
22

Inheritance Anomaly
- A Formal Treatment

Lobel Crnogoract, Anand S. Rao+ and Kotagiri Ramamohanaraot
t Dept. of Computer Science, The University of Melbourne, Parkville
Vic. 3052, Australia, E-mail: { lobel, rao} @cs. mu. oz. au
+Australian Artificial Intelligence Institute, Level 6, 171 La Trobe
Street, Melbourne Vic. 3000, Australia, E-mail: anand@aaii.oz.au

Abstract
Inheritance is one of the key concepts in object-oriented programming (OOP).
However, the usefulness of inheritance in concurrent OOP is greatly reduced by
the inheritance anomalies. These anomalies have been subjected to intense re­
search, but they are still only vaguely defined and often misunderstood. In this
paper we show that concurrency is not the real cause of inheritance anomalies.
We formally define the inheritance anomaly as a relationship between inheri­
tance mechanisms and behavioural hierarchies. Our framework can be used to
analyse the occurrence of inheritance anomalies in many different paradigms.
A formal definition of the problem and a clear exposition of its causes are
pre-requisites for a successful integration of inheritance and concurrency.

Keywords
inheritance, behavioural subtyping, concurrent object-oriented programming

1 INTRODUCTION

Inheritance is one of the key concepts in object-oriented programming (OOP).
It is a widely used methodology for code re-use in sequential object-oriented
programming. In recent years, the concepts from OOP have been applied in
a concurrent setting, leading to the emergence of concurrent object-oriented
programming (COOP) [7, 11, 12). In its full generality COOP paradigm allows
inter-object concurrency (multiple objects existing concurrently) and intra­
object concurrency (multiple threads inside an object). It was found that
most OOP concepts (e.g., encapsulation) could be naturally integrated into
COOP. However, the integration of inheritance and COOP has not been

©IFIP 1997. Published by Chapman & Hall

320 Part Seven Subtyping and Inheritance

smooth. One of the main problems with inheritance in COOP is the in­
heritance anomaly [8, 10, 11, 12, 13, 15]. Inheritance anomaly arises when
additional methods of a subclass cause undesirable re-definitions of the meth­
ods in the superclass. Instead of being able to incrementally add code in a
subclass the programmer may be required to re-define some inherited code,
thus the benefits of inheritance are lost.

Inheritance anomalies have been researched extensively, but they are still
only vaguely defined and often misunderstood. There is a wealth of language
proposals in the literature trying to solve the problem of anomalies, but al­
most no formal work has been done. The main practical progress has been
made in the area of languages that do not allow intra-object concurrency. For
comparison purposes the proposals were usually evaluated on a set of stan­
dard benchmark examples introduced by Matsuoka and Yonezawa [11]. The
aim was to successfully avoid the anomaly in the benchmark examples.

Inheritance anomaly has never been formally defined in its full generality,
although a particular type of anomaly, state-partitioning, has been formally
investigated by Matsuoka et. al. [10]. We feel that a general formal treatment
of the problem is needed in order to precisely define the inheritance anomaly
and to formally compare the different proposals. Without a formal treat­
ment we cannot be certain that the set of benchmark examples is exhaustive
(there could be other undiscovered types of anomalies). The formal treatment
should also analyse the causes of the inheritance anomaly. It is widely believed
that interference between concurrency and inheritance is the cause of inheri­
tance anomalies. However, the appearance of inheritance anomalies in other
paradigms based on object-oriented concepts points to the need for a much
more thorough examination of their causes. For example, inheritance anomaly
in real-time specification languages [1] could not be caused by an interference
between inheritance and concurrency because these languages are purely se­
quential. The introduction of inheritance into agent-oriented programming
(AOP) [14] also leads to the appearance of inheritance anomalies [5]. The
requirements we put on a framework for inheritance anomaly are:

• The framework must be general enough to allow a uniform analysis of in­
heritance anomaly for any existing inheritance mechanism in any existing
object-oriented paradigm. For example, inheritance anomaly in truly con­
current languages (allowing intra-object concurrency [3]) with active ob­
jects seems to be a much harder problem than the more constrained case
(only inter-object concurrency). The framework must be able to capture
the general problem of inheritance anomaly in COOP.

• The framework must formally pinpoint the cause of the anomaly. These re­
sults should be used to predict appearances of anomalies in new paradigms,
and explain why the anomaly doesn't arise in sequential OOP.

• Are the known types of anomalies the only possible anomalies? Are they
caused by different reasons or are they just different manifestations of a sin-

Inheritance anomaly -a formal treatment 321

gle conflict? The framework must be able to derive the complete taxonomy
of the types of inheritance anomalies across different paradigms.

• By using the framework it should be possible to explore whether an ideal
solution actually exists. Also, the framework must be able to formally ex­
plain and justify the choices made in the development of better inheritance
mechanisms (e.g., the need to separate inheritance of synchronisation code
from inheritance of functionality code should be formally justified [12]).

• The framework must present a formal definition of inheritance anomaly.

We share the views in [2, 13) that inheritance should be an unconstrained,
flexible tool for code re-use. Inheritance should maximise the amount of code
that can be re-used when defining a new specification from an existing specifi­
cation. Subtyping is concerned with the use of objects, and is usually based on
method signatures. Whenever we require an object, a subtype of that object
would do equally well. Inheritance and subtyping are distinct concepts [2],
since inheritance is concerned with the internal structure of objects (code
sharing), while subtyping is concerned with the external behaviour of objects
(the way objects are used). The work on behavioural subtyping [2, 9) extends
the concept of subtyping to more general notions of behaviour.

