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Abstract 
This paper presents a method for automatic executable test case and test sequence 
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1 INTRODUCTION 

In spite of using a formal description technique for specifying a system, it is still 
possible that two implementations derived from the same specification are not 
compatible. This can result from incorrect implementation of some aspects of the 
system. This means that there is a need for testing each implementation for 
conformance to its specification standard. Testing is carried out by using test 
sequences generated from the specification. 

With EFSMs, the traditional methods for testing FSMs such as transition tours, 
UIOs, distinguishing sequences (DS), or W-Method are no longer adequate. The 
extended data portion which represents the data manipulation has to be tested also to 
determine the behaviors of the implementation. Quite a number of methods have 
been proposed in the literature for test case generation from EFSM specifications 
using data flow testing techniques (Sarikaya, 1986) (Ural, 1991) (Huang, 1995). 
However, they have focused on data flow testing only and control flow has been 
ignored or considered separately, and they do not consider the executability problem. 
As to control flow test, applying the FSM-based test generation methods to EFSM­
based protocols may result in non-executable test sequences. The main reason is the 
existence of non-satisfied predicates and conditional statements. To handle this 
problem, data flow testing has to be used. 

The generation of test cases in the field of communication protocols, combining 
both control and data flow techniques, has been well studied. In (Chanson, 1993), the 
authors presented a method for automatic test case and test data generation, but many 
executable test cases were not generated. This method uses symbolic evaluation to 
determine how many times an influencing self loop should be executed. An 
influencing transition is a transition which changes one or more variables that affect 
the control flow, and a self loop is a transition which starts and ends at the same state. 
The variables are called influencing variables. (Ural, 1991) does not guarantee the 
executability of the generated test c~ses because it does not consider the predicates 
associated with each transition. Also control flow testing is not covered. (Huang, 
1995) generates executable test cases for EFSM-based protocols using data flow 
analysis and control flow is not tested. To handle the executability problem, this 
method uses a breadth-first search to expand the specification graph, according to the 
inputs read and to the initial configuration. It is a kind of reachability analysis. 
Hence, it has the same disadvantage, i.e. state explosion. 

In this paper, we present a method which alleviates some of the existing problems. 
This method is different from (Huang, 1995) because it combines control and data 
flow testing instead of using only data flow testing. Unlike (Chanson, 1993) which 
verifies the executability after all the paths are generated and which considers only 
the self loops to solve the executability, our method verifies the executability during 
path generation which prevents from generating paths which will be discarded later. 
To make the non-executable paths executable, Cycle Analysis is performed in order 
to find the shortest cycle to be inserted in a path so that it becomes executable. A 
cycle is one or many transitions t} ,tz, .. ,tk such that the ending state of tk is the same 
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as the starting state of t l' Our method can also generate test cases for specifications 

with unbounded loops. 

In the next section, concepts such as the FSM and EFSM models, conformance 
testing, data flow and control flow testing are described. Section 3 presents the 
general algorithm for executable test case and test sequence generation. In sections 
4 and 5, the algorithm for executable definition-uses paths (or du-paths) generation 
is presented. This latter checks the executability during the du-path generation and 
uses cycle analysis to make the non-executable paths executable. Finally, in the last 
sections, we will compare the results obtained by our tool to those of another method 
and conclude the paper. 

2 PRELIMINARIES 

2.1 The FSM and EFSM models 

Formalized methods for the specification and verification of systems are developed 
for simplifying the problems of design, validation and implementation. Two 
basically different approaches have been used for this purpose: modeling by FSMs, 
and specifications using high-level modeling languages. 

The FSM model falls short in two important aspects: the ability to model the ma­
nipulation of variables conveniently and the ability to model the transfer of arbitrary 
values. For this reason, an FSM becomes cumbersome for simple problems (state ex­
plosion) because the number of states grows rapidly. This type of problems can be 
alleviated when EFSMs are used. 

An EFSM is formally represented as a 6-tuple <S, so,l, 0, T,V> where 
1. S is a non empty set of states, 
2. So is the initial state, 

3. I is a nonempty set of input inter~ctions, 
4. ° is a nonempty set of output interactions, 
5. T is a nonempty set of transitions, 
6. V is the set variables. 
Each element of T is a 5-tuple t=(initial_state, finaCstate, input, predicate, block). 

