
6

Automatic executable test case
generation for extended finite state
machine protocols
c. Bourhfirl, R. Dssouli1,2, E. Aboulhamii, N. Ric02

1 DIRO, Pavillon Andre Aisenstadt, c.P. 6128, succursale Cen­
tre-Ville, Montreal, Quebec, H3C-3J7, Canada.
E-mail: {bourhfir.dssouli.aboulham}@iro.umontreal.ca.

2 Nortel, 16 Place du commerce, Verdun, H3E-1 H6

Abstract
This paper presents a method for automatic executable test case and test sequence
generation which combines both control and data flow testing techniques.
Compared to published methods, we use an early executability verification
mechanism to reduce significantly the number of discarded paths. A heuristic
which uses cycle analysis is used to handle the executability problem. This
heuristic can be applied even in the presence of unbounded loops in the
specification. Later, the generated paths are completed by postambles .and their
executability is re-verified. The final executable paths are evaluated symbolically
and used for conformance testing purposes.

Keywords
EFSM, Conformance testing, Control flow testing, Data flow testing,
Executability, Cycle Analysis, Symbolic evaluation, Test case generation.

Testing of Communicating Systems, M. Kim, S. Kang & K. Hong (Eds)
Published by Chapman & Hall © 1997IFIP

76 Part Four Data Part Test Generation

1 INTRODUCTION

In spite of using a formal description technique for specifying a system, it is still
possible that two implementations derived from the same specification are not
compatible. This can result from incorrect implementation of some aspects of the
system. This means that there is a need for testing each implementation for
conformance to its specification standard. Testing is carried out by using test
sequences generated from the specification.

With EFSMs, the traditional methods for testing FSMs such as transition tours,
UIOs, distinguishing sequences (DS), or W-Method are no longer adequate. The
extended data portion which represents the data manipulation has to be tested also to
determine the behaviors of the implementation. Quite a number of methods have
been proposed in the literature for test case generation from EFSM specifications
using data flow testing techniques (Sarikaya, 1986) (Ural, 1991) (Huang, 1995).
However, they have focused on data flow testing only and control flow has been
ignored or considered separately, and they do not consider the executability problem.
As to control flow test, applying the FSM-based test generation methods to EFSM­
based protocols may result in non-executable test sequences. The main reason is the
existence of non-satisfied predicates and conditional statements. To handle this
problem, data flow testing has to be used.

The generation of test cases in the field of communication protocols, combining
both control and data flow techniques, has been well studied. In (Chanson, 1993), the
authors presented a method for automatic test case and test data generation, but many
executable test cases were not generated. This method uses symbolic evaluation to
determine how many times an influencing self loop should be executed. An
influencing transition is a transition which changes one or more variables that affect
the control flow, and a self loop is a transition which starts and ends at the same state.
The variables are called influencing variables. (Ural, 1991) does not guarantee the
executability of the generated test c~ses because it does not consider the predicates
associated with each transition. Also control flow testing is not covered. (Huang,
1995) generates executable test cases for EFSM-based protocols using data flow
analysis and control flow is not tested. To handle the executability problem, this
method uses a breadth-first search to expand the specification graph, according to the
inputs read and to the initial configuration. It is a kind of reachability analysis.
Hence, it has the same disadvantage, i.e. state explosion.

In this paper, we present a method which alleviates some of the existing problems.
This method is different from (Huang, 1995) because it combines control and data
flow testing instead of using only data flow testing. Unlike (Chanson, 1993) which
verifies the executability after all the paths are generated and which considers only
the self loops to solve the executability, our method verifies the executability during
path generation which prevents from generating paths which will be discarded later.
To make the non-executable paths executable, Cycle Analysis is performed in order
to find the shortest cycle to be inserted in a path so that it becomes executable. A
cycle is one or many transitions t} ,tz, .. ,tk such that the ending state of tk is the same

Test case generation/or extendedjinite state machine protocols 77

as the starting state of t l' Our method can also generate test cases for specifications

with unbounded loops.

