
18 

A Pragmatic Approach to Generating 
Test Sequences for Embedded Systems 

Luiz Paula Lima J r. 1 and Ana R. Cavalli 
Institut National des Telecommunications 
9, rue Charles Fourier - 91011 Evry Cedex - France 
Tel: (+331) 60 764474 Fax: (+ 331) 60 7647 11 
{limaIAna.Cavalli}@hugo.int-evry.fr 

Abstract 
Application architectures have evolved to distributed architectures where applica­
tions are no longer seen as software blocks, but rather as cooperating software com­
ponents, possibly distributed over the network. Some of the application's 
components may have already been thoroughly tested while others have not. This 
paper presents a pragmatic solution to component testing by means of controlling 
the composition process in order to identify global transitions that reflect the com­
ponent's behaviour. The application of the proposed method is illustrated by an 
example based on the handling of a telephone call. 

Keywords 

Test generation, component testing, embedded systems, distributed architectures, 
automata composition. 

1. This work was funded by CNPq. 

Testing of Communicating Systems, M. Kim, S. Kang & K. Hong (Eds) 
Published by Chapman & Hall © 1997IFIP 



A pragmatic approach to generating test sequences for embedded systems 289 

1 INTRODUCTION - COMPLEX SYSTEMS 

Application platforms have evolved from monolithic architectures to distributed 
ones where a system is seen as an open set of interworking components. These sys­
tems are complex for their components are usually hierarchically organized and 
may have a certain degree of autonomy. In these systems, all external events can 
affect any part of its internal state. This is the primary motivation for vigorous test­
ing, but for all except the most trivial systems, exhaustive testing is impossible [1]. 
In other words, this increasing complexity of computer systems and their communi­
cation protocols can no longer be handled by traditionally informal or ad hoc meth­
ods for conformance and interoperability testing [2]. Since we have neither the 
mathematical tools nor the intellectual capacity to model and test the complete 
behaviour of large discrete systems, we must either be content with acceptable lev­
els of confidence regarding their correctness or try to find out other ways to tackle 
their complexity. 

Abstraction is one of the most prevalent techniques to deal with complexity. In 
the domain of conformance testing, for instance, a common abstraction is not to 
consider system's internal signals when generating test sequences. Of course, the 
choice of the level of abstraction (or what are the primitive components in a system) 
is relatively arbitrary and is largely up to the discretion of the observer of the system 
[1]. 

The application of embedded testing techniques is also an important aspect to 
consider when simplifying the validation of these systems. But current experience 
has shown that the embedded nature of components make the current type of auto­
matic test generation useless. This has been the case for the GSM-MAP protocol 
[3], and for the SSCOP protocol environment for AAL5 (ATM Adaptation Layer) 
[4]. For instance, the application of these new techniques to the interaction between 
SSCOP and Q2130 on top, and their relation with the Q2931 signalling protocol (to 
which they provide the SSCF service), would be of particular interest. 

In this paper, we present a pragmatic solution to component testing of complex 
systems by means of abstraction (defining a composition algorithm that removes 
internal actions) and by means of controlling this composition process in order to 
identify global transitions that reflect the behaviour of the component under test. 
The paper is organized as follows. Section 2 introduces the idea of embedded test­
ing, underlining its relevance in the context of complex systems. Section 3 suggests 
a test architecture for embedded systems together with basic definitions and 
assumptions. Our embedded testing techniques are based on an algorithm for 
automatoQ composition that is detailed in Section 4. Section 5 presents a method for 
deriving test sequences for complex systems using, basically, goal-oriented tech­
niques and our tools. Conclusions are drawn in Section 6. 