Here initiaLstate andjinaLstate are the states in S representing the starting state and 
the tail state of t, respectively. input is either an input interaction from I or empty. 
predicate is a predicate expressed in terms of the variables in V, the parameters of 
the input interaction and some constants. block is a set of assignment and output 
statements. 

We assume that the EFSM representation of the specification is deterministic and 
that the initial state is always reachable from any state. In order to simplify the de­
termination of the control and data flow graphs of a formal specification, it is conve­
nient to transform the specification into an equivalent form containing only the so­
called "Normal Form Transitions" (NFT). A method for generating a normal form 
specification from an ESTELLE specification is given in (Sarikaya, 1986). 
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2.2 Conformance testing 

There are two approaches for checking conformance between an implementation and 
a specification. One approach is verification and the other is conformance testing. 
While verification techniques are applicable if the internal structure of the 
implementation is known, conformance testing aims to establish whether an 
implementation under test (lUT) conforms to its specification. If the implementation 
is given as a black box, only its observable behavior can be tested against the 
observable behavior of the specification. During a conformance test, signals are sent 
to (inputs) and received from (outputs) the implementation. The signals from the 
implementation are compared with the expected signals of the specification. The 
inputs and the expected outputs are described in a so-called test suite. A test suite is 
structured into a set of test cases. The execution of a test case results in a test verdict. 
From the test verdicts a conclusion about the conformance relation is drawn. 

In recent years, several approaches have been developed for conformance test 
generation; these techniques are based upon traditional finite automata theory and 
usually assume a finite-state machine (FSM). 

2.3 Fault models and control ftow testing 

The large number and complexity of physical and software failures dictate that a 
practical approach to testing should avoid working directly with those physical and 
software failures. One method for detecting the presence or absence of failures is by 
using a fault model to describe the effects of failures at some higher level of abstrac­
tion (logic, register transfer, functional blocks, etc.) (Bochmann, 1991). 

The purpose of control flow testing is to ensure that the IUT behaves as specified 
by the FSM representation of the system and the fault model used to test it is the 
FSM model. The most common types of errors it tries to find are transition (or 
operation) errors which are errors in the output function and transfer errors (errors 
in the next state function) in the IUT. 

Many methods for control flow testing exist. They usually assume that the system 
to be tested is specified as an FSM (transition tours, OS, W, etc.). Many attempts 
were made to generalize these methods to EFSM testing (Ramalingom, 1995) 
(Chanson, 1993). For control flow testing, we choose the mo sequence for state 
identification since the input portion is normally different for each state and the mo 
sequence for a state distinguishes it from all other states. 

2.4 Data ftow analysis 

This technique originated from attempts in checking the effects of test data objects 
in software engineering. It is usually based on a data flow graph which is a directed 
graph with the nodes representing the functional units of a program and the edges 
representing the flow of data objects. The functional unit could be a statement, a 
transition, a procedure or a program. Data flow analyzes the data part of the EFSM 
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in order to find data dependencies among the transitions. It usually uses a data-flow 
graph where the vertices represent transitions and the edges represent data and 
control dependencies. The objective is to test the dependencies between each 
definition of a variable and its subsequent use(s). 

Definitions 
A transition T has an assignment-use or A-Use of variable x if x appears at the left 

hand side of an assignment statement in T. When a variable x appears in the input 
list ofT, T is said to have an input-use or I-Use of variable x. If a variable x appears 
in the predicate expression of T, T has a predicate-use or P-Use of variable x. T is 
said to have a computational-use or C-Use of variable x if x occurs in an output 
primitive or an assignment statement (at the right hand side). A variable x has a def­
inition (referred to as deC) if x has an A-Use or I-Use. 

We now define some sets needed in the construction of the path selection criteria: 
def(i) is the set of variables for which node i contains a definition, C-Use(i) is the set 
of variables for which node i contains a C-use and P-Use(i,j) is the set of variables 
for which edge (i,j) contains a P-use. A path (tIh .. tk,tn) is a def-clear-path with 
respect to (w.r.t) a variable x if t2, .. ,tk do not contain definitions of x. 