In the next section, concepts such as the FSM and EFSM models, conformance
testing, data flow and control flow testing are described. Section 3 presents the
general algorithm for executable test case and test sequence generation. In sections
4 and 5, the algorithm for executable definition-uses paths (or du-paths) generation
is presented. This latter checks the executability during the du-path generation and
uses cycle analysis to make the non-executable paths executable. Finally, in the last
sections, we will compare the results obtained by our tool to those of another method
and conclude the paper.

2 PRELIMINARIES

2.1 The FSM and EFSM models

Formalized methods for the specification and verification of systems are developed
for simplifying the problems of design, validation and implementation. Two
basically different approaches have been used for this purpose: modeling by FSMs,
and specifications using high-level modeling languages.

The FSM model falls short in two important aspects: the ability to model the ma­
nipulation of variables conveniently and the ability to model the transfer of arbitrary
values. For this reason, an FSM becomes cumbersome for simple problems (state ex­
plosion) because the number of states grows rapidly. This type of problems can be
alleviated when EFSMs are used.

An EFSM is formally represented as a 6-tuple <S, so,l, 0, T,V> where
1. S is a non empty set of states,
2. So is the initial state,

3. I is a nonempty set of input inter~ctions,
4. ° is a nonempty set of output interactions,
5. T is a nonempty set of transitions,
6. V is the set variables.
Each element of T is a 5-tuple t=(initial_state, finaCstate, input, predicate, block).

Here initiaLstate andjinaLstate are the states in S representing the starting state and
the tail state of t, respectively. input is either an input interaction from I or empty.
predicate is a predicate expressed in terms of the variables in V, the parameters of
the input interaction and some constants. block is a set of assignment and output
statements.

We assume that the EFSM representation of the specification is deterministic and
that the initial state is always reachable from any state. In order to simplify the de­
termination of the control and data flow graphs of a formal specification, it is conve­
nient to transform the specification into an equivalent form containing only the so­
called "Normal Form Transitions" (NFT). A method for generating a normal form
specification from an ESTELLE specification is given in (Sarikaya, 1986).

78 Pan Four Data Pan Test Generation

2.2 Conformance testing

There are two approaches for checking conformance between an implementation and
a specification. One approach is verification and the other is conformance testing.
While verification techniques are applicable if the internal structure of the
implementation is known, conformance testing aims to establish whether an
implementation under test (lUT) conforms to its specification. If the implementation
is given as a black box, only its observable behavior can be tested against the
observable behavior of the specification. During a conformance test, signals are sent
to (inputs) and received from (outputs) the implementation. The signals from the
implementation are compared with the expected signals of the specification. The
inputs and the expected outputs are described in a so-called test suite. A test suite is
structured into a set of test cases. The execution of a test case results in a test verdict.
From the test verdicts a conclusion about the conformance relation is drawn.

In recent years, several approaches have been developed for conformance test
generation; these techniques are based upon traditional finite automata theory and
usually assume a finite-state machine (FSM).

2.3 Fault models and control ftow testing

The large number and complexity of physical and software failures dictate that a
practical approach to testing should avoid working directly with those physical and
software failures. One method for detecting the presence or absence of failures is by
using a fault model to describe the effects of failures at some higher level of abstrac­
tion (logic, register transfer, functional blocks, etc.) (Bochmann, 1991).

The purpose of control flow testing is to ensure that the IUT behaves as specified
by the FSM representation of the system and the fault model used to test it is the
FSM model. The most common types of errors it tries to find are transition (or
operation) errors which are errors in the output function and transfer errors (errors
in the next state function) in the IUT.

Many methods for control flow testing exist. They usually assume that the system
to be tested is specified as an FSM (transition tours, OS, W, etc.). Many attempts
were made to generalize these methods to EFSM testing (Ramalingom, 1995)
(Chanson, 1993). For control flow testing, we choose the mo sequence for state
identification since the input portion is normally different for each state and the mo
sequence for a state distinguishes it from all other states.

2.4 Data ftow analysis

This technique originated from attempts in checking the effects of test data objects
in software engineering. It is usually based on a data flow graph which is a directed
graph with the nodes representing the functional units of a program and the edges
representing the flow of data objects. The functional unit could be a statement, a
transition, a procedure or a program. Data flow analyzes the data part of the EFSM

Test case generation/or eXlendedjinite state machine protocols 79

in order to find data dependencies among the transitions. It usually uses a data-flow
graph where the vertices represent transitions and the edges represent data and
control dependencies. The objective is to test the dependencies between each
definition of a variable and its subsequent use(s).

