
If the line is pending, meaning that another request is already being processed, 
the home sends a NAK (negative acknowledgment) to the requesting node. 
If the directory indicates there is a dirty copy in a remote, then the home 
forwards the GET to that node. Otherwise, the home grants the request by 
sending a PUT to the requesting node and updates the directory properly. 
When the requesting node receives a PUT reply, which returns the requested 
memory line, the processor sets its cache state to shared and proceeds to read. 

For a write miss, the corresponding node sends out a GETX request to the 
home. Receiving the GETX request, the home consults the directory. If the 
line is pending, the home sends a NAK to the requesting node. If the directory 
indicates there is a dirty copy in a third node, then the home forwards the 
GETX to that node. If the directory indicates there are shared copies of the 
memory line in other nodes, the home sends INVs (invalidations) to those 
nodes. Then the home grants the request by sending a PUTX to the requesting 
node* . If there are no shared copies, the home simply sends a PUTX to the 
requesting node and updates the directory properly. When the requesting 
node receives a PUTX reply which returns an exclusive copy of the requested 
memory line, the processor sets its cache state to exclusive and proceeds to 
write. 

*This is the case when the multiprocessor is running in EAGER mode. In DELAYED mode, 
this grant is deferred until all the invalidation acknowledgments are received by the home. 



216 Part Four Verification Technique 

During the read miss transaction, an operation called sharing write-back 
is necessary in the following "three hop" case. This occurs when a remote 
processor in node R1 needs a shared copy of a memory line an exclusive copy 
of which is in another remote node R2 . When the GET request from R1 arrives 
at the home H, the home consults the directory to find that the line is dirty in 
R 2 • Then H forwards the GET to R 2 with the source of the message faked as 
R1 instead of H . When R2 receives the forwarded GET, the processor sets its 
copy to shared state and issues a PUT to R 1. Unfortunately, the directory in 
H does not have R1 on its sharer list yet and the main memory does not have 
an updated copy when the cached line is in the shared state. The solution 
is for R2 to issue a SWB (sharing write-back) conveying the dirty data to H 
with the source faked as R1• When H receives this message, it writes the data 
back to main memory and puts R1 on the sharer list. 

When a remote receives an INV, it invalidates its copy and then sends an 
acknowledgment to the home. There is a subtle case with an invalidation. A 
processor which is waiting for a PUT reply may get an INV before it gets the 
shared copy of the memory line, which is to be invalidated if the PUT reply is 
delayed. In such a case, the requested line is marked as invalidated, and the 
PUT reply is ignored when it arrives. 

A valid cache line may be replaced to accommodate other memory lines. 
A shared copy is replaced by issuing a replacement hint to the home, which 
removes the remote from its sharers list. An exclusive copy is written back to 
main memory by a WB (write-back) request to the home. Receiving the WB, 

the home updates the line in main memory and the directory properly. 

4.2 The aggregation function 

To define the aggregation function aggr, we first identify commit steps of 
each transaction in the protocol. For a transaction processing a read miss (or 
a write miss), the commit step occurs when the home, or a remote with an 
exclusive copy, sends a PUT (or PUTX) reply, granting the request. A write­
back transaction begins with invalidating an exclusive copy and sending a WB 

request to the home; and this is the commit step of the transaction because 
a part of the specification variables are already updated at this moment and 
the write-back request can not be denied by the home. 

The aggregation function simulates completing all committed transactions 
in the current state. If there exists a PUT message destined to a node i, the 
transaction for a read miss in node i must be completed by simulating the 
effect of node i processing the PUT message it receives at the end of the trans­
action: putting the data in the message into its cache and setting the state to 
shared. The transaction for a write miss is similarly completed by processing 
a PUTX message. There are two more kinds of messages possibly generated at 
commit steps and need to be processed to complete the committed transac-



Automatic checking of aggregation abstractions 217 

tions: SWB and WB to the home. Note that there exists at most one message 
of the four types destined to a particular node at any time. This process­
ing changes values and states of cached copies, and values in main memory. 
Changes to implementation variables, such as removing messages from the 
network, and reseting the waiting flag in the processor can be omitted from 
the completion function, as they do not affect the corresponding specification 
state. 