A path (tl, ... ,tk) is a du-path w.r.t a variable x if x E def(t 1) and either 

x E C - Use(tk) or x E P - Use(tk)' and (tI, ... ,tk) is a def-clear path w.r.t x from 

tl to tk' 
When selecting a criterion, there is, of course, a trade-off. The stronger the 

selected criterion, the more closely the program is scrutinized in an attempt to detect 
program faults. However, a weaker criterion can be fulfilled, in general, using fewer 
test cases. As the strongest criterion all-paths can be very costly, we will use the 
second strongest criterion all-du-paths (see (Weyuker, 1985) for all the criteria). P 

satisfies the all-du-paths criterion if for every node i and every x E def(i), P 
includes every du-path w.r.t x. 

The main difference between the "all definition-use" or "all du" criterion and a 
fault model such as FSM fault model is the following: in the case of the "rul du", the 
objective is to satisfy the criterion by generating test cases that exercise the paths 
corresponding to it. Exercising the paths does not guarantee the detection of exist­
ing faults because of variable values that should be selected. If the right values are 
selected then certain "du" criteria are comparable to fault models. 
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t I ?U .sendrequest 
! L.cr 

t2?L.cc 
! U.sendconfmn 

t9 ?L.block 
not expire_timer 
counter:=counter+ I 

t I 0 ?L.resume 
not expire_timer and 

t3 ?U.datarequest(sdu, n,b) counter<=blockbound 
number:=O; 
counter:=O; 
no_oCsegment:=n; 
blockbound:=b; 

t4 ?L.tokengive 
til ! L.dt~sdu[number)) 

start hmer 
number:=number+ I; 

t5 ?Uresume 

t6 expire_timer 
! L.tokenrelease 

tIl counter>blockbound 
!L. token_realease 
!U .monitocincomplete 
(number) 
!U .dis_request 

tl2 expire_timer 
counter<=blockbound 
!L.token_release 

t13 ?L.resume 

t 14 ?L.block 

tl5 ?L.ack 
t7 ?1.ackO 

number==no_oCsegment 
!U .monitor_complete(counter) 
!token_release 
!L.disrequest 

tl6 ?L.dis_request 
t8 ?L.ackO !U.disindication 

number<no_oCsegment 
not expire_timer tl7 ?L.disrequest 
!L.dt(sdu[number)) !U.disindication 
number:=number+ 1 

Figure 1. Example of an EFSM specified protocol (same as in (Huang, 1995». 

For transition t3 in figure 1, I-Use(t3)={sdu, n, b}, A-Use(t3)={number, 

no_oCsegement, blockbound, counter}, C-Use(t3)={n, b} and P-Use(t3)=0. 

3 TEST CASE GENERATION 

3.1 Choosing the values for the input parameters 

The choice of the values of the input parameters has a sure impact on the test cases. 
These values may influence the number of times a cycle should be repeated. The 
user may specify valid and invalid values for each input parameter and our tool will 
choose randomly a value within the valid domain. If no value is specified, then if the 
input parameter influences the control flow, the user will be asked to enter a value 
for that input parameter. 
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3.2 Test case and test sequence generation 

As we mentioned earlier, our method combines both control and data flow testing 
techniques to generate complete test cases (a complete test case is a test case which 
starts and ends at the initial state). Also, it verifies the executability during the du­
path generation. The following algorithm illustrates the process of generating auto­
matically executable test cases. 

Algorithm EFTG (Extended Fsm Test Generation) 
Begin 

Read an EFSM specification 
Generate the dataflow graph G form the EFSM specification 
Choose a value for each input parameter influencing the control flow 
Executable-Du-Path-Generation( G) 
Remove the paths that are included in others 
Add state identification to each executable du-path 
Add a postamble to each du-path to form a complete path 
For each complete path 

Re-check its executability 
If the path is not executable 

Try to make it executable 
EndIf 
If the path is still not executable Discard it 
Endlf 

EndFor 
For each uncovered transition T 

Add a path which covers it (for control flow testing) 
EndFor 
For each executable path 

Generate its input/output sequence using symbolic evaluation 
EndFor 

End; 

Procedure Executable-Du-Path-Generation(flowgraph G) 
Begin 

Generate the set of A-Uses, I-Uses, C-Uses and P-Uses for each transition in G 
Generate the shortest executable preamble for each transition 
For each transition T in G 

For each variable v which has an A-Use in T 
For each transition U which has a P-Use or a C-Use ofv 

Find-AII-Paths(T,U) 
EndFor 

EndFor 
EndFor 

End. 
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Table 1 presents the shortest executable preambles for the transitions in the EFSM 
in figure 1 (both input parameters nand b are equal to 2). 