Definitions
A transition T has an assignment-use or A-Use of variable x if x appears at the left

hand side of an assignment statement in T. When a variable x appears in the input
list ofT, T is said to have an input-use or I-Use of variable x. If a variable x appears
in the predicate expression of T, T has a predicate-use or P-Use of variable x. T is
said to have a computational-use or C-Use of variable x if x occurs in an output
primitive or an assignment statement (at the right hand side). A variable x has a def­
inition (referred to as deC) if x has an A-Use or I-Use.

We now define some sets needed in the construction of the path selection criteria:
def(i) is the set of variables for which node i contains a definition, C-Use(i) is the set
of variables for which node i contains a C-use and P-Use(i,j) is the set of variables
for which edge (i,j) contains a P-use. A path (tIh .. tk,tn) is a def-clear-path with
respect to (w.r.t) a variable x if t2, .. ,tk do not contain definitions of x.

A path (tl, ... ,tk) is a du-path w.r.t a variable x if x E def(t 1) and either

x E C - Use(tk) or x E P - Use(tk)' and (tI, ... ,tk) is a def-clear path w.r.t x from

tl to tk'
When selecting a criterion, there is, of course, a trade-off. The stronger the

selected criterion, the more closely the program is scrutinized in an attempt to detect
program faults. However, a weaker criterion can be fulfilled, in general, using fewer
test cases. As the strongest criterion all-paths can be very costly, we will use the
second strongest criterion all-du-paths (see (Weyuker, 1985) for all the criteria). P

satisfies the all-du-paths criterion if for every node i and every x E def(i), P
includes every du-path w.r.t x.

The main difference between the "all definition-use" or "all du" criterion and a
fault model such as FSM fault model is the following: in the case of the "rul du", the
objective is to satisfy the criterion by generating test cases that exercise the paths
corresponding to it. Exercising the paths does not guarantee the detection of exist­
ing faults because of variable values that should be selected. If the right values are
selected then certain "du" criteria are comparable to fault models.

80 Part Four Data Part Test Generation

t I ?U .sendrequest
! L.cr

t2?L.cc
! U.sendconfmn

t9 ?L.block
not expire_timer
counter:=counter+ I

t I 0 ?L.resume
not expire_timer and

t3 ?U.datarequest(sdu, n,b) counter<=blockbound
number:=O;
counter:=O;
no_oCsegment:=n;
blockbound:=b;

t4 ?L.tokengive
til ! L.dt~sdu[number))

start hmer
number:=number+ I;

t5 ?Uresume

t6 expire_timer
! L.tokenrelease

tIl counter>blockbound
!L. token_realease
!U .monitocincomplete
(number)
!U .dis_request

tl2 expire_timer
counter<=blockbound
!L.token_release

t13 ?L.resume

t 14 ?L.block

tl5 ?L.ack
t7 ?1.ackO

number==no_oCsegment
!U .monitor_complete(counter)
!token_release
!L.disrequest

tl6 ?L.dis_request
t8 ?L.ackO !U.disindication

number<no_oCsegment
not expire_timer tl7 ?L.disrequest
!L.dt(sdu[number)) !U.disindication
number:=number+ 1

Figure 1. Example of an EFSM specified protocol (same as in (Huang, 1995».

For transition t3 in figure 1, I-Use(t3)={sdu, n, b}, A-Use(t3)={number,

no_oCsegement, blockbound, counter}, C-Use(t3)={n, b} and P-Use(t3)=0.

3 TEST CASE GENERATION

3.1 Choosing the values for the input parameters

The choice of the values of the input parameters has a sure impact on the test cases.
These values may influence the number of times a cycle should be repeated. The
user may specify valid and invalid values for each input parameter and our tool will
choose randomly a value within the valid domain. If no value is specified, then if the
input parameter influences the control flow, the user will be asked to enter a value
for that input parameter.

Test case generation/or extendedfinite state machine protocols 81

3.2 Test case and test sequence generation

As we mentioned earlier, our method combines both control and data flow testing
techniques to generate complete test cases (a complete test case is a test case which
starts and ends at the initial state). Also, it verifies the executability during the du­
path generation. The following algorithm illustrates the process of generating auto­
matically executable test cases.