The key insight of this paper is the connection between the notions of inheri­
tance and subtyping: the inheritance mechanism should be powerful enough to
incrementally mimic the behavioural (subtype) hierarchy. Hence, inheritance
should be able to reach any "sub-behaviour" of a given specification without
any need for re-definitions. Inheritance anomaly is defined as the failure of
the inheritance mechanism to incrementally mimic the behavioural hierarchy.
The aim of this paper is to provide a formal definition of inheritance anomaly
and to address most of the previously stated requirements.

After a brief overview of the problem in COOP (Section 2), we introduce
the domain of syntactic specifications of objects (Section 3). An inheritance
mechanism is defined as a transition relation on the set of syntactic specifi­
cations. Defining inheritance in terms of a transition relation means we can
avoid giving a particular semantics to inheritance. Thus, we avoid unneces­
sarily constraining our framework. In Section 4 we introduce the concept of
behavioural hierarchy, which can be viewed as a generalised notion of subtyp­
ing. The relationship between syntactic specifications and behaviours is given
by an abstraction function which maps specifications of objects into actual
behaviours. The formal definition of inheritance anomaly is based on the re­
lationship between the behavioural hierarchy and the inheritance mechanism.
An inheritance mechanism is anomaly-free with respect to a given behavioural
hierarchy if it can mimic that hierarchy in an incremental fashion. Inheri­
tance anomaly is highly language dependent. This dependence is encoded in
the transition relation. The framework is then applied in the context of se­
quential and concurrent 00 languages (Section 5). We show that our formal
definition matches informal examples of anomalies given in literature. We give

322 Part Seven Subtyping and Inheritance

fundamental results stating theoretical limitations of inheritance mechanisms
in COOP. In particular, we show that an ideal solution does not exist.

The primary contribution of this paper is the use of the correspondence
between an inheritance mechanism and a behavioural hierarchy to motivate
a formal definition of the inheritance anomaly. Our framework can be used to
analyse the occurrence of inheritance anomalies in many different paradigms.
The analysis based on the formal definition provides a clearer understanding
of the causes of the anomaly. We provide results that explain the recent direc­
tions of research into better inheritance mechanisms (3, 12) and show that an
ideal solution does not exist. A formal definition of the problem and a clear
exposition of its causes are the pre-requisites for a successful integration of
inheritance into the existing object-oriented paradigms.

2 OVERVIEW OF INHERITANCE ANOMALY IN COOP

This section gives a brief overview of the problems caused by the inheritance
anomaly in COOP. The examples used are due to Matsuoka and Yonezawa (11).
The anomaly results in the inability of COOP languages to inherit synchroni­
sation code without re-definitions. Concurrent object-oriented programming
languages have to provide facilities for expressing synchronisation constraints
of objects. For example, the programmer needs to be able to express that
adding an element into a full buffer or removing an element from an empty
buffer is not allowed. Inheritance anomaly (in the context of COOP) is the
conflict between concurrency and inheritance where extensive re-definitions
of inherited methods are necessary in order to maintain the synchronisation
constraints of concurrent objects. Matsuoka and Yonezawa (11) have distin­
guished three kinds of inheritance anomalies in COOP languages:
• state-partitioning:
Execution of a concurrent object can be thought of as a sequence of transitions
between states. Each state is determined by the current values of all the
state variables and the methods that are acceptable. The state-partitioning
anomaly occurs when the addition of a new method further partitions the
state-space. A new state is added to the set of states a class can be in. All
the other states remain. The code changes in the superclass are caused by the
difference in the number of states possible in the superclass and the subclass.
The extra states possible in the subclass have to be accounted for in all the
methods in the superclass. The classical example involves a language based
on accept sets (7, 15). The synchronisation scheme of these proposals uses
explicit sets to determine which methods are acceptable at any time. The
methods that are not currently acceptable are either rejected, or suspended
and placed into a message queue. The keyword become denotes the explicit
switching between the states. Consider the situation in Figure 1. Class Buffer
implements a bounded buffer (storing at most MAX elements). It provides
methods put and get which add and remove a single element from the buffer.

Inherita11ce anomaly- a formal treatme11t 323

The synchronisation code, expressed by
explicit accept sets, needs to describe the
following constraints: "Method put is ac­
ceptable unless Buffer is full. Method
get is acceptable unless Buffer is empty.
Method numOfElements is always accept­
able." We define a subclass of Buffer, New­
Buffer with an additional method get2
that removes two elements. Method get2
can be used only if NewBuffer contains
more than one element. This is an ex­
tra state that the object could be in. The
anomaly appears when the become state­
ments of put and get (as well as the most of
the behaviour block) need to be re-defined
to accommodate for the extra state.