Table 1. Executable preambles for the EFSM's transitions in figure 1 

Trans Executable Preamble Trans Executable Preamble 

t2 tl,t2 tIO tl, t2, t3, t4, t9, tl0 

t3 tI, t2, t3 tIl tI, t2, t3, t4, t9, tIO, t9, 
tlO, t9, tIl 

t4 tI, t2, t3, t4 tI2 tI, t2, t3, t4, t9, tI2 

t5 tI, t2, t3, t5 tl3 tl, t2, t3, t4, t8, t7, t13 

t6 tI, t2, t3, t4, t6 tI4 tl, t2, t3, t4, t8, t7, t14 

t7 tl, t2, t3, t4, t8, t7 tI5 tl, t2, t3, t4, t8, t7, t15 

t8 tI, t2, t3, t4, t8 t16 tl, t2, t3, t4, t8, t7, t16 

t9 tl, t2, t3, t4, t9 t17 tI, t17 

The reason we start by finding the shortest executable preamble for each transi­
tion is as follow: Suppose we want to find all executable du-paths between t3 and t7' 

Since t3 needs a preamble, then any path from t3 to t7 cannot be made executable 

unless an executable (or feasible) preamble is attached to it. 
When finding the preambles and postambles, we try to find the shortest path 

which does not contain any predicate. If we fail to find such a path, then we choose 
the shortest path and try eventually to make it executable. 

4 EXECUTABLE DU-PATH GENERATION 

In (Chanson, 1993), after adding preambles and postambles to the du-paths, their 
executability is verified. However, many paths remain non-executable and are dis­
carded because the predicates associated with some transitions are not satisfied. To 
overcome this problem, we verify the executability of each path during its genera­
tion. Below is the algorithm which finds all the paths between two transitions. 

Procedure Find-all paths(Tl, 12, var) 
Begin 

If a preamble, a postamble or a cycle is to be generated 
Preamble:=Tl 

Else 
Preamble:= the shortest executable preamble from the first transition to Tl 

EndIf 
Generate-All-Paths(Tl ,T2,first -transition, var, preamble) 

End; 
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The following algorithm is the algorithm used to find all executable preambles 
and all executable du-paths between transition Tl and transition T2 with respect to 
the variable var defined in Tl. 

Procedure Generate-All-Paths(Tl, n, T, var, Preamble) 
Begin 

If (T is an immediate successor of Tl) (e.g. t3 is an immediate successor of t2) 
If (T=T2 or (T follows Tl and T2 follows Tin G» (e.g. t4 follows t2) 

If we are building a new path 
Previous:= the last generated du-path (without its preamble) 
If (Tl is present in the previous path) 

Common:= the sequence of transitions in the previous path before 
Tl 

EndIf 
EndIf 
If we are building a new path 

Add Preamble to Path, Add var in the list of test purposes for Path 
EndIf 
If Common is not empty 

Add Common to Path 
EndIf 
If(T = T2) 

Add T to Path, Make-Executable(Path) 
Else 

If T is not present in Path (but may be present in Preamble) and T does 
not have an A-use of var 
Add Tto Path 
Generate-All-Paths(T, T2, first-transition, var, Preamble) 

EndIf 
EndIf 

EndIf 
T:= next transition in the graph 
If (T is not Null) Generate-AlI-Paths(Tl, T2, T, var, Preamble) 
Else 

If (Path is not empty) 
If (the last transition in Path is not an immediate precedent ofT2) 

Take off the last transition in Path 
Else 

If (Path is or will be identical to another path after adding 1'2) 
Discard Path 

EndIf 
EndIf 

EndIf 
EndIf 

End. 
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The algorithm used to find the postambles and the cycles is also similar, except 
that it does not call the procedure Make-Executable(Path). 

Suppose Pl=(t},t2, .. tk_},tk). Make-Executable(Pl) finds the non-executable transi­
tion tk in PI if it exists. Then it finds if another executable du-path P2=(t},t2, .. ,tk_ 
} , ... ,tk) exists. If such path exists, PI is discarded. If not, the procedure Handle-Exe­
cutability(Pl) is called (see next section). This verification enables to save time gen­
erating the same path or an equivalent path (the same du-path with different cycles 
in it) more than once. Handle-Executability(Path) starts by verifying if each transi­
tion in Path is executable or not. In each transition, each predicate is interpreted 
symbolically until it contains only constants and input parameters and the algorithm 
can determine if the transition is executable or not (especially for simple predi­
cates). However, for some specifications with unbounded loops, Handle-Executabil­
ity may not be able to make a non-executable path executable. 