Algorithm EFTG (Extended Fsm Test Generation)
Begin

Read an EFSM specification
Generate the dataflow graph G form the EFSM specification
Choose a value for each input parameter influencing the control flow
Executable-Du-Path-Generation(G)
Remove the paths that are included in others
Add state identification to each executable du-path
Add a postamble to each du-path to form a complete path
For each complete path

Re-check its executability
If the path is not executable

Try to make it executable
EndIf
If the path is still not executable Discard it
Endlf

EndFor
For each uncovered transition T

Add a path which covers it (for control flow testing)
EndFor
For each executable path

Generate its input/output sequence using symbolic evaluation
EndFor

End;

Procedure Executable-Du-Path-Generation(flowgraph G)
Begin

Generate the set of A-Uses, I-Uses, C-Uses and P-Uses for each transition in G
Generate the shortest executable preamble for each transition
For each transition T in G

For each variable v which has an A-Use in T
For each transition U which has a P-Use or a C-Use ofv

Find-AII-Paths(T,U)
EndFor

EndFor
EndFor

End.

82 Part Four Data Part Test Generation

Table 1 presents the shortest executable preambles for the transitions in the EFSM
in figure 1 (both input parameters nand b are equal to 2).

Table 1. Executable preambles for the EFSM's transitions in figure 1

Trans Executable Preamble Trans Executable Preamble

t2 tl,t2 tIO tl, t2, t3, t4, t9, tl0

t3 tI, t2, t3 tIl tI, t2, t3, t4, t9, tIO, t9,
tlO, t9, tIl

t4 tI, t2, t3, t4 tI2 tI, t2, t3, t4, t9, tI2

t5 tI, t2, t3, t5 tl3 tl, t2, t3, t4, t8, t7, t13

t6 tI, t2, t3, t4, t6 tI4 tl, t2, t3, t4, t8, t7, t14

t7 tl, t2, t3, t4, t8, t7 tI5 tl, t2, t3, t4, t8, t7, t15

t8 tI, t2, t3, t4, t8 t16 tl, t2, t3, t4, t8, t7, t16

t9 tl, t2, t3, t4, t9 t17 tI, t17

The reason we start by finding the shortest executable preamble for each transi­
tion is as follow: Suppose we want to find all executable du-paths between t3 and t7'

Since t3 needs a preamble, then any path from t3 to t7 cannot be made executable

unless an executable (or feasible) preamble is attached to it.
When finding the preambles and postambles, we try to find the shortest path

which does not contain any predicate. If we fail to find such a path, then we choose
the shortest path and try eventually to make it executable.

4 EXECUTABLE DU-PATH GENERATION

In (Chanson, 1993), after adding preambles and postambles to the du-paths, their
executability is verified. However, many paths remain non-executable and are dis­
carded because the predicates associated with some transitions are not satisfied. To
overcome this problem, we verify the executability of each path during its genera­
tion. Below is the algorithm which finds all the paths between two transitions.

Procedure Find-all paths(Tl, 12, var)
Begin

If a preamble, a postamble or a cycle is to be generated
Preamble:=Tl

Else
Preamble:= the shortest executable preamble from the first transition to Tl

EndIf
Generate-All-Paths(Tl ,T2,first -transition, var, preamble)

End;

Test case generation/or extendedfinite state machine protocols 83

The following algorithm is the algorithm used to find all executable preambles
and all executable du-paths between transition Tl and transition T2 with respect to
the variable var defined in Tl.