State-partitioning has been circum­
vented by proposals that employ method
guards instead of accept sets [11]. A
method is accepted if its guard evalu­
ates to true, otherwise it is suspended
(placed into a message queue) or rejected.
The syntax is "method method_signature
when guarrf' (Figure 2). Here, NewBuffer
is constructed from Buffer by adding
the statement "method get2 when nu­
mOfElements > 1" along with the code
for get2. Unlike the situation in Figure 1,
re-definitions of put and get are not nec­
essary with method guards. The guards
solve state-partitioning anomaly. How­
ever, method guards and accept sets can't
prevent the next two types of anomalies.
• state-modification:
Additions of new methods to a class can
introduce a finer-grained distinction for
the set of states under which the meth­
ods can be invoked. Code re-definitions

class Buffer(
int in=O. out=O;
behaviour:cmply = {put(x.}.numOI'Eicnrentsl

partial= {put(x).gct.numOtl-:Icmcnts}
full= {t!Ct,num011-:Icmcntsl

method numOfEicmcnts
c:ode fm· llllmOfE/rmtm.~

method pul(x)
rodrforpm
if (numOfElcmcnls==MAX) become full;
else become partial;

method get
codr fm· grt
if (numOI'Elcmcnts=::O) become empty;
else become partial;

class NcwButTcr: RuiTer{
behaYicmr:/• the set empty is inhcritt.."ll cleanly •1

panial = (put(x).get.get2.num01Elements)
run = I get.get2.num01Eh:ments)
one= {put(x),gcl.num(lfElcmcntsl

methcKI gct2
codr fol" grt2
if (numOIF.lcmcnts==O) hccmnc empty:
cl~ ir (numOfElements==l) hccmnc one;
else hccmnc panial;

method put(x)
c:nclrforpm
ir (numCli'Elelncnls==MAX) hccome full;
else if (numOfEiemcnts==l) hccmnc one;
else become panial;

method gel
coclr for gtt
if (numOJCicmenls==O) hccmne empty:
else ir (numOffilcmcnls==l) hccmnc one;
else become panial;

Figure 1 State-partitioning

class Buffer(
inl in~. nut=O;
method numOI'Eiements 1• always accepted •1

codl' for mrnrO{Eitnwms
method put(x) when (numOfEiemcnts <MAX)

cotlrjo,·pm
method get when (numOfElements > 0)

codt' fm· gl't

class LockahleBuiTer: ButTer(
BoollockL"<l =false;
method lock{ locked=truc;} 1• always acl:cpll."d •1
method unlock{locked=falsc;) t• always accepted •t
method put(x) when (!locked &&

(numOIEiements <MAX))
codrjorpm

method get when (!locked && (numOIElemcnts > 0))

codrjor grt

Figure 2 State-modification

are caused by the need to account for this finer-grained distinction of states.
The standard example involves adding a locking capability to the Buffer class.
Methods put and get can be accepted only when the object is unlocked. The
method numOfElements is not affected by the new locking operations. Method
guards (Figure 2) are used to specify the conditions under which methods are
accepted. State-modification arises from the need to add new variables to dis-

324 Part Seven Subtyping and Inheritance

tinguish between states, e.g., the variable locked in Figure 2. Methods put and
get have to be re-defined to take locked into account.
• history-only-sensitiveness:
In COOP we often encounter situations that depend on history of an object.
The need to re-define code arises because the methods in the superclass need
to leave some trace of their execution for the future (usually, the methods
are re-defined to update some new variables). The standard example involves
extending the Buffer class with a new method gget which behaves exactly like
get, except that it cannot be invoked immediately after an execution of put.
To define this new class, HistoryBuffer, methods put and get are re-defined to
use a new variable after_put. Thus, the benefits of inheritance are lost.

3 MODELLING INHERITANCE AS A TRANSITION RELATION

An inheritance mechanism defines the way a new class specification can be ob­
tained by re-using code from an existing class specification. New services may
be added, the inherited services re-defined or omitted. An inheritance mecha­
nism of a language is usually given by defining the semantics of its inheritance
operator [4]. We take a different approach. Here we formalise the inheritance
mechanism of an arbitrary language as a transition relation on the set of syn­
tactic specifications. A pair of syntactic specifications forms a transition if the
second specification can be obtained from the first by using the inheritance
rules. Expressing all inheritance mechanisms in terms of transition relations
provides a uniform view of different languages. It avoids giving a particular
semantics to inheritance, thus it does not constrain the formal framework to
one paradigm. This is important since there is no clear agreement about the
inheritance semantics in COOP or AOP (unlike in sequential OOP).

We capture a language with inheritance as a set of syntactic specifications
that do not use inheritance, and a transition relation between them. Let Spec
be the set of all possible syntactic specifications (without using inheritance) of
classes in some language. In an OOP language, Spec is the countably infinite
set of all classes that can be written without using the inheritance operator of
the language. For example, the definition of class Buffer (Figure 2) is an ele­
ment of the set Spec of the illustrated language. However, class LockableBuffer
is not an element of Spec since it is defined by using the inheritance operator
":". We assume that an element p E Spec is a function p : Keys --+ Exp j_

where Keys is a countably infinite set of names. The set Exp j_ is the set of
expressions that can be written in the language. It is a partial order (actually,
a flat cpa) under the j ordering. In OOP p E Spec maps method signatures
and variables (the keys) to their respective bodies (the expressions).