Table 2 shows all the du-paths (with the preamble (t}, t2, t3, t4» form t9 to tlO w.r.t 
the variable counter and the reason why some paths were discarded. All the paths 
that were discarded because the predicate became (3=2) cannot be made executable, 
because the influencing transition (t4 or ts) appears more than it should be. 

Table 2. All du-paths form t9 to t7 w.r.t. counter 

Du-Path 

1,2,3,4,9,10,6,4,7 

1,2,3,4,9,10,6,4,8,7 

1,2,3,4,9,10,6,5,4,7 

1,2,3,4,9,10,6,5,4,8,7 

1,2,3,4,9,10,7 

1,2,3,4,9,10,8,6,4,7 

1,2,3,4,9,10,8,6,5,4,7 

1,2,3,4,9,10,8,7 

1,2,3,4,9,12,4,7 

1,2,3,4,9,12,4,8,7 

1,2,3,4,9,12,5,4,7 

1,2,3,4,9,12,5,4,8,7 

Discarded 

no 

yes 

no 

yes 

yes 

yes 

yes 

no 

no 

yes 

no 

yes 

Reason path is discarded 

predicate in t7 become (3=2) 

predicate in t7 become (3=2) 

will be equivalent to the first path 
after solving the executability 

predicate in t7 become (3=2) 

predicate in t7 become (3=2) 

predicate in t7 become (3=2) 

predicate in t7 become (3=2) 

In the next section, we will show what cycle analysis is and how it can be used to 
make the non-executable paths executable. 
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5 HANDLING THE EXECUTABILITY OF THE TEST CASES 

The executability problem is in general undecidable. However, in most cases, it can 
be solved. (Ramalingom, 1995) deals essentially with the executability of the pre­
ambles and postambles, and not with the executability of the du-paths covering the 
data flow. (Huang, 1995) overcame this problem by executing the EFSM. This 
method does not cover the control flow and may not deal with large EFSMs. (Chan­
son, 1993) used static loop analysis and symbolic evaluation techniques to deter­
mine how many times the self loop should be repeated so that test cases become 
executable. This method is not appropriate for specifications where the influencing 
variable is not updated inside a self loop, such as the EFSM in figure 1, and cannot 
be used if the number of loop iterations is not known. For these reasons, the follow­
ing heuristic was developed in order to find the appropriate cycle to be inserted in a 
non-executable path to make it executable. 

Procedure Handle_Executability(path P) 
Begin 

Cycle:= not null 
Process(P) 
If P is still not executable Remove it 
EndIf 

End; 

Procedure Process(path P) 
Begin 

T:= first transition in path P 
While (T is not nUll) 

If (T is not executable) 
Cycle:= Extract-Cycle(P,T) 

EndIf 
I~ (Cycle is not empty) 

Trial: =0 
While T is not executable and Trial<Max_trial Do 

Let Precedent be the transition before T in the path P 
Insert Cycle in the path P after Precedent 
Interpret and evaluate the path P starting at the first transition 
of Cycle to see if the predicates are satisfied or not 
Trial:= Trial+ 1 

EndWhile 
Else 

Exit 
EndIf 
T:= next transition in P 

EndWhile 
End. 
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We would like to mention that our tool makes a difference between two kinds of 
predicates. A binary predicate has the following form: "varl R var2". where R is a 
relational operator such as "<"; while a unary predicate can be written as F(x). 
where F is a boolean function such as "Even(x)" (see figure 2). 

The heuristic "Handle-Executability" verifies if each non-executable path can 
be made executable and uses the procedure "Extract-Cycle(P.T)" to find the 
shortest cycle, if it exists. to be inserted in a non-executable path in order to make 
it executable. For this purpose, we find the first non-executable transition T in the 
path P. Two cases may arise: If the transition T cannot be executed because some 
unary predicate is not satisfied. we find a transition tk' if it exists. among the 

transitions preceding transition T, which has the same predicate with a different 
value. An influencing cycle containing tk is generated (if it exists) and inserted in 

the path P before transition T. If the predicate is not a unary predicate. we find out. 
using symbolic evaluation. what the variable causing the non-executability is. and 
whether it should be increased or decreased for the transition tk to be executable. 