Procedure Generate-All-Paths(Tl, n, T, var, Preamble)
Begin

If (T is an immediate successor of Tl) (e.g. t3 is an immediate successor of t2)
If (T=T2 or (T follows Tl and T2 follows Tin G» (e.g. t4 follows t2)

If we are building a new path
Previous:= the last generated du-path (without its preamble)
If (Tl is present in the previous path)

Common:= the sequence of transitions in the previous path before
Tl

EndIf
EndIf
If we are building a new path

Add Preamble to Path, Add var in the list of test purposes for Path
EndIf
If Common is not empty

Add Common to Path
EndIf
If(T = T2)

Add T to Path, Make-Executable(Path)
Else

If T is not present in Path (but may be present in Preamble) and T does
not have an A-use of var
Add Tto Path
Generate-All-Paths(T, T2, first-transition, var, Preamble)

EndIf
EndIf

EndIf
T:= next transition in the graph
If (T is not Null) Generate-AlI-Paths(Tl, T2, T, var, Preamble)
Else

If (Path is not empty)
If (the last transition in Path is not an immediate precedent ofT2)

Take off the last transition in Path
Else

If (Path is or will be identical to another path after adding 1'2)
Discard Path

EndIf
EndIf

EndIf
EndIf

End.

84 Part Four Data Part Test Generation

The algorithm used to find the postambles and the cycles is also similar, except
that it does not call the procedure Make-Executable(Path).

Suppose Pl=(t},t2, .. tk_},tk). Make-Executable(Pl) finds the non-executable transi­
tion tk in PI if it exists. Then it finds if another executable du-path P2=(t},t2, .. ,tk_
} , ... ,tk) exists. If such path exists, PI is discarded. If not, the procedure Handle-Exe­
cutability(Pl) is called (see next section). This verification enables to save time gen­
erating the same path or an equivalent path (the same du-path with different cycles
in it) more than once. Handle-Executability(Path) starts by verifying if each transi­
tion in Path is executable or not. In each transition, each predicate is interpreted
symbolically until it contains only constants and input parameters and the algorithm
can determine if the transition is executable or not (especially for simple predi­
cates). However, for some specifications with unbounded loops, Handle-Executabil­
ity may not be able to make a non-executable path executable.

Table 2 shows all the du-paths (with the preamble (t}, t2, t3, t4» form t9 to tlO w.r.t
the variable counter and the reason why some paths were discarded. All the paths
that were discarded because the predicate became (3=2) cannot be made executable,
because the influencing transition (t4 or ts) appears more than it should be.

Table 2. All du-paths form t9 to t7 w.r.t. counter

Du-Path

1,2,3,4,9,10,6,4,7

1,2,3,4,9,10,6,4,8,7

1,2,3,4,9,10,6,5,4,7

1,2,3,4,9,10,6,5,4,8,7

1,2,3,4,9,10,7

1,2,3,4,9,10,8,6,4,7

1,2,3,4,9,10,8,6,5,4,7

1,2,3,4,9,10,8,7

1,2,3,4,9,12,4,7

1,2,3,4,9,12,4,8,7

1,2,3,4,9,12,5,4,7

1,2,3,4,9,12,5,4,8,7

Discarded

no

yes

no

yes

yes

yes

yes

no

no

yes

no

yes

Reason path is discarded

predicate in t7 become (3=2)

predicate in t7 become (3=2)

will be equivalent to the first path
after solving the executability

predicate in t7 become (3=2)

predicate in t7 become (3=2)

predicate in t7 become (3=2)

predicate in t7 become (3=2)

In the next section, we will show what cycle analysis is and how it can be used to
make the non-executable paths executable.

Test case generation for extended finite state machine protocols 85

5 HANDLING THE EXECUTABILITY OF THE TEST CASES

The executability problem is in general undecidable. However, in most cases, it can
be solved. (Ramalingom, 1995) deals essentially with the executability of the pre­
ambles and postambles, and not with the executability of the du-paths covering the
data flow. (Huang, 1995) overcame this problem by executing the EFSM. This
method does not cover the control flow and may not deal with large EFSMs. (Chan­
son, 1993) used static loop analysis and symbolic evaluation techniques to deter­
mine how many times the self loop should be repeated so that test cases become
executable. This method is not appropriate for specifications where the influencing
variable is not updated inside a self loop, such as the EFSM in figure 1, and cannot
be used if the number of loop iterations is not known. For these reasons, the follow­
ing heuristic was developed in order to find the appropriate cycle to be inserted in a
non-executable path to make it executable.