Definition 1 A preordering on a set D is a binary relation that is reflexive
and transitive. A partial ordering is an antisymmetric preordering. Let e, f E
Exp j_. If e j f then either e = .l or e = f. We extend j to functions. •

Inheritance anomaly - a formal treatment 325

Definition 2 An inheritance mechanism is a pair (Spec, ---t) where ---t~
Spec x ~ x Spec. An element of---t, (p, 8, q) is called a transition where p, q E
Spec and 8 E ~. ~ is the set of syntactic entities specifying the differences

. o oE~· between p and q. We wnte p ---t q for (p, 8, q) E---t. Furthermore, p ---t q
is used to denote the reflexive and transitive closure of---t i.e., a sequence of

individual transitions. Overloading of the notion p -~ .. q is harmless. •

The transition relation ---t is a set of triples (p, 8, q). Transitions specify
how inheritance can be used to move from a syntactic specification p to a
new specification q by specifying the differences (e.g., new methods) in 8*.
'Iransitions may simulate re-definitions, deletions or omissions of components
of syntactic specifications. Hence, very general inheritance mechanisms can
be defined. The sets Spec and ~ are determined by the language that is being
analysed. Since q E Spec, Definition 2 assumes that everything that can be
defined by means of inheritance can also be defined without it.

Example 1 Figure 2 shows a single transition of the inheritance mechanism
employing method guards. Here, p corresponds to Buffer and 8 corresponds to
LockableBuffer. The syntactic specification q is not shown however. It would
correspond to a fully expanded version of LockableBuffer with the method nu­
mOJElements and the variables in and out explicitly defined. Thus, in practice,
a language specifies transitions by giving the modification 8 from p. •

Inheritance anomaly arises when instead of being able to incrementally add
code in a subclass, the programmer is required to re-define some inherited
code. In order to capture this property we need to formally make a distinction
between "incrementally adding code" and "re-defining code".

Definition 3 Transition p -~ .. q is incremental if* p ~ q. The subset of all
incremental transitions is denoted ---t I~---t . •

An incremental modification means that new functionality is added to a
syntactic specification without re-defining any of the existing services. Hence,

if p --0-t I q then whenever p maps a key to a defined expression, q maps the
same key to the same expression also. Furthermore, if p maps a key to ..l,
then q maps the same key to ..l or to a defined expression. The relation ---t I
corresponds to the elegant, incremental use of inheritance.

*The definition of transition relation can be extended to model multiple inheritance. We
focus on single inheritance in this paper.
*In most contexts this is actually a double implication. However, in order to model inheri­
tance in languages that use self and super [4) the definition of incremental transitions needs
to be modified to include some additional transitions. Basically, re-instantiation of self and
super is modelled by fully expanding all references to them and by including the transition
in ---> 1 . Details are beyond the scope of this paper.

326 Part Seven Subtyping and Inheritance

4 THE DEFINITION OF INHERITANCE ANOMALY

This section presents the formal definition of inheritance anomaly. As dis­
cussed earlier in Section 1 an anomaly-free inheritance mechanism needs to
be powerful enough to simulate the behavioural hierarchy in an incremental
fashion. If a subclass preserves and extends the behaviour of its parent
then we would like to re-use the parent's specification as a whole. The sub­
class would be defined incrementally from the original specification without
any need for re-definitions of theparent's methods. Alternatively, if a subclass
modifies the behaviour of its parent (behaviour of the parent is not pre­
served) all we can expect to re-use are parts of the parent's specification (some
methods are inherited cleanly while other methods are re-implemented).

We now introduce the notion of behavioural hierarchy. Behavioural hierar­
chy is a partially ordered set (Beh, :$). The set Beh is the set of all possible
behaviours, ordered by a partial ordering :$ which defines the meaning of be­
haviour preservation/extension. That is, if 0,¢ E Beh and(} :$ ¢then¢ some­
how preserves and extends 0. Consider the relationship between the sets Spec
and Beh. The behaviour of an object specification is determined by the lan­
guage semantics. The semantics of the chosen language defines an abstraction
function a, which maps the set Spec into the set Beh. The abstraction func­
tion maps a syntactic specification into its behaviour. Hence, a : Spec ~ Beh
is a function mapping a single element of Spec into a single element of Beh.
Syntactic specification p implements the behaviour(} if(} = a(p) (where = is
induced by the partial order :$). In general a is not injective since different
syntactic specifications may be mapped to the same behaviour. Intuitively, we
can implement a required behaviour in infinitely many ways, e.g., by chang­
ing the names of variables. In general, a is not surjective (a(Spec) ~ Beh,
where a(Spec) is the image of a over Spec) since Spec is countable, while Beh
may be uncountable. The relationship between inheritance mechanism and
behavioural hierarchy is the basis for the following definition.

Definition 4 Let (Spec,--+) be an inheritance mechanism, with a be­
havioural hierarchy (Beh, :$) and an abstraction function a. Let p, q E Spec

6E~· 6E~·
and (} E Beh. Define Gp = {q : p --+ q}. Let Ip = {q : p --+ 1 q},
Bp = {q: a(p) :$ a(q)}. Finally, let Sp = {0: a(p) :$ 0}. •

Consider Figure 3. For each syntactic specification p we define sets
Gp, Ip, Bp and SP" The set Gp is the set of all syntactic specifications that
can be obtained from p by repeated applications of the inheritance mecha­
nism. Note that Gp ~ Spec, but commonly, Gp = Spec since in many inheri­
tance mechanisms we can obtain any given specification from p by repeated
re-definitions, deletions and additions. The set Ip is a subset of Gp which
allows only incremental transitions from p. The set of all syntactic specifi­
cations which preserve and extend the behaviour of p is denoted by Bp. In

Inheritance anomaly- a formal treatment 327

Figure 3 The definition of inheritance anomaly

general, lp is not a subset of Bp because some incremental modifications can
modify behaviour. This depends on the particular context, determined by a
and (Beh, ::;) . For example, in AOP under a "natural" definition of agent
behaviour it is possible to modify the behaviour of an agent by simple, in­
cremental additions of new plans. The intersection {Ip n Bp) is the set of all
specifications which preserve and extend the behaviour of p and which can be
incrementally (without re-definitions) obtained from p. The set Sp is the set of
all possible behaviours that preserve and extend the behaviour of p. As shown
in Figure 3, Sp ~ Beh. In general a may not be surjective, therefore the set Bp
maps to a(Bp) which is a subset of Sp- In general a(lp n Bp) ~ a(Bp) ~ Sp.