290 Pan Seven Test Generationfor Communicating State Machine 

2 EMBEDDED TESTING BASICS 

It is widely accepted that testing is a crucial phase in the development of complex 
systems such as communication protocols [2]. Nevertheless, there is a strong need 
for systematic methods for testing these systems since the existing methods for test 
derivation from Labelled Transition Systems (LTS) and Input/Output Finite State 
Machines (I10FSM) (based on the "black-box" representation of the implementa­
tion under test - IUT) are not adequate in this context. In fact, some of the system 
components may have already been thoroughly tested or a certain level of confi­
dence may have been assigned to them so that they no longer need to be subject of 
test. Test derivation methods that generate test sequences for only a subset of the 
system components are called "embedded testing methods" [5] or "gray-box testing 
methods" [2] or even "methods for testing in context." [6] 

Example 1. Consider the system 
depicted in Figure I. Assume that 
module C is known to be faultless and 
that module I must be tested I. Let us 
also assume that we do not have 
access to I's internal interfaces (since 
the implementation of the system is 
given as a black box). Therefore, 
internal signals sent to/from I may 
reach the environment after passing 
through C. Module C acts as a kind of 

C I - . 

FIGURE 1. A generic complex 
system. 

"filter" and system responses to environment stimuli must be correctly interpreted 
in order to verify that module I works as specified. Cl 

Traditional methods for testing in isolation tum out to be inadequate for, basi­
cally, two reasons: 

• Module I can neither be "removed" from the system (in order to be tested in 
isolation) nor can it give access to its internal interfaces. Traditional methods 
are then obliged to test the system as a whole. 

• Obviously, testing the whole system would test module I as well, but then we 
would have (unnecessarily) tested a part of C's behaviour that is independent 
of I . This happens, because the system's global behaviour is likely to contain 
behaviour that only concerns module C. 

Embedded testing represents situations that occur very frequently in protocol 
conformance testing, functional testing of digital circuits (specially, multiprocessor 
networks) as well as in testing of object-oriented packages2. Although the details of 
each component implementation may remain hidden, to be able to test such sys-

I. Modules C and I may be viewed as the composition of all machines of the system that are not under 
test and that are subject of testing. respectively. 



A pragmatic approach to generating test sequences for embedded systems 291 

terns, we must have infonnation about the component configuration (or structure) 
within the system. Embedded testing methods take advantage of the infonnation 
about the configuration of the complex system components. 

To sum up, embedded testing is concerned with testing a system component 
when the tester does not have direct access to its interfaces. The access is then made 
through another process which acts as a sort of "filter." According to [5], if "control 
and observation are applied through one or more OSI implementations which are 
above the protocol(s) to be tested, the [testing] methods are called embedded." 

Pragmatic embedded testing techniques identify parts of the system's global 
behaviour that reflect the behaviour of the component under test, and then perfonns 
tests on only those parts. Intuitively, the set of test sequences to test the whole sys­
tem contains redundant or unnecessary elements that we would like to avoid when 
testing. 

3 TEST ARCHITECTURE FOR EMBEDDED SYSTEMS 

3.1 Preliminary Definitions 

An input-output finite state machine (UOFSM) is a tuple: (S, J, O,~, A, sci where 

S, I, 0 are finite, non-empty sets of states, inputs and outputs respectively; So is the 

initial state; ~ : S x J -+ 2S is the state transition function and A : S x J -+ 2° is 

the output function. 
One test is referred to as a test case. A test suite is a set of test cases that tests all 

confonnance requirements. 
The action of the conceptual tester involves interactions with the System Under 

Test (SUT). These can, in theory, be observed and controlled from several different 
points that are called Points of Control and Observation (PCOs). PCOs can be mod­
elled as two queues: an output queue for control of test events to be sent to the 
Implementation Under Test (iUT); and an input queue for the observation of test 
events received from the IUT. 

For testing purposes, a complex system may be divided in two subsystems: a 
non-empty set of components under test (or simply component, or JUT), and a (pos­
sibly empty) set of components that are not concerned by testing (the context). The 
problem of testing a system with an empty context reduces to the traditional prob­
lem of testing in isolation. 

2. In this work, we are particularly interested in ODP-like systems where different objects communicate 
within an arbitrary configuration and where we do not intend to test the entire system, but only some 
of its components. 



292 Part Seven Test Generation/or Communicating State Machine 

3.2 Architecture 

The test architecture is the description of the environment in which the compo­
nent is tested. It describes the relevant aspects of how the component is embedded 
in other systems during the testing process, and how it communicates via these 
embedding systems with the tester (see Figure 2). 