The aggregation function processing all the messages as described can be 
easily written in Mur<p using a "for-loop" indexed on the network queue. 
Figure 2 shows the definition of the function. An implementation state is 
declared as a record consisting of an array PNet for network containing reply 
messages, an array QNet for network containing request messages, and an 
array Procs modeling processors with caches. Each message is also a record 
containing fields for its destination dst, source src, and data Data. From an 
implementation state ist, the function computes a specification state using 
a local variable sst to be returned. First, the specification variables of ist is 
copied into sst. Then, in the second for-loop, sst is modified by simulating to 
process each message in the network in the implementation state ist if it is 
one of such types that completes a committed transaction. 

4.3 Checking the aggregation abstraction using Mur<p 

We illustrate the details on one of the implementation step (i.e., one of the 
requirements) of the protocol: a commit step of the transaction processing a 
write miss. Figure 3 shows the Murcp function for the specification step which 
corresponds to the transaction. As before, a specification state is declared as a 
record consisting of an array of cache states and data for each processor, and 
main memory. The function returns a specification state which is obtained by 
processing a write miss transaction atomically: if oldproc owns an exclusive 
copy, the exclusive data is transferred to processor newproc; otherwise if there 
is no exclusive copy in any processors, an exclusive copy is granted to processor 
newproc by copying the data in main memory to its cache. 

To check the aggregation abstraction on-the-fly, we make sure that the rules 
in Murcp description correspond exactly to the implementation steps lmpli of 
the protocol. Figure 4 presents the detailed rule for the implementation step 
where a remote node having an exclusive copy grants the ownership transfer 
by sending a PUTX reply to the requesting node. The guard condition of the 
rule checks if there is a GETX request on the head of the request queue from 
src to dst (which is a remote) and the node dst contains an exclusive copy 
of the memory line. In the action statement, the processor in the node dst 
invalidates its own copy and sends out a PUTX reply to the requesting node. 

Without changing the original description, we simply add a few lines of 
commands to check the commutativity requirement (additions to the original 



218 Part Four Verification Technique 

Function Faggr(ist : ImplState): SpecState; 
Var sst : SpecState; -- specification state to be returned 
Begin 
For i: Proc Do 

sst .State[i] := ist .Procs[i].Cache.State; 
sst.Data[i] := ist.Procs[i].Cache.Value; 

EndFor; 
sst.Memory := ist.Memory; 

Copy the specification 
variables from the current 
state of implementation 

For i :Queue do -- Check each message in the network 
If i < ist . PNet.Count then -- for the reply queue 

If ist.PNet.Message[i] .Mtype=Putt then 
-- Simulate processing a 'put' reply 
If ist . PNet .Message[i].dst=Home then 

sst .Memory := ist . PNet .Message[i].Data; 
Endif; 
If ! ist.Procs[ist . PNet.Message[i] .dst].Cache.InvMarked then 

sst.Data[ist.PNet .Message[i] .dst] := ist .PNet .Message[i].Data; 
sst .State[ist.PNet.Message[i].dst] :=Shared; 

Else 
sst.State[ist .PNet.Message[i].dst] :=Invalid; 

Endif; 
Elsif ist.PNet.Hessage[i] .Mtype=PutX then 

-- Simulate processing a 'putx' reply 
sst .Data[ist.PNet.Message[i].dst] := ist.PNet.Message[i] .Data; 
sst .State[ist.PNet.Message[i] .dst] :=Exclusive; 

endif; 
Endif; 
If i < ist.QNet.Count then -- for the request queue 

-- Simulate processing a 'WB' or a 'ShWB' sent to the home 
if ist.QNet.Message[i].Mtype=WB I ist.QNet.Message[i].Mtype=ShWB 
then sst.Memory := ist.QNet.Message[i] .Data; 
endif; 

Endif; 
EndFor; 
Return sst; 

End; 

Figure 2 The aggregation function written in Murcp 

implementation description are marked with stars in the figure). First, local 
variables i 0 , i 1 , so, and s1 are declared to be used to copy the implementation 
states and specification states, respectively, before and after the execution 
of the rule. Because this implementation step is the commit step of a write­
miss transaction, the corresponding specification step is "Atomic_GetX" in 
Figure 3. Using the declaration of the specification step and the aggregation 
function, the assert statement explicitly specifies the corresponding commu­
tativity requirement. 