Definition 5 An inheritance mechanism (Spec,--+) is anomaly-free with re­
spect to (Beh, ::;) iff Vp E Spec, a(lp n Bp) = a(Bp). •

Intuitively, consider the following scenario: a) The programmer has defined
a specification p which implements the behaviour a(p); b) The programmer
envisions a specialisation of a(p) which preserves and extends this behaviour;
c) If this specialisation can be implemented in the language by some specifi­
cation r then the programmer must be able to incrementally obtain a spec­
ification q from p, such that q also implements the required specialisation.
Proposition 1 shows that this scenario is a consequence of Definition 5.

Proposition 1 Let p, r E Spec. If the inheritance mechanism (Spec,--+) is
anomaly-free with respect to (Beh, :S) and if a(p) ::; a(r) then 36 E 6. •, q E

Spec such that p --0+ 1 q and a(r) = a(q), where= is induced by (Beh, ::;).
Proof: Since a(p) ::; a(r) we have r E Bp . Since a(Ip n Bp) = a(Bp) by
assumption, we can find q E lp n Bp such that a(q) = a(r). •

The concept of inheritance anomaly is defined with respect to a given be­
havioural hierarchy. An inheritance mechanism may be anomaly-free with

328 Part Seven Subtyping and Inheritance

respect to one hierarchy, while it may have anomalies with respect to an­
other hierarchy. This observation leads to an explanation of the inconsistency
in the current literature. Until now, the definition of behavioural hierarchy
was only given informally by researchers, through examples. In the case of
HistoryBuffer (Section 2) some researchers have claimed that it illustrates
an anomaly [11, 12], while others have claimed that it actually modifies the
behaviour of Buffer [13] and therefore should not be considered an anomaly.
This inconsistency arises from different assumptions about the behavioural
hierarchy. A formal definition of behaviour hierarchy is needed to unambigu­
ously define the problem. The dependence of the inheritance anomaly on the
chosen behavioural hierarchy gives rise to a new view of the most essential
cause of the anomaly. The inheritance anomaly arises because the inheritance
mechanisms suitable for one behavioural hierarchy may not be suitable for
a different hierarchy. Of course, in the context of COOP it is still correct to
view the anomaly as being caused by an interference between inheritance and
concurrency. However, this view does not generalise well. For example, in­
heritance anomalies have been discovered in sequential real-time specification
languages [1] (behaviour hierarchy would be based on temporal information).

5 EXAMPLE ANALYSIS

This section presents an example analysis of inheritance mechanisms in se­
quential and concurrent OOP. We examine two different behavioural hierar­
chies, which are based on the externally observable behaviour of objects. The
object model that we adopt views objects as encapsulated message acceptors.
The only way to communicate with such an object is by sending it messages.
Thus, the externally observable behaviour of an object is defined by the way
it reacts to messages. This behaviour is independent of the implementational
details. The objects are assumed to be executing at most one service at a
time. Thus, we do not deal with intra-object concurrency here. The formal
definition of inheritance anomaly is illustrated by applying it to the examples
of Section 2. Finally, we prove a general result which states the theoretical
limitations in the search for anomaly-free inheritance mechanisms.

In the context of our chosen object model we define behaviour of an object
to be the set of all possible sequences of messages that the object can accept.
We use the concept of traces (6]. Suppose that an external observer notes down
the message acceptances. A trace is a finite sequence of message acceptances
by an object. The set of all such finite sequences of message acceptances of
an object is called the traces of the object and is denoted by traces(object).
The set Messg ~ Keys is the set of all keys which can be sent in messages
and which are used to identify services. Thus, Messg is the set of all symbols
that can appear in traces (i.e., the alphabet), and the set of all possible traces
is denoted Messg*. An element of Keys is simply a method name or private
variable name. Objects enforce encapsulation by using keys in Keys- Messg

Inheritance anomaly - a formal treatment 329

for their private services. The set of services (with their keys belonging to
Messg) corresponds to the public interface of an object. A message can be
accepted only if it matches a key of one of the services offered by the object.
However, a message that matches one of the services may sometimes be not
accepted. This case arises in COOP where messages are accepted according
to the current state of the object. For example, a get message sent to a Buffer
object may be accepted (if the object is non-empty) or not accepted (if the
object is empty, in which case the message may be rejected or suspended).