Procedure Handle_Executability(path P)
Begin

Cycle:= not null
Process(P)
If P is still not executable Remove it
EndIf

End;

Procedure Process(path P)
Begin

T:= first transition in path P
While (T is not nUll)

If (T is not executable)
Cycle:= Extract-Cycle(P,T)

EndIf
I~ (Cycle is not empty)

Trial: =0
While T is not executable and Trial<Max_trial Do

Let Precedent be the transition before T in the path P
Insert Cycle in the path P after Precedent
Interpret and evaluate the path P starting at the first transition
of Cycle to see if the predicates are satisfied or not
Trial:= Trial+ 1

EndWhile
Else

Exit
EndIf
T:= next transition in P

EndWhile
End.

86 Part Four Data Part Test Generation

We would like to mention that our tool makes a difference between two kinds of
predicates. A binary predicate has the following form: "varl R var2". where R is a
relational operator such as "<"; while a unary predicate can be written as F(x).
where F is a boolean function such as "Even(x)" (see figure 2).

The heuristic "Handle-Executability" verifies if each non-executable path can
be made executable and uses the procedure "Extract-Cycle(P.T)" to find the
shortest cycle, if it exists. to be inserted in a non-executable path in order to make
it executable. For this purpose, we find the first non-executable transition T in the
path P. Two cases may arise: If the transition T cannot be executed because some
unary predicate is not satisfied. we find a transition tk' if it exists. among the

transitions preceding transition T, which has the same predicate with a different
value. An influencing cycle containing tk is generated (if it exists) and inserted in

the path P before transition T. If the predicate is not a unary predicate. we find out.
using symbolic evaluation. what the variable causing the non-executability is. and
whether it should be increased or decreased for the transition tk to be executable.

This variable must be an influencing one and transitions which update the variable
must exist. If this is not the case. an empty cycle is returned. and the path is
discarded. If the variable in the predicate is an influencing variable, we search
among the transitions preceding T. for a transition tk which updates properly the

variable. generate a cycle containing this variable and insert it in the path. If a path
cannot be made executable, it is discarded.

To illustrate the heuristic. suppose that in the EFSM of figure I. both variables n
and b have the value 2. The shortest preamble for tll is (tl' t2' t3. t4' ~. t11)' but t11
is not executable because its predicate "counter>2" becomes "1>2" after interpreta­
tion. Our tool finds that the influencing variable is "counter" and that among the
transitions preceding t11' ~ is an influencing transition which may be adequate.

because it increases the variable "counter". The cycle (tlO.~) is generated and

inserted twice after transition t9. The path becomes (tl' t2' t3. t4' ~. tlO' ~, tlO. ~.

til)·

t4

t2 t3

tl: 1a

t2: Even(a)
a:=al2;
Output(a);

t3: Not(Even(a»
a:=3*a +1;
Output(a);

t4: a=1
Output(a);

Figure 2. EFSM with unbounded loops and unary predicates.

Test case generation/or eXlendedjinite state machine protocols 87

Figure 2 presents an example of an EFSM with unbounded loops. Each loop is a
self-loop with a unary predicate. For this example, since transitions t2 and t3 are not

bounded, (Chanson, 1993) (Ramalingom, 1995) cannot generate any executable test
case for this example.

In table 3, the executable test cases (without state identification) and test
sequences for the EFSM in figure 2 are presented. Each test case is relative to one
value for the input parameter a.

Table 3. Executable test cases for the EFSM in figure 2

Input
parameter Executable test case Input/Output sequence

1 tl, t4 ?Ill

5 tl, t3, t2, t2, t2, t2, t4 75! 16! 8! 4! 2! 1 II

100 tl, t2, t2, t3, t2, t2, t3, t2, t3, t2, t2, 71OO!50!25!76!38!19!58!29!
t2, t3, t2, t3, t2, t2, t3, t2, t2, t2, t3, 88!44!22!l1 !34!l7!52!26ll3,!40,
t2, t2, t2, t2, t4 20!1O!5ll6!8!4!2!l!1

125

For the EFSM in figure 2, our tool failed to generate any executable test case for
a=125. But when we increased the value of the variable Max-Trial (in the procedure
Process) , a solution was found. Giving our tool more time to let it find a solution
does not mean that a solution will be found. In these cases, out tool cannot decide if
a solution exists. After the generation of executable paths, input/output sequences
are generated. The inputs will be applied to the IUT, and the observed outputs from
the IUT will be compared to the outputs generated by our tool. A conformance rela­
tion can then be drawn.