A test architecture consists 
of [5]: 

• a tester; 

• an implementation 
under test (lUT); 

• a test context; 

• points of control and 
observation (PCOs); 

• implementation access 
points (lAPs, also 
"interfaces"). 

In the ideal test architecture 
(for testing in isolation), the 
lAPs and the PCOs coincide, 
the test context is empty, and 
the tester interacts directly 

TESTER 

, r j ~ ,-
,-

1 ~ 

IUT 
compone,!' , 1 

,-

, 
,-

- .. P co 
~P --.. , 

context 

FIGURE 2. Generic test architecture. 

with the IUT. This is rarely the case in real systems, though. The System Under Test 
(SUT) is composed of the IUT and the test context. 

The tester is equipped with a timer that is started when a signal is sent to the 
SUT. On receipt of a response from the SUT, this signal is checked with respect to 
the test case. After a time out period, if no signal is received, then a fail verdict is 
issued. Input data for the tester consists of the test suite which guides all testing 
activities expressing what signals should be sent to the SUT, and what the expected 
responses are. The test suite represents the reference system in the tester. 

3.3 Hypothesis 

In order to be able to employ the embedded method for test derivation, described in 
Section 5, we make the assumption that the context is correctly implemented and 
that a faulty component implementation does not increase the number of states of 
the global machine. The latter is a variation on a common hypothesis for testing in 
isolation [7] that makes it possible to evaluate the test coverage in embedded test­
ing. 

The IUT interacts with its context through synchronous communication with 
input queues of finite size. This implies that a next input x is only submitted to the 



A pragmatic approach to generating test sequences for embedded systems 293 

system after it has produced an external output y in response to the previous input (1/ 
o ordering constraint [6]). 

The SUT is "reactive" in the sense that one input signal can trigger one or more 
outputs which are simultaneously sent back to the environment. That is, an output 
(or set of outputs) must be identified as a response of the system to a particular 
given stimulus or input. 

4 TRACE-KEEPING ALGORITHM FOR AUTOMATON 
COMPOSITION 

The generation of test sequences from formal specifications of systems has been tra­
ditionally based on the exhaustive simulation of the specification in order to obtain 
an automaton that represents the global behaviour of the system. Since it is impossi­
ble, in most of the cases, to deal with the size of the automaton that represents the 
complete behaviour of these systems, a reasonable approach is to simulate the exe­
cution of the specification by controlling the range of values assigned to each inter­
nal variable and each parameter of input messages. The closer this range is to the 
real one, the more realistic and the larger the test will be. Obviously, there is always 
a compromise between accuracy (completeness) of the automaton and its size. But, 
even with an automaton of a "computable" size, the process of test sequence deriva­
tion may not be able to cope with that automaton in a reasonable period of time. 

To date, to generate test sequences, what we have done is to take the "big" 
automaton (that is, the one which is as close to the specification as possible) and 
then, through the definition of view points (PCOs), abstract the signals which are 
irrelevant in the current consideration or view point. Then, we may proceed by min­
imizing the automaton using an algorithm (described in [3]) which removes all 
internal signals (if the choice of the PCOs is well done). We thereby obtain an 
automaton that corresponds to the "big one," but abstracting details we do not yet 
want to consider (see Figure 3a). In general, this automaton has a reasonable size, 
and therefore it can be used as input for the process of deriving test sequences. 

However, even with a "big" automaton generated by simulation, the "reduced" 
one is often simpler than we would like. Producing an even "bigger" automaton 
would, in principle, result in a bigger "reduced" automaton, but in many cases a 
"bigger" automaton just cannot be generated due to storage, memory or computa­
tionallimitations. 

To solve these problems we will consider the use of composition algorithms (see 
Figure 3b). The idea is to avoid the initial automaton size explosion by dividing 
(which is often already done, if we are dealing with modular systems) the specifica­
tion into smaller, interrelated modules which are then simulated to produce more 
complete or smaller automata. The simple composition of these automata, without 
taking into account any kind of abstraction (PCOs), would lead to the "big" autom­
aton of the traditional case that corresponds to the Cartesian product of the two 
automata. However, if we use information about our abstraction level we are able to 
compose them and at the same time avoid the explosion of the model. In other 



294 Pan Seven Test Generation/or Communicating State Machine 

"Big" automaton 

MReduced" automaton "Reduced" automaton 

(a) "Traditional" approach (b) Approach through composition 

FIGURE 3. Approaches to produce the reduced automaton that will 
be used as input to the test derivation process. 

words, we compose the automata removing internal signals which are not part of 
what we want to consider for the moment. Composition is done through simulation 
in order to avoid the generation of unreachable states. 