Definition 6 Behaviour of an object 0 is traces(0). The set P(Messg*) is
the set of all subsets of Messg*, i.e., the set of all possible behaviours (hence,
Beh = P(Messg*) in this context). Behaviour 9 E P(Messg*) can also be
viewed as a language over the alphabet Messg. Let Reg C P(Messg*) be the
set of all regular languages over Messg, that is, all languages (behaviours) that
can be accepted by finite state machines. We use some standard operations
on traces. Let 9 E P(Messg*) and let t be a trace in 9. The restriction, t f D
denotes the trace t when restricted to symbols in the set D. The length of
trace t is denoted #t. Catenation constructs a trace from a pair of traces s
and t by putting them together in that order. The result is denoted sAt. Head
of a trace t gives the first symbol in t and is denoted t0 • The symbol m occurs
in tiff #(t r {m}) > 0. Similarly, m occurs in 9 iff 3t E 9 I m occurs in t .•

Example 2 (put, put, get) is a trace of the behaviour of bounded Buffer from
Figure 1 (assuming MAX is large), whereas (put, get, get) is not. a.(Buffer) =
{t E Messg* I Vs,v E Messg*,t = SAV ===> 0 ~ (#(s r {put})- #(s r
{get})) ~ MAX}. In other words, a trace of Buffer must have at least as many
occurrences of put as it has of get, but the difference must be at most MAX.
Additionally, every initial segment of this trace (i.e., every prefix) must have
the same property (e. g., to disallow (put, get, get, put, put)). It follows that
every non-empty trace of Buffer starts with put (consider the initial segment of
length 1) since Buffer starts off empty. The empty trace, (), is a trace of Buffer.
To illustrate the operations on traces, we have: (put, put, get) A (put, get) =
(put, put, get, put, get). #(put, put, get) = 3 and (put, get, get)o =put. •

Behaviours are ordered by defining the relation ~ . Behaviour ¢ pre­
serves/extends the behaviour 9 if 9 ~ ¢. Intuitively, ¢ can behave like 9 (can
preserve 9), but it can also exhibit some additional behaviour (¢ extends the
behaviour 9). The first behavioural ordering (denoted ~I) is given by:

Definition 1 Let 9,¢ E P(Messg*). Then, 9 ~1 ¢ iff Vm E Messg,
m occurs in 9 ==> m occurs in¢. Also, 9 =1 ¢ iff 9 ~1 ¢ and ¢ ~1 9. •

330 Part Seven Subtyping and Inheritance

Example 3 {(put, get), (put, put)} =1 {(put), (get)} because the symbols
put and get appear on both sides. Also, "the behaviour of Buffer' ::=:; 1 "the be­
haviour of NewBuffer' since NewBuffer may accept an extra message get2. •

It can be checked that ::::; 1 is a partial order, and that =: 1 is an equivalence
relation on P(Messg*). Definitfon 7 states that B ::::; 1 ¢ if the traces in ¢ con­
tain more distinct symbols than the traces in B. Hence, ¢ offers a larger set
of services than B. Behavioural equivalence =:1 states that two behaviours are
equivalent if they offer the same set of services (i.e. the same public interface).
Definition 7 is equivalent to simple subtyping without covariant/contravariant
rules (2] since messages contain only service names, and parameters are ig­
nored (this can be extended). Sometimes, we need to distinguish between
behaviours based on the actual sequencing of accepted messages. A stricter
notion of behaviour preservation/extension, denoted by ::::; 2 , is given by:

Definition 8 Let B, ¢ E P(Messg*) and consider s, t, v E Messg*. Then,
B S2 ¢ iff B ~ ¢ and Vs E ¢, s = rv for some t E B and for some v (possibly
empty) such that the symbol v0 (if it exists) never occurs in a trace of B. The
relation =2 is defined as in Definition 7. It follows that B =:2 ¢ iff B = ¢. •

Again, we can check that S2 and =:2 define a partial order and an equiv­
alence relation on P(Messg*). Definition 8 states that two objects display
equivalent behaviour if they can engage in exactly the same sequences of
message acceptances (their traces must be identical). Furthermore, ¢ pre­
serves/extends the behaviour B if¢ can engage in all the sequences that B can
engage in, and it may also engage in some additional sequences. However, such
an additional trace of ¢ must start with a trace from B until a new message
(that never occurs in B) is accepted by ¢. Thus, ¢ and B are identical until ¢
accepts a new message, after which¢ produces some additional functionality.

Example 4 The behaviour of LockableBuffer (Figure 2) preserves/extends
the behaviour of Buffer because it contains the same traces as Buffer (if
the observer is not sending lock messages), but it also contains additional
traces, all of which start with some trace from Buffer. For instance, the
trace (put, put, lock, numOfElements, unlock, get) is such an additional trace
which starts with the trace (put, put) from Buffer. Similarly, the trace
(lock, unlock, put) is a trace of LockableBuffer which starts with the empty
trace from Buffer. Hence, "the behaviour of Buffer' S2 "the behaviour
of LockableBuffer''. Under Definition 8, HistoryBuffer (Section 2) also pre­
serves/extends the behaviour of Buffer. For instance, it introduces new traces
(put, put, get, gget, put), (put, put, put, get, gget), (put, put, put, get, gget, gget).
Again, "the behaviour of Buffer' ::::; 2 "the behaviour of HistoryBuffer'. The
behaviours of HistoryBuffer and LockableBuffer are incomparable. •

Inheritance anomaly - a formal treatment 331

Definitions 7 and 8 give two different versions of behaviour preserva­
tion/extension. By using these definitions we can explain the set of stan­
dard informal examples that have been used as the "definition of inheritance
anomaly" in literature. Different definitions of behaviour and behavioural hi­
erarchy would be used to analyse inheritance mechanisms in other paradigms
(e.g., AOP, real-time specification, actor-based, COOP. with internal concur­
rency). Note that we have not distinguished between the behaviour of classes
and the behaviour of instances of classes in our definition of behaviour. This
distinction is not necessary for the simple examples of Section 2, but it should
be incorporated into a more thorough analysis.