6 RESULTS

Table 4 presents the final executable test cases (without state identification) gener­
ated by our tool on the EFSM in figure 1. In many cases, the tool had to look for the
influencing cycle to make the test case executable. With state identification, the first
executable path will look like: (tlo t2' t3' t5' t4' t8' t7' tIS' tI6). The last two paths are

added to cover the transitions t13' t14' t15 and t17 which were not covered by the

other paths.

88 Part Four Data Part Test Generation

Table 4. Executable test cases for the EFSM of Figure 1

No Executable Test Cases Test Purposes

tl, t2, t3, t5, t4, t8, t7, t16, number, counter, no_oCsegment

2 tl, t2, t3, tS, t4, t8, t9, tlO, t7, tl6 number, counter, no_oCsegment, blockbound

3 tl, t2, t3, tS, t4, t9, tlO, t8, t7, tl6 number, counter, no_oCsegment, blockbound

4 tl, t2, t3, t4, t8, t9, tlO, t9, tlO, t9, number, counter, no_oCsegment, blockbound
til, t16

5 tl, t2, t3, t5, t4, t8, t9, tlO, t9, tlO, number, counter, no_oCsegment, blockbound
t9, til, t16

6 tl, t2, t3, t5, t4, t9, tlO, t9, tl0, t9, number, counter, blockbound
til, t16

7 tl, t2, t3, t5, t4, t9, tl2, t4, t7, t16 number, counter, blockbound

8 tI, t2, t3, t4, t6, t4, t7, t16 number, counter, no_oCsegment

9 tl, t2, t3, t4, t6, t5, t4, t7, tl6 number

10 tl, t2, t3, t4, t8, t7, tl6 number, counter, no_oCsegment

11 tl, t2, t3, t4, t8, t9, tlO, t7, t16 number, counter, no_oCsegment, blockbound

12 tI, t2, t3, t4, t9, tlO, t6, t4, t7, t16 number, counter, no_oCsegment, blockbound

13 tl, t2, t3, t4, t9, tl0, t6, t5, t4, t7, t16 number, counter, blockbound

14 tl, t2, t3, t4, t9, tlO, t8, t7, tl6 number, counter, no_oCsegment, blockbound

15 tl, t2, t3, t4, t9, t12, t4, t7, tl6 number, counter, blockbound

16 tI, t2, t3, t4, t9, t12, t5, t4, t7, t16 number, counter, blockbound

17 tI, t2, t3, t4, t9, tlO, t9, tlO, t9, til, number, counter, blockbound
tl6

18 tl, t2, t3, t4, t9, tl0, t6, t4, t9, tl0, number, counter, blockbound
t9,tll,16

19 tI, t2, t3, t4, t9, tlO, t6, t5, t4, t9, number, Gaunter, blockbound
tlO, t9, til, t16

20 tI, t2, t3, t4, t9, tIO, t8, t6, t4, t9, number, counter, no_oCsegment, blockbound
tlO, t9, til, tl6

21 tl, t2, t3, t4, t9, tl0, 18, t6, tS, t4, t9, number, counter, no_oCsegment, blockbound
tlO, t9, til, tl6

22 tl, t2, t3, t4, t9, tlO, t8, t9, tl0, t9, number, counter, no_oCsegment, blockbound
til, t16

23 tl, t2, t3, t4, t9, t12, t4, t9, tlO, t9, number, counter, blockbound
til, t16

24 tl, t2, t3, t4, t9, t12, tS, t4, t9, tlO, number, counter, blockbound
t9, tll, tl6

25 tl, t2, t3, t4, t8, t7, tl3, tl4, t15, t16

26 tl, t17

Test case generationfor extendedfinite state machine protocols 89

The sequence of input/outputs is extracted from the executable test cases, and
applied to test the IUT. For output parameters with variable (such as the output
"dt"), symbolic evaluation is used to determine the value of the variable number
which has an output use (see Table 3 for an example).

In order to compare our tool to other methods, we implemented an algorithm
which generates all the du-paths (like in (Chanson, 1993», to which we added
Cycle Analysis to handle the executability problem instead of loop analysis. We
shall call this algorithm "Ch+". Note that "Ch+" verifies the executability after all
the du-paths are generated.