4.1 Definitions 

Before proceeding, let us define some useful terms. Let A I and A2 be two I10FSMs 

and n be the cartesian product of A I and A2. 

Definition J: A global state is a state of n. The set of all global states is denoted by 

r = {cr I cr is a state of n} . 

Definition 2: A reachable global state is a global state that is attained during the 
joint execution of Al and A2. The set of all reachable global states is denoted 

by 

~ = {pl(p E r, p is attained during the joint execution of Al and A2)}. 

Definition 3: An unreachable global state is a global state that never happens in the 
joint execution of two machines. 



A pragmatic approach to generating test sequences for embedded systems 295 

Definition 4: A stable global state is the global state that n reaches after sending a 
response to environment and before receiving another signal from it. Let us 
denote the set of all stable global states by 

L = {'t I ('t E 9t, 't is attained just after sending a signal to the environment) } 

Definition 5: A transient global state is a reachable state which is not stable. Many 
internal message exchanges and state changes can take place after receiving 
a signal from the environment and before sending back a response to it. 
These intermediary states are called transient global states. 

The relation between r, 9t and L is 
given in Figure 4. The set of transient 

global states is given by 9t - L . 

Example 2. Let us consider the automata 
depicted in Figure 5. Using composition 
without consideration of internal signals, 
we would obtain an automaton that is the 
cartesian product of the two first autom­
ata (Figure 6). Internal signals in the car­
tesian product machine can be hidden 
using algorithms like the one describe in 
[3]. 

FIGURE 4. Relation between 
sets of states. 

Considering ia and ib internal signals, the automaton that corresponds to the 
global behaviour, after hiding these signals is depicted in Figure 7. 

However, if we compose both automata already taking into account information 
about the internal signals, we will obtain the same result with the advantage of not 
producing the intermediary large automaton which corresponds to the cartesian 
product. 

ib/B blib 

FIGURE 5. Simple example for automata composition. 



296 Pan Seven Test Generation/or Communicating State Machine 

FIGURE 6. Cartesian product of Aut! and Aut2. 

alA bIB 

I Aut1 • Aut2 

FIGURE 7. Automaton representing 
the joint external behaviour of Aut! 
and Aut2• 

In this example, r = {sO,O, sl,O,sl, I' sO, I}, ~ = {sO,O,sl,O,sl, I}, and 

L = {sO, 0' sl, I} ' There is only one transient state (s},o) and one unreachable state 

(SO,}). 0 



A pragmatic approach to generating test sequences for embedded systems 297 

4.2 Composition Algorithm 

In this section we describe an algorithm to compute the global composition of two 
automata while removing internal actions. The algorithm is made as modular as 
possible, so it may be implemented in a distributed fashion. (Our current implemen­
tation is centralized, however it serves our purpose.) 

4.2.1 Input data and object configuration 

Let AI and A2 be the two automata we intend to compose, let E be the set of the sig­

nals exchanged with the environment I and k E {I, 2} . 
The diagram of Figure 8 shows the object configuration used in the composition 

non-determinism 
detected 

set state set state 

Env. Signals 

non-determinism 
detected 

FIGURE 8. Object configuration in the automata composition 
algorithm. 

process. There are basically three objects that communicate by means of message 
passing: objects Ak, and the builder. 

An Ak objects implements automata behaviour. Incoming signals are placed in 

an input queue and consumed as soon as possible. They cause an outgoing transition 

I. E corresponds to the PCO definition. 



298 Part Seven Test Generation/or Communicating State Machine 

from the current state to be traversed producing an output either to the builder 
object or a peer object (Ak). Also, each state change is reported back to the builder 

that records them in individual stacks, so it will be able to keep track of all reacha­
ble global states during subsequent steps. 