Example 5 Consider Figure 1. We have, "the behaviour of Buffd' ~2 "the
behaviour of NewBuffd'. However, there is no incremental transition from
the given specification of Buffer to any specification of NewBuffer. Hence, this
inheritance mechanism is not anomaly-free with respect to (P(Messg*), ~2).
Similar arguments can be formulated for other examples in Section 2. Thus,
the formal definition matches the informal examples. •

We present the results of our example analysis and discuss their implications.

Theorem 1 Consider a typical sequential object-oriented language with a
simple inheritance mechanism (Spec,--+) where p --+ q iff q has additional
methods, or q has re-defined some methods from p. (Spec,--+) is anomaly-free
with respect to both (P(Messg*), ~1) and (P(Messg*), ~2).
Proof: Firstly note that Vp E Spec, a(p) = { m E M essg I p(m) =f. l.} *. If
a(p) ~1 () and if() is of the above form then 3q E Spec such that p --+I q and
a(q) ::1 () (q simply defines all m E Messy which occur in (), and for which
p(m) = l.}. The case for ~2 is identical. •

Consider a sequential class Buffer (e.g., Figure 2 with the method guards
removed). The behaviour of this class is the set of all possible sequences of its
services, i.e., {put, get, numOfElements }*.In other words, a sequential Buffer
cannot refuse a message if the message key matches one of its services (of
course, the message may return an error or fail, but the observer only ob­
serves message acceptances). Contrast this with the behaviour of bounded
Buffer (in COOP), which is an element of Reg. Most COOP languages (that
employ synchronisation code) can implement any regular language (at least)
i.e., Reg ~ a(Spec) where a(Spec) denotes the image of a over Spec. Inheri­
tance mechanisms suitable for ~2 in sequential OOP may not be suitable for
~2 in COOP. Note that there is no anomaly under ~ 1 in COOP.

Definition 9 An inheritance mechanism is behaviour preserving under

(Beh, ~) iff p --6+ I q :=::::} a(p) ~ a(q). •

332 Part Seven Subtyping and Inheritance

We introduce the notion of behaviour preserving
inheritance mechanisms thus classifying inheritance
mechanisms into two types. Behaviour preserving
inheritance mechanisms are based on the principles
used in sequential OOP. An ideal inheritance mecha­
nism in COOP would be behaviour preserving. Such
a mechanism produces only extensions of behaviour,
if used incrementally. A simple inheritance mecha­
nism, as used in sequential OOP is behaviour pre­
serving . It can be shown that the proposals based
on method guards and accept sets, informally de­
scribed in Section 2 are also behaviour preserving.

class ButTer(
int in=O, out=O;
method numOIEiemenls(... }
pre: numOIEiemenls < MAX
me.- pul(x)(... }
pre: numOffilements > 0
met- gel(... }
J
d81S LockahlcBuffer: Buffer(
Boollocked=false;
method lock (... }
method unlock(... }
pre: (gel)" !locked
pre: (pul) " !locked

.I

Figure4

Example 6 Figure 4 illustrates a non-behaviour-preserving inheritance
mechanism that avoids the anomaly from Figure 2. Pre-conditions (denoted
by "pre") act as guards, but they can also be incrementally composed in the
subclasses. The semantics of a set of pre-conditions is given by the conjunction
of their conditions. Note that a syntactic specification would use two distinct
keys for the two pre-conditions of the method put (hence, the transition is
incremental). It can be seen that the incremental addition of pre-conditions is
essentially "modifying" the synchronisation constraints of the object in an in­
cremental manner. For example, if the pre-condition of put in LockableBuffer
is changed to locked (instead of flocked) then the behaviour of Buffer is not
preserved. A behaviour preserving mechanism is clearly preferable. •

Theorem 2 Given an inheritance mechanism (Spec,--+) and a such that
Reg~ a(Spec), if (Spec,--+) is behaviour preserving under (P(Messg*), :::;2)

then it is not anomaly-free.
Proof: Assume the mechanism is anomaly-free. We construct p E Spec such
that a(p) = {m1,m2}* for some m1,m2 E Messg. Lets E a(p) and m E
Messg such that m doesn't occur in a(p). Then, t = sA(m) ¢ a(p). Consider the
behaviour(}= a(p) U {t,r(m1)}. (} E Reg {by closure) and a(p) :::;2 9, hence
3r E Spec such that a(r) :=2 9. By Proposition 1, 3q E Spec such that p --+I q
and a(q) :=2 9. At any instant, the state of q is determined by the values
of its instance variables (q has a superset of the set of instance variables
of p since p --+I q). Suppose that after accepting t, q is in some state S.
Construct q' such that S is the initial state of q' (by changing the initial values
of variables). We have a(q') = { (), (m1)}. Construct p' such that S (restricted
to the variables of p) is the initial state of p'. We have a(p') = {m1,m2}*
since all states of p and p' can accept m1 and m2. Hence, we have p' --+I q'
(since p --+I q and the same simple mapping of initial values was used to
obtain p' from p and q' from q). However, a(p') '1:2 a(q') since {m1, m2}* '1:2
{ (), (m 1)}. Hence, the inheritance mechanism is not behaviour preserving. •