Automatic checking of aggregation abstractions 

Function Atomic_GetX(st:SpecState; oldproc,nevproc:Proc): SpecState; 
Begin 

It st.State[oldproc] = Exclusive t oldproc != newproc then 
st.State[oldproc] := Invalid; 
st.State[nevproc] :• Exclusive; 
st.Data[newproc] : = st.Data[oldproc]; 
Return st; 

Elsif Forall i:Proc Do st.State[i] != Exclusive EndForall then 
st.State[Home] : = Invalid; 
st.State[newproc] := Exclusive; 
st.Data[newproc] := st.Memory; 
Return st; 

Else Return st; 
Endit; 

End; 

219 

Figure 3 The specification step processing a write miss in the FLASH proto­
col 

Ruleset i : Queue Do -- Parameterized rule for each message in the queue 
Alias request: QNet.Message[i]; Choose an arbitrary request in the queue 

dst : request . dst; the destination of the request 
SRC : request.SRC Do the node that initiated the request 

Rule "NI Remote GetX (Commit)" 
TopRequestTo(i) 
t request.Mtype = GetX 
t request.dst != Home 
t Procs[dst].Cache.State 
t Pspace(l) t Qspace(l) 
==> 

The message is the oldest among those src -> dst 
-- The message is a 'getx' request 
-- The receiving node is a remote 
= Exclusive -- The node dst has an exclusive copy 
-- There are enough spaces in the network 

• Var iO,il: ImplState; sO,sl: SpecState; -- local variables 
Begin 

• iO := ThisimplState(); 
• sO := Faggr(iO); 

Cache .State := Invalid; 
Send_Reply(dst, SRC, PutX, Cache .Value); 
if SRC !=Home then Send_Request(dst, Home, FAck, SRC, void); end; 
Consume_Request(i); 

• il := ThislmplState(); 
• sl := Faggr(il); 
* sO := Atomic_GetX(sO, iO.QNet.Message[i].dst, iO.QNet.Message[i].SRC); 
• Assert Equiv(sO,sl) "NI Remote GetX (Commit)" ; 
Endrule; 
Endalias; 
Endruleset; 

Figure 4 A sample Munp rule with an assert statement for checking the 
corresponding commutativity requirement. The lines marked with a star are 
additions to the original implementation description. 



220 Part Four Verification Technique 

4.4 Experiments 

By the aggregation abstraction, the protocol consisting of more than a hun­
dred different implementation steps has been reduced to a specification with 
only six kinds of atomic transactions. It is much easier or trivial to prove 
important properties of the reduced model, such as the consistency of data at 
the user level, than the original protocol description. 

To check the abstraction automatically, we have run Parallel Munp on 32 
ULTRA SPARC processors [27]. For the protocol with 3 processing nodes and 
request/reply message queues of size 5, the verifier explored 457,558 states 
in 126 seconds; for 4 processing nodes and queues of size 3, about 19 million 
states in 72 minutes. As expected, the number of states explored (also the 
usage of memory) is exactly same as that found for exploring reachable state 
space of the implementation model. 

5 CONCLUSION 

By limiting the verification problems to finite-state systems, we proposed an 
efficient technique for checking aggregation abstractions without reasoning 
about invariants of the system. The verification requires checking only the 
same number of states as in the implementation model by exploiting the 
correspondence information provided by the user. 

The technique can be used alone for verification of finite-state protocols, 
since abstract protocols are sometimes the best properties to check. The tech­
nique can also be applied before theorem proving of aggregation abstractions 
to debug a purported aggregation function in early stage. 

The FLASH protocol example has been verified before by applying aggre­
gation abstraction using a general-purpose theorem-prover, which took two 
months [26]. However, the proof would have been much easier had we thought 
of this finite-state method before completing them. Use of the automatic 
checking can reveal any human errors in finding aggregation functions and 
specification models, and helps to debug them in early stage of proofs. 

Acknowledgment 

This research was supported by the Advanced Research Projects Agency 
through NASA grant NAG-2-891. We thank Ulrich Stern for helping run Par­
allel Munp and David Culler at Berkeley for letting us use their NOW. 

REFERENCES 

(1) Martin Abadi and Leslie Lamport. The existence of refinement mappings. 



Automatic checking of aggregation abstractions 221 

Theoretical Computer Science, 82:253- 284, 1991. 
(2) Randal Bryant. Graph-based algorithms for Boolean function manipulation. 

IEEE 'lhmsactions on Computers, C-35(8), 1986. 
[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite­

state concurrent systems using temporal logic specifications. ACM 'Jrans­
actions on Programming Languages and Systems, 8(2), April 1986. 