The builder is the object that controls the composition process and gathers 
results from objects Ak• These results are used to build up a composite transition, 

say tre, which is instantiated at the end of each step. Getting an output signal from 
either Ak means that it has obtained all the necessary information to instantiate tre 

and that it can advance to the next step. 

4.2.2 The Composition Process 

Initially, Al and A2 are set to their initial states which correspond to the global ini­

tial state. The builder is aware of which signals could be processed by each machine 
in each state. It then sends a signal to, say AI, and waits for a response from either 
Al or A2. Meanwhile, many massage exchanges may take place between Al and A2 

until they reach a stable state (when their input queues are both empty and an exter­
nal signal is sent back to the builder). In order to compute subsequent global states, 
all reachable states must be saved by the builder in its stacks I. A global transition is 
then instantiated from: 

• Al and A2's initial states (before sending the signal); 

• the signal sent to the system; 

• the system's response; and 

• the composite stable state that is composed of the states reached by each 
machine. 

This procedure is repeated until there are no more unvisited outgoing transitions 
from the current global state whose inputs belong to E. 

Upon receipt of a signal, each Ak object changes its internal state and sends a 

signal to another object (a peer object or the builder). 
This approach differs from the synchronous product described in [8] and [9]. In 

fact, while in the synchronous product a transition belongs to the product machine if 
it can be traversed in the two components or if it can be traversed only in the speci­
fication [9], in our composition algorithm, each environment signal is sent to and 
received from either the context or the component machine, and what is modelled is 
their joint execution with internal signals being exchanged between them. However, 
the algorithm of Section 4.2 can be used to obtain the same result as the synchro­
nous product, composing an artificial context that makes visible only some parts of 

I. All reachable states are potentially stable states (reachable states may be transient or stable, according 
to Section 4.1). That is why they must be saved in the builder, so that the builder will be able to get 
back to them later on. 



A pragmatic approach to generating test sequences for embedded systems 299 

the component behaviour. An additional advantage over the synchronous product is 
better control over the observation (i.e. only input - or output - sequences may be 
observed, if desired). 

4.2.3 Extensions· Transition Marking and Behaviour Exploration 

The algorithm also includes a complex scheme of transition marking, is also needed 
to tackle the following issues: 

• Multiple (simultaneous) outputs (i.e. when one signal from the environment 
stimulates several simultaneous outputs); 

• Live-lock detection (if components exchange messages indefinitely); 

• Simultaneous triggering of multiple transitions (with simultaneous state 
changes). 

If the machines are non-deterministic, then a mechanism of behaviour explora­
tion guarantees that all possible branches are examined. Al or A2 warn the builder 
when there is a non-deterministic choice for the last input, so that the builder will 
send the same signal a second time and a different transition will then be traversed. 
As a result, non-deterministic machines are usually produced. 

4.2.4 Errors and Warning Messages 

There are basically two undesired situations that may happen during the composi­
tion process and that are reported back as errors or warnings: 

1. Incompatibility errors: Ak was not expecting a given internal signal from 
its peer machine at its current state. In this case, the internal signal is simply 
"forwarded" to the environment (builder) that instantiates a global transition 
with an error message (for it contains an internal output signal). 

2. Unreachability warnings: During the joint execution of both machines 
some transitions of either machine may not be traversed and some states 
even may not be visited. This means that a part of the machine behaviour 
was not exercised in the joint execution. This kind of information can be use­
ful, for instance, for feature interaction detection [10]. 

In the first case, either the machines were not designed to work together or they 
are badly specified. In the second case, however, there may be represented situations 
where the component presents (additional) functionalities that are not used by its 
context (or vice-versa). 



300 Part Seven Test Generation/or Communicating State Machine 

4.3 Example: Subscriber Connection Unit (SCU) and Subscriber 

Let us use the described algorithm to compose the I/OFSMs presented in Figure 9 
(internal signals are underlined in both automata). These machines represent the 
behaviour of a telecommunication system that is composed of two processes: the 
Subscriber and the Subscriber Connection Unit. They specify the handling of the 
arrival of a telephone call and are composed of states whose names are given in 
Table 1. 