Inheritance anomaly - a formal treatment 333

Theorem 2 states that there is no behaviour preserving, anomaly-free inher­
itance mechanism in COOP. Hence, proposals employing method guards and
accept sets must give an anomaly. Theorem 2 does not apply to sequential
OOP (a does not map to Reg). Further research into this area should lead to
more formal classifications of the different types of anomalies. The immediate
implication of Theorem 2 is that there is no ideal solution to the problem
of inheritance anomalies in COOP. Hence, it supports the recent direction
of research [3, 12] which separates the actual inheritance mechanisms of the
synchronisation code and the functionality code, leading to non-behaviour­
preserving inheritance mechanisms. The trade-off expressed by Theorem 2 is
that an inheritance mechanism is either not powerful enough (not anomaly­
free), or it is too powerful (not behaviour preserving). In other words, the use
of pre-conditions leads to the possibility of making mistakes (incrementally
adding new code may not preserve the original behaviour).

6 CONCLUDING REMARKS

This paper investigated the problem of the inheritance anomaly. We claim
that a formal approach is needed to provide a better understanding of the
problem, which would lead towards the design of better inheritance mecha­
nisms. The main contribution of the paper is the use of the correspondence
between an inheritance mechanism and a behavioural hierarchy to motivate a
formal definition of the inheritance anomaly in a general setting. The formal
definition shows that the interference between inheritance and concurrency
is not the most basic cause of the inheritance anomaly. Rather, the anomaly
arises because the inheritance mechanisms suitable for one behavioural hier­
archy may not be suitable for a different hierarchy.

We presented some theoretical limitations of inheritance mechanisms, thus
justifying the recent trends in the search for a cleaner integration of inheri­
tance and concurrency. In particular, we proved that an ideal solution is not
possible in COOP. The given framework can be the basis for a formal compar­
ison of the different inheritance mechanisms. It could also be used to formally
construct the complete taxonomy of the types of inheritance anomalies. Fur­
ther work in this area should concentrate on applying the formal treatment
to languages that allow intra-object concurrency.

REFERENCES

[1] M. Aksit, J. Bosch, W. van der Sterren, and L. Bergmans. Real­
time specification inheritance anomalies and real-time filters. In
ECOOP'94, LNCS 821, pages 386-407. Springer-Verlag, 1994.

[2] P. America. Designing an object-oriented programming language with
behavioural subtyping. LNCS 489, pages 60-90. Springer-Verlag, 1990.

334 Part Seven Subtyping and Inheritance

(3] M.Y. Ben-Gershon and S.J. Goldsack. Using inheritance to build extend­
able synchronisation policies for concurrent and distributed systems.
In TOOLs Pacific '95, pages 109-121, 1995.

(4] W. Cook and J. Palsberg. A denotational semantics of inheritance and
its correctness. In OOPSLA '89, pages 433-443, 1989.

(5] L. Crnogorac and A. S. Ra:o. Inheritance by extensions and restrictions
in agent systems. In ACSC'97, Sydney, Australia, February 1997.

(6] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall In­
ternational Series in Computer Science. Prentice-Hall, 1985.

(7] D. G. Kafura and K. H. Lee. Inheritance in Actor based concurrent
object-oriented languages. In ECOOP'89, pages 131-145, UK, 1989.

(8] U. Lechner, C. Lengauer, F. Nicki, and M. Wirsing. How to overcome
the inheritance anomaly. In ECOOP'96, LNCS 1098. Springer-Verlag.

(9] B. Liskov and J. M. Wing. A behavioral notion of subtyping. TOP LAS,
16(6):1811-1841, 1994.

(10] S. Matsuoka, K. Wakita, and A. Yonezawa. Synchronization constraints
with inheritance: What is not possible - so what is? Technical Re­
port 10, Dept. of Information Science, the University of Tokyo, 1990.

(11] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. In Research Di­
rections in COOP, chapter 1, pages 107-150. MIT Press, 1993.

(12] C. McHale. Synchronisation in COO Languages: Expressive Power,
Genericity and Inheritance. PhD dissertation, Trinity College, 1994.

(13] J. Meseguer. Solving the inheritance anomaly in concurrent object­
oriented programming. In ECOOP'93, LNCS 707, pages 220-246.

(14] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51-92, 1993.

(15] C. Tomlinson and V. Singh. Inheritance and synchronization with
enabled-sets. In OOPSLA '89, pages 103-112. ACM Press, 1989.

7 BIOGRAPHY

Dr Anand Rao is the Chief Research Scientist at the Australian AI Insti­
tute. He obtained his PhD from the University of Sydney in 1988, and spent
a year at IBM's T.J. Watson Research Center. He has published a number of
papers in reactive planning and recognition; families of Belief-Desire-Intention
(BDI) logics and their properties; and agent-oriented languages and method­
ologies. Prof. Kotagiri Ramamohanarao received his PhD from Monash
University in 1980. He is well known for his contributions in the areas of dy­
namic hash indexing, partial match retrieval and deductive database systems
with over 100 refereed papers. He has been a program committee member for
several prestigious international conferences including VLDB, ICDE, ICLP,
EUROPAR and ISLP. Lobel Crnogorac is a PhD student at The University
of Melbourne working on incorporation of inheritance into AOP.