Table 5. Results obtained by Ch+ and by our tool

EFSM Ch+ Our tool

du-paths Exec du-paths discarded du-paths Exec

fig 1 81 26 60 29 16 26

fig 2 9 0 0

INRES 54 25 24 4 4 22

In table 5, the results obtained by Ch+ and by our tool on three EFSMs are sum­
marized. The third EFSM is a simplified version of the INRES protocol. It has four
states, fourteen transitions, four loops two of which are influencing self-loops.

The first column of discarded "du-paths by our tool" specifies the total number of
discarded paths during du-path generation. The second column specifies the number
of paths that were discarded by the tool without trying to make them executable,
because equivalent paths already existed. "Exec" stands for executable.

7 CONCLUSIONS AND FUTURE WORK

As me mentioned earlier, for the EFSM in figure 1, our tool discarded only
twenty nine paths (during du-paths generation) while Ch+ discarded fifty five
(after generating all the du-paths). Verifying the executability of the du-paths
during their generation enables to generate only those paths which are more likely
to be executable. Our method generates executable test cases for EFSM-specified
systems by using symbolic evaluation techniques to evaluate the constraints along
each transition, so only executable test sequences are generated. Also, our method
discovers more executable test cases than the other methods and enables to
generate test cases for specifications with unbounded loops.

This work is supported by an NSERC Strategic grant STROI670n.

90 Part Four Data Part Test Generation

8 REFERENCES

Bochmann, G. v. Das, A. Dssouli, R. Dubuc, M. Ghedamsi, A. and Luo, G. (1991)
Fault models and their use in Testing. Proc. IFIP Intern. Workshop on Protocol
Test Systems (invited paper), pp. (11-17)-(11-32).

Chanson, S. T. and Zhu, 1.(1993) A Unified Approach to Protocol Test Sequence
Generation. In Proc. IEEE INFOCOM.

Huang, C.M. Lin, Y.C. and Jang, M.Y. (1995) An Executable Protocol Test
Sequence Generation Method for EFSM-Specified Protocols. International
Workshop on Protocol Test Systems (IWPTS), Evry, 4-6 September.

Ramalingom, T. Das, A. and Thulasiraman, K.(1995). A Unified Test Case Genera­
tion Method for the EFSM Model Using Context Independent Unique Sequences.
International Workshop on Protocol Test Systems (IWPTS), Evry, 4-6 September.

Sarikaya, B. and Bochmann, G.v. (1986) Obtaining Normal Form Specifications
for Protocols. In Computer Network Usage: Recent Experiences, Elsevier Science
Publishers.

Ural, H. and Yang. B. (1991) A Test Sequence Selection Method for Protocol Test­
ing. IEEE Transactions on Communication, Vol 39, N04, April.

Weyuker, E.J. and Rapps, S. (1985) Selecting Software Test Data using Data Flow
Information. IEEE Transactions on Software Engineering, April.

9 BIOGRAPHY

Chourouk Bourhfir is a Ph-d student in the Departement d'Informatique et de
Recherche Operationnelle (DIRO), Universite de Montreal. She received the M.Sc.
degree in Computer Science in Universite Laval, Canada in June 1994. Her research
interests include modeling and automatic test generation.
Rachida Dssouli is professor in the DIRO, Universite de Montreal. She received the
Doctorat d'universite degree in computer science from the Universite Paul-Sabatier
of Toulouse, France, in 1981, and the Ph.D. degree in computer science in 1987,
from the University of Montreal, Canada. She is currently on Sabbatical at
NORTEL, TIe des Soeurs. Her research area is in protocol engineering and require­
ments engineering.
EI Mostapha Aboulhamid, received his Ing. Degree from INPG, France, in 1974,
The M.Sc. and Ph.D. degrees from Universite de Montreal in 1979 and 1985 respec­
tively. Currently, he is an associate Professor at Universite de Montreal. His current
research interests include Hardware software codesign, testing, modeling and syn­
thesis.
Nathalie Rico is currently working in Nortel, lIe des soeurs, Montreal. She is the
manager of the DMS Network Applications group.