TABLE 1. State names for seu and Subscriber. 

seu Subscriber 

State 
State name State number State name 

number 

So idle To idle 

SI waiCfocanswer Tl ringing 

S2 conversation T2 waicfocstop_ringing 

S3 control_by _called T3 conversation 

S4 fault T4 control_by _called 

T5 fault 

The composition algorithm proceeds as follows: the builder sets both machines 
to their initial states (assume that the initial global state is So To). From these states, 

there is only one external signal that can be treated by the seu, namely, 
call_arriving (call is an internal signal). Because there is a non-deterministic choice 
for signal caltarriving, assume it traverses transition [So,"call_arriving/call'''Sd. 

Since the output call is an internal signal, it is sent to the Subscriber causing a state 
chan~e (from To to TI) and a NULL signal. to be sent back to the builder. Upon 

receipt of a signal from the Subscriber, the builder understands that the system has 
reached a stable state and that a new global transition can be instantiated (in this 
case, [SoTo,"caICarrivingINULL",SITd). A new reachable global state SITI is 

saved in the builder for later analysis. 
Since there is another non-traversed transition from state SoT ° with an external 

input (transition [So,"call_arrivingINULL",So]), both machines are reset to their 

respective states (So and To) and call_arriving is sent again to the seu which now 

traverses transition [So,"caILarrivingINULL",So], and another global transition 

([SoT 0'" calLarrivinglNULL" ,SoT 0)) is instantiated. 

Since there is no other non-traversed transition from state So To with an external 

input, a new global state is computed from the set of reachable global states (S IT I) 



A pragmatic approach to generating test sequences for embedded systems 301 

FIGURE 9. Input automata used as input examples for the 
composition algorithm. 



302 Pan Seven Test Generation/or Communicating State Machine 

and the process continues until no other global state can be obtained (the set is 
empty). 

The composite automaton obtained is depicted in Figure 10. 

FIGURE 10. UCS composed with Subscriber. 

4.4 Trace-keeping Composition 

Each transition in the global I10FSM (i.e. the I10FSM that describes the global 
behaviour of the SUT) comes from either a transition of only one component or a 
combination of transitions of the two components. It is therefore possible to keep 
track of global I10FSM transitions that were generated from a transition of the IUT, 
and to use these transitions for testing only the component under test. Doing so, it 
becomes easy to distinguish relevant transitions from unnecessary or redundant 
ones in the global machine. Actually, local test sequences are not "translated" in 
terms of global test sequences, but rather parts of the global behaviour that reflect 
the behaviour of the local transitions are identified and test sequences are generated 
for only those global transitions. 

In order to better understand trace-keeping composition, we introduce the con­
cept of equivalence in context as defined in [6J. 

Definition 6: Let "." represent the composition operation as described in 



A pragmatic approach to generating test sequences for embedded systems 303 

Section 4.2. Two machines M 1 and M 2 are equivalent in a context C if 

and only if the joint execution of M 1 and C does not contain live-locks (i.e. 

the composite machine M 1 - C exists); and M 1 - C is equivalent to 

M 2 -C. 

An important question at this point is whether testing a global transition is 
equivalent to testing a corresponding transition of the component machine. The 

answer is not straight forward. Let C be the context machine, Spec be the compo­

nent specification and Imp the component implementation. Assume that global 

transition t (t E C - Spec) was generated by the composition of tc belonging to 

the context C and t S belonging to the component machine Spec (other cases 

where many implementation/context transitions originate a single global transition 

are analogous). The absence of transition t in the global machine C -Imp means 
that the implementation is faulty (since the context is correctly implemented - see 

Section 3.3). However, if transition t E C - Imp, then either t S E Imp or the 

implementation did something which is equivalent in the context l . 