(4] R. Cleaveland, J . Parrow, and B. Steffen. The concurrency workbench. In 
Proc. of the Workshop on Automatic Verification Methods for Finite State 
Systems, June 1989. 

(5] Rance Cleaveland and Steve Sims. The NCSU Concurrency Workbench. In 
Computer Aided Verification, 8th International Conference, CAV'96, pages 
394-397. Springer-Verlag, 1996. 

[6] J. de Bakker, W. de Roever, and G . Rozenberg, editors. Stepwise Refinement of 
Distributed Systems. Models, Formalisms, Correctness: LNCS 1,30. Springer­
Verlag, 1990. 

(7] D. Dill, A. Hu, and H. Wong-Toi. Checking for language inclusion using simula­
tion relation. In Computer Aided Verification, 3rd International Workshop, 
pages 255-265, July 1991. 

[8] David L. Dill. The Mur1p verification system. In Computer Aided Verification, 
8th International Conference, CA V'96, pages 390- 393. Springer-Verlag, July 
1996. 

(9] Susanne Graf. Verification of a distributed cache memory by using abstractions. 
In 6th International Conference on Computer-Aided Verification, pages 207-
219, 1994. 

(10] Susanne Graf and Claire Loiseaux. A tool for symbolic program verification 
and abstraction. In 5th International Conference on Computer-Aided Veri­
fication, pages 71-84, 1993. 

(11] Klaus Havelund and N. Shankar. Experiments in theorem proving and model 
checking for protocol verification. In Formal Methods Europe FME '96, pages 
662-681, March 1996. 

[12] Mark Heinrich. The FLASH Protocol. Internal document, Stanford University 
FLASH Group, 1993. 

[13) Alan John Hu. Techniques for Efficient Formal Verification Using Binary De­
cision Diagrams, chapter 4 on 'BDD Blow-Up Representing Sets of States', 
pages 41-49. Stanford University, December 1995. Ph.D. Thesis. 

(14] C. Norris Ip and David L. Dill. Verifying systems with replicated components 
in Mur1p. In 8th International Conference on Computer-Aided Verification, 
pages 147-158, 1996. 

[15] Chung-Wah Norris Ip. State Reduction Methods for Automatic Formal Verifi­
cation. PhD thesis, Stanford University, December 1996. 

[16] Robert Kurshan. Computer-Aided Verification of Coordinating Processes: The 
Automata-Theoretic Approach. Princeton, 1994. 

(17] J . Kuskin, D. Ofelt, M. Heinrich, J . Heinlein, R. Simoni, K. Gharachorloo, 
J . Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, 
and J. Hennessy. The Stanford FLASH multiprocessor. In Proc. 21st Inter­
national Symposium on Computer Architecture, pages 302- 313, April 1994. 

(18] S. Lam and A. Shankar. Protocol verification via projection. IEEE 'Jransac­
tions on Software Engineering, 10(4):325-342, July 1984. 



222 Part Four Verification Technique 

[19] Leslie Lamport. The temporal logic of actions. A CM TOP LAS, 16{3):872-923, 
May 1994. 

[20] David Long. Model Checking, Abstraction and Compositional Verification. 
PhD thesis, Carnegie Mellon University, July 1993. 

[21] N. Lynch. I/0 automata: A model for discrete event systems. In 22nd Annual 
Conference on Information Science and Systems, March 1988. Princeton 
University. 

[22] Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993. 
Boston. 

[23] R. Milner. An algebraic definition of simulation between programs. In Proc. 
of the 2nd International Joint Conference on Artificial Intellegence, pages 
481-489, 1971. 

[24] Seungjoon Park. Computer Assisted Analysis of Multiprocessor Memory Sys­
tems. PhD thesis, Stanford University, June 1996. 

[25] Seungjoon Park and David L. Dill. Protocol verification by aggregation of 
distributed transactions. In Computer Aided Verification, 8th International 
Conference, CA V'96, pages 306-310. Springer-Verlag, July 1996. 

[26] Seungjoon Park and David L. Dill. Verification of FLASH cache coherence 
protocol by aggregation of distributed transactions. In Proc. 8th ACM Sym­
posium on Parallel Algorithms and Architectures, pages 288-296, June 1996. 

[27] Ulrich Stern and David L. Dill. Parallelizing the Mur<p verifier. In Computer 
Aided Verification, 9th International Conference, CAV'97. Springer-Verlag, 
June 1997. 