This variable must be an influencing one and transitions which update the variable 
must exist. If this is not the case. an empty cycle is returned. and the path is 
discarded. If the variable in the predicate is an influencing variable, we search 
among the transitions preceding T. for a transition tk which updates properly the 

variable. generate a cycle containing this variable and insert it in the path. If a path 
cannot be made executable, it is discarded. 

To illustrate the heuristic. suppose that in the EFSM of figure I. both variables n 
and b have the value 2. The shortest preamble for tll is (tl' t2' t3. t4' ~. t11)' but t11 
is not executable because its predicate "counter>2" becomes "1>2" after interpreta­
tion. Our tool finds that the influencing variable is "counter" and that among the 
transitions preceding t11' ~ is an influencing transition which may be adequate. 

because it increases the variable "counter". The cycle (tlO.~) is generated and 

inserted twice after transition t9. The path becomes (tl' t2' t3. t4' ~. tlO' ~, tlO. ~. 

til)· 

t4 

t2 t3 

tl: 1a 

t2: Even(a) 
a:=al2; 
Output(a); 

t3: Not(Even(a» 
a:=3*a +1; 
Output(a); 

t4: a=1 
Output(a); 

Figure 2. EFSM with unbounded loops and unary predicates. 
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Figure 2 presents an example of an EFSM with unbounded loops. Each loop is a 
self-loop with a unary predicate. For this example, since transitions t2 and t3 are not 

bounded, (Chanson, 1993) (Ramalingom, 1995) cannot generate any executable test 
case for this example. 

In table 3, the executable test cases (without state identification) and test 
sequences for the EFSM in figure 2 are presented. Each test case is relative to one 
value for the input parameter a. 

Table 3. Executable test cases for the EFSM in figure 2 

Input 
parameter Executable test case Input/Output sequence 

1 tl, t4 ?Ill 

5 tl, t3, t2, t2, t2, t2, t4 75! 16! 8! 4! 2! 1 II 

100 tl, t2, t2, t3, t2, t2, t3, t2, t3, t2, t2, 71OO!50!25!76!38!19!58!29! 
t2, t3, t2, t3, t2, t2, t3, t2, t2, t2, t3, 88!44!22!l1 !34!l7!52!26ll3,!40, 
t2, t2, t2, t2, t4 20!1O!5ll6!8!4!2!l!1 

125 

For the EFSM in figure 2, our tool failed to generate any executable test case for 
a=125. But when we increased the value of the variable Max-Trial (in the procedure 
Process) , a solution was found. Giving our tool more time to let it find a solution 
does not mean that a solution will be found. In these cases, out tool cannot decide if 
a solution exists. After the generation of executable paths, input/output sequences 
are generated. The inputs will be applied to the IUT, and the observed outputs from 
the IUT will be compared to the outputs generated by our tool. A conformance rela­
tion can then be drawn. 

6 RESULTS 

Table 4 presents the final executable test cases (without state identification) gener­
ated by our tool on the EFSM in figure 1. In many cases, the tool had to look for the 
influencing cycle to make the test case executable. With state identification, the first 
executable path will look like: (tlo t2' t3' t5' t4' t8' t7' tIS' tI6). The last two paths are 

added to cover the transitions t13' t14' t15 and t17 which were not covered by the 

other paths. 
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Table 4. Executable test cases for the EFSM of Figure 1 

No Executable Test Cases Test Purposes 

tl, t2, t3, t5, t4, t8, t7, t16, number, counter, no_oCsegment 

2 tl, t2, t3, tS, t4, t8, t9, tlO, t7, tl6 number, counter, no_oCsegment, blockbound 

3 tl, t2, t3, tS, t4, t9, tlO, t8, t7, tl6 number, counter, no_oCsegment, blockbound 

4 tl, t2, t3, t4, t8, t9, tlO, t9, tlO, t9, number, counter, no_oCsegment, blockbound 
til, t16 

5 tl, t2, t3, t5, t4, t8, t9, tlO, t9, tlO, number, counter, no_oCsegment, blockbound 
t9, til, t16 

6 tl, t2, t3, t5, t4, t9, tlO, t9, tl0, t9, number, counter, blockbound 
til, t16 