Example 3. Consider the I10FSMs depicted in Figure 11 (internal signals are 
underlined). Although Imp is generally considered to be a faulty implementation of 

Spec, it is not, actually, in the context of C, because the composition C - Spec is 

equivalent to C - Imp. Therefore, if the global transition labelled aid exists in the 
composite machine, we cannot affirm that the transition labelled ialid belongs to the 
implementation. Nevertheless, we are still able to state whether the implementation 
has a set of equivalent transitions in that context. 0 

This observation leads us to the following conclusion: if there are at least two 
different paths composed of transitions labelled internal/internal (an in!ernal input 
and an internal output) that lead to the same state in the context machine, then, intu­
itively, the implementation is free to take the path it wants without changing the 
aspect of the global behaviour (since all message exchanges are internal). Other­
wise, the implementation would be obliged to take the unique existing path in order 
to preserve the global behaviour. 

I. We do not consider here the problem of latent faults pointed out in [6]. since our testing methods 
apply a signature to the arrival state of the transition in order to check its correctness. 



304 Pan Seven Test Generation for Communicating State Machine 

Context (C) Component (Spec) Implementation (Imp) 

aim 

~ ibI~ 

0'" jgjg 0 
, , 

, Global machine (C-Spec - C-Imp) 

FIGURE 11. Compatible 
machines in the context. , 

Example 4. If we consider the Subscriber from the example of Section 4.3 to be our 
component under test, we observe that, 

..• in order to test component 
transition ..• 

(T1,"ofChook/response",T2) and 

(T2, "stop_ringingINULL" ,T3) 

(T 3, "busyINULL" ,T 5) 

(T5,"hanR-up/hanR-up",To) 

••• we should test global transition ... 

(SIT1,"reieaseINULL",SOTO) and 

(S IT I ,"ringing_timerINULL" ,SoT 0) 

(S IT1,"ofChook/NULL",S2T3) 



A pragmatic approach to generating test sequences for embedded systems 305 

... in order to test component 
transition ... 

(T 4, "releaseINULL" ,To) 

(T 4, "ofChooklresponse",T 3) 

... we should test global transition •.. 

(S3 T4,"timeout-han~upINULL",SoTo) and 

(S3T4,"releaseINULL",SoTo) 

This is true since there are no alternative paths in seu whose transitions are all 
labelled intemaVintemal and provided that the context (SeU) is correctly imple­
mented, which is one of our assumptions (Section 3.3). 0 

5 TEST SEQUENCE GENERATION FOR EMBEDDED SYSTEMS 

Goal-oriented testing techniques consist of selecting a subset of the global system's 
behaviour that is likely to be faulty or that is critical within the system and generat­
ing test sequences for only those parts. In general, this selection is made in an ad 
hoc manner by human experts that identify the portions of the system's behaviour 
that might be subject of testing. Obviously, the system is only partially tested and 
this technique guarantees a behaviour coverage with regard to the subsystem inves­
tigated [8]. 

In this section, the idea is basically to couple together goal-oriented techniques 
and trace-keeping composition in order to generate test sequences that concern only 
the component under test. Using the trace-keeping algorithm of Section 4.2 we can 
automatically identify the parts of the system that reflect the component's behaviour 
following which we can use goal-oriented techniques to test this subsystem. 
In a non-optimized test generation method each transition is tested in the following 
manner: 

1. Use the shortest path to set the system to the initial state of the transition at 
hand; 

2. Send an input signal and check system's output; 

3. Check if the system moved to the correct state. 

Many techniques to improve this method have been suggested in the literature 
and they basically consist of finding a path including all system transitions (in the 
traditional approach). Since we do not need to test all system transitions, we would 
be glad to find a path traversing only global transitions that affect the component 
under test. However, the set of transitions that reflect the component's behaviour in 
the global machine may not form a (strongly) connected I10FSM. Therefore, some 
global transitions that do not concern the component itself may have to be kept 
when generating the test sequences (this is a problem for goal-oriented testing tech­
niques in general). 



306 Part Seven Test Generationfor Communicating State Machine 

We are currently working on a tool called TESTGEN developed at INT in order 
to incorporate test generation for embedded components. It uses the I10FSM of the 
global system (without the internal actions) and a list of transitions to be tested as 
input data, and it generates test sequences for only the transitions belonging to that 
list. The tests are performed in two different ways: 1) by defining a tour that starts 
and ends at the initial state and includes the transitions that define the test purposes 
(transitions that concern the component under test) or 2) by defining a tour that 
includes these transitions but also the signatures of the arriving states. In the first 
case, test sequences are shorter but only detect output faults. In the second case, we 
are able to detect output and transfer faults. Both are optimized. 

6 CONCLUSION 

In this paper we have presented a pragmatic approach to generating test sequences 
for embedded components of complex systems. The approach proposed is based on: 
1) the definition of a composition procedure that allows the abstraction of the inter­
nal signals exchanged between the processes that compose the system, whilst pre­
serving the exchanges between the system and its environment. The trace-keeping 
composition algorithm that was defined allows the identification of parts of the glo­
bal system specification that reflect the component's behaviour; 2) goal-oriented 
testing. The transitions that reflect the component's behaviour specification can be 
used to build up test objectives that only test the component's implementation. 

This approach presents the following advantages: it is not necessary to test the 
system as a whole (as is the case for traditional methods); it is possible to test the 
component's behaviour in context and to detect if the component's implementation 
conforms to its specification. It is also possible to detect if the system implementa­
tion includes an embedded component that is equivalent in context to the compo­
nent specification. 

7 REFERENCES 

[1] G. Booch, Object Oriented Analysis and Design with Applications, 2nd 
Edition The Benjamin/Cummings Publishing Company, 1994. 

[2] PT, Component Testing for Mobile and Broadband Telecommunications -
COIMBRA, COPERNICUS Project Proposal, Feb. 1996. 

[3] R. Anido, A. Cavalli, T. Macavei, L. P. Lima, M. Clatin, M. Phalippou, Test­
ing a real protocol with the aid of verification techniques, XXII SEMISH­
Brazil, Aug. 1996, pp. 237-248. 

[4] A. Cavalli, B. Lee and T. Macavei, Test generation for the SSCOP-ATM net­
works protocol, SDL Forum'97, September 1997, France. 

[5] ISO, Information Technology, Open Systems Interconnection, Conformance 
Testing Methodology and Framework, International Standard IS-9646. ISO, 
1991. 



A pragmatic approach to generating test ~equencesfor embedded systems 307 

[6] A. Petrenko, N. Yevtushenko, G. v. Bochman, Fault models for testing in con­
text, Proceedings of FORTE - Kaiserslatern, Gennany - 8-11 Oct. 96. 

[7] O. Charles, R. Groz, Formalisation d'Hypotheses pour l'Evaluation de la 
Couverture de Test, Proceedings ofCFIP'96 - Rabat, Morocco, 14-17 Oct. 
1996. 

[8] Algayres, B; Lejeune, Y. and Hugonnet, F. GOAL: Observing SDL Behav­
iours with GEODE, Proceedings of the 7th SDL Forum, Oslo, Norway, 26-29 
Sept. 1995 - pp. 223-230. 

[9] J-C Fernandez, C. Jard, T. Jeron, G. Viho, Using on-the-fly verification tech­
niques for the generation of test suites, Summer School MOVEP'96, Nantes, 
France, 18-21 Jun. 1996. 

[10] L. P. Lima, A. Cavalli, Service Validation - An Embedded Testing Approach, 
Proceedings of EUNICE Summer School- Lausanne, Switzerland, 23-27 Jun. 
1996. 

8 BIOGRAPHY 

Luiz Paula Lima Jr. is currently a PhD student at !NT (Institut National des TeLe~ 
communications), Evry, France and he received his MSC degree in 1994 at UNI~ 
CAMP (State University of Campinas), Brazil. His current research interests 
include object-oriented distributed systems and platfonns (ODP/CORBA) and test­
ing methods for these architectures. 

Ana Rosa Cavalli received the Doctorat d'Etat es Mathematics and Computer Sci­
ence in 1984 from the University of Paris VII, Paris, France. From 1985 to 1990, 
she was a staff research member at the CNET (Centre National d'Etudes des Tele­
communications), where she worked on software engineering and fonnal descrip­
tion techniques. Since 1990, she joined the !NT (Institut National des 
Telecommunications) as professor. Her research interests include fonnal description 
techniques, validation of protocols and services. computing methodology and test­
ing methods for distributed architectures. 