7 tl, t2, t3, t5, t4, t9, tl2, t4, t7, t16 number, counter, blockbound 

8 tI, t2, t3, t4, t6, t4, t7, t16 number, counter, no_oCsegment 

9 tl, t2, t3, t4, t6, t5, t4, t7, tl6 number 

10 tl, t2, t3, t4, t8, t7, tl6 number, counter, no_oCsegment 

11 tl, t2, t3, t4, t8, t9, tlO, t7, t16 number, counter, no_oCsegment, blockbound 

12 tI, t2, t3, t4, t9, tlO, t6, t4, t7, t16 number, counter, no_oCsegment, blockbound 

13 tl, t2, t3, t4, t9, tl0, t6, t5, t4, t7, t16 number, counter, blockbound 

14 tl, t2, t3, t4, t9, tlO, t8, t7, tl6 number, counter, no_oCsegment, blockbound 

15 tl, t2, t3, t4, t9, t12, t4, t7, tl6 number, counter, blockbound 

16 tI, t2, t3, t4, t9, t12, t5, t4, t7, t16 number, counter, blockbound 

17 tI, t2, t3, t4, t9, tlO, t9, tlO, t9, til, number, counter, blockbound 
tl6 

18 tl, t2, t3, t4, t9, tl0, t6, t4, t9, tl0, number, counter, blockbound 
t9,tll,16 

19 tI, t2, t3, t4, t9, tlO, t6, t5, t4, t9, number, Gaunter, blockbound 
tlO, t9, til, t16 

20 tI, t2, t3, t4, t9, tIO, t8, t6, t4, t9, number, counter, no_oCsegment, blockbound 
tlO, t9, til, tl6 

21 tl, t2, t3, t4, t9, tl0, 18, t6, tS, t4, t9, number, counter, no_oCsegment, blockbound 
tlO, t9, til, tl6 

22 tl, t2, t3, t4, t9, tlO, t8, t9, tl0, t9, number, counter, no_oCsegment, blockbound 
til, t16 

23 tl, t2, t3, t4, t9, t12, t4, t9, tlO, t9, number, counter, blockbound 
til, t16 

24 tl, t2, t3, t4, t9, t12, tS, t4, t9, tlO, number, counter, blockbound 
t9, tll, tl6 

25 tl, t2, t3, t4, t8, t7, tl3, tl4, t15, t16 

26 tl, t17 
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The sequence of input/outputs is extracted from the executable test cases, and 
applied to test the IUT. For output parameters with variable (such as the output 
"dt"), symbolic evaluation is used to determine the value of the variable number 
which has an output use (see Table 3 for an example). 

In order to compare our tool to other methods, we implemented an algorithm 
which generates all the du-paths (like in (Chanson, 1993», to which we added 
Cycle Analysis to handle the executability problem instead of loop analysis. We 
shall call this algorithm "Ch+". Note that "Ch+" verifies the executability after all 
the du-paths are generated. 

Table 5. Results obtained by Ch+ and by our tool 

EFSM Ch+ Our tool 

du-paths Exec du-paths discarded du-paths Exec 

fig 1 81 26 60 29 16 26 

fig 2 9 0 0 

INRES 54 25 24 4 4 22 

In table 5, the results obtained by Ch+ and by our tool on three EFSMs are sum­
marized. The third EFSM is a simplified version of the INRES protocol. It has four 
states, fourteen transitions, four loops two of which are influencing self-loops. 

The first column of discarded "du-paths by our tool" specifies the total number of 
discarded paths during du-path generation. The second column specifies the number 
of paths that were discarded by the tool without trying to make them executable, 
because equivalent paths already existed. "Exec" stands for executable. 

7 CONCLUSIONS AND FUTURE WORK 

As me mentioned earlier, for the EFSM in figure 1, our tool discarded only 
twenty nine paths (during du-paths generation) while Ch+ discarded fifty five 
(after generating all the du-paths). Verifying the executability of the du-paths 
during their generation enables to generate only those paths which are more likely 
to be executable. Our method generates executable test cases for EFSM-specified 
systems by using symbolic evaluation techniques to evaluate the constraints along 
each transition, so only executable test sequences are generated. Also, our method 
discovers more executable test cases than the other methods and enables to 
generate test cases for specifications with unbounded loops. 

This work is supported by an NSERC Strategic grant STROI670n. 
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