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Abstract 
Leaky bucket and partial buffer sharing policy have already become classic 
examples of preventive and reactive traffic control functions implemented in 
ATM networks. They help to respect the negotiated connection parameters. to 
avoid the congestion and therefore to ensure the guaranteed quality"Of service. 
We revisit their performance models with the use of diffusion approximation 
adopting our previously developed method of transient state analysis and 
extending it to the case of state-dependent input. This kind of approach gives 
us an inside look upon the transient behaviour of the traffic. The dynamics 
of the traffic is displayed and the influence of both mechanisms on the traffic 
characteristics appears as a function of time. General cell interarrival times 
and the burstiness of the traffic are represented in a natural way in these 
models. The diffusion method is a second-order approximation and thus has 
certain superiority upon the fluid approximation. Both models can be easily 
implemented in a general queueing network model. Hence, the impact of both 
mechanisms on the performance of the whole network may be studied. The 
models may be applied also in cases of very small losses which are difficult to 
study by simulation. 
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1 INTRODUCTION 

The presence of Variable Bit Rate sources and the use of statistical multiple­
xing in ATM networks create the need of traffic control assuring a reasonable 
compromise between bandwidth efficiency and quality of service. Leaky buc­
ket, introduced almost ten years ago (Akhtar, 1987) and partial buffer sharing 
policy, see e.g. (Kroner, 1991) have already become classic examples of pre­
ventive and reactive traffic control functions implemented in ATM networks. 

In the leaky bucket scheme, the cells, before entering the network, must 
obtain a token. Tokens are generated at constant rate and stocked in a buffer 
of finite capacity. If there is a token available, an arriving cell consumes it 
and leaves the bucket. If not, it waits for the token in the cell buffer. The 
capacity of this buffer is also limited. Tokens and cells arriving to full buffers 
are lost. The analysis of the leaky bucket performance includes discrete-time 
Markovian models (Holtzinger, 1992) and fluid approximation (Elwalid, 1991 ). 

Partial buffer sharing policy is a well known space priority mechanism 
aiming to resolve congestion problems arising at a network node. Cells wa­
iting for transmission towards a specified direction are queued in a buffer. 
The quality of service demanded by different types of traffic is not the same, 
hence cell priority may depend on the type of traffic. The cell priority may 
be also set by an interface (e.g. jumping or sliding window) at a network en­
trance: there are regular cells admitted to the network on the contract basis 
and additional ones which may only conditionally enter the network and are 
discarded when congestion arises. In general, the cells belong to two classes, 
the first having higher and the second having lower priority. If the number 
of cells in the buffer is below a defined level, the partial buffer sharing policy 
allows the arriving cells of both classes t.o enter the buffer, otherwise only 
priority ones are stocked and arriving lower class cells are lost. The models 
of this mechanism are usually based on the discrete time Markov processes 
(Hebuterne, 1989), (Kroner, 1991), (Meyer, 1993) or simulation. 

We revisit the models of the above mechanisms with the use of diffusion 
approximation, mainly to test the utility of this method as a tool to analyse 
transient states resulting from traffic control. 

Diffusion approximation replaces process N(t), representing the number of 
customers in a service station by a diffusion process X(t) whose pdf f(x, t; xo) 
is defined by the diffusion equation 

of(x,t;xo)- ~82f(x,t;xo) -{38/(x,t;xo) 
8t - 2 8x2 ox · 

(1) 

If we solve this equation with appropriate boundary conditions and diffu­
sion parameters a. {3, we obtain an approximation of the queue distribution: 
p(n,t;no)::::::: f(n,t;no). 

Let A(x), B(x) denote the interarrival and service time distributions at a 
service station. The distributions are general, their means and variances are: 
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E[A] = 1/>., E[B] = 1/J-L, Var[A] = u~, Var[B] = u1. Squared coefficients 
of variation are denoted as C~ = u~>.2 , C1 = O"bJ-L2 • In the case of G/G/1 
and G/G/1/N stations the parameters a, f3 are chosen as f3 = >.- J-L, a = 
u~>.3 + u1J-L3 = C1>. + C1J-L, see (Newell, 1971). 

The choice of boundary conditions is based on the approach proposed by 
Gelenbe for a finite queue of capacity N in (Gelenbe, 1975) and refined in 
(Gelenbe, 1995). The diffusion process X(t) is limited by two boundaries si­
tuated at x = 0 and x = N. When the process comes to x = 0, it remains 
there for a time which corresponds to the idle time of the system and then 
jumps to x = 1; when it comes to x =Nit stays there for a time during which 
the queue is full and then jumps to x = N - 1. This finite queue model and 
the steady-state solution of the diffusion equation with the described boun­
daries were given in (Gelenbe, 1975) and broadly used afterwords. Here, we 
use transient solution of this model and develop the approach of (Czach6rski, 
1993, 1994). 

2 THE LEAKY BUCKET MODEL 

In the leaky bucket model the diffusion process X(t) is defined on the in­
terval x E [0, N = B + M] where B is the capacity of cell buffer and M is 
the capacity of token buffer. The current value of the process is defined as 
x = b - m + M, b and m being the current contents of the buffers, Figure 1. 

B 

cell stream 

token stream 

Figure 1 Leaky bucket scheme 

Let us suppose that the cell interarrival time distribution has the mean 
1/ >.c and squared coefficient of variation C A~. The tokens are generated with 
constant rate At, hence cA; = 0. Arrival of a cell increases the value of the 
process and arrival of a token decreases it, therefore we choose the parameters 
of the diffusion process as: 

The process evolves between two barriers placed at x = 0 and at x = M + B; 
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x = 0 represents the state:> where the whole token buffer is occupied and 
arriving tokens are lost; x = M + B represents the state where the token 
buffer is empty and the cell buffer is full: arriving cells are lost. 

The sojourn time at x = M + B corresponds to the residual token inte­
rarrival time, i.e. the time between the moment when the cell buffer becomes 
full and the moment of the next token arrival. We use here the density of 
holding time at the upper barrier of MID I 1 IN diffusion model as obtained 
in (Gelenbe, 1995). 

If the cell stream is Poisson, the pdf lo(x) of the sojourn time at x = 0 is 
defined by the density of cell interarrival time; otherwise we take this density 
as an approximation of l0 (x). Note that the sojourn times in boundaries are 
defined here by the densities lo(t), lN(t) and are not restricted to expo­
nential distributions. 

The values x > M of the process correspond to states where cells are 
waiting for tokens, the value x - M determines in this case the number of 
cells in the buffer; x < M means that there are tokens waiting for cells and 
the value M -x corresponds to the number of tokens in the buffer. Probability 
of b cells in the buffer at time t is defined by f( M + b, t ); probability of the 
empty cell buffer is given by Pc(t) = po(t) + J~v f(x, t)dx. Probability of m 
tokens in the buffer is given by f( M - m, t) and probability of empty token 
buffer is determined by J:+B f(x, t)dx + PN(t) where po(t) = P1·[X(t) = 0), 
PN(t) = Pr[X(t) = N). 

The service time is constant, hence the density function of the cell waiting 
time for tokens (response time ofleaky bucket) may be estimated as r(x, t) = 
J..tf(J..cx + M, t). 

To obtain the transient solution f( x, t) we follow the approach which we 
proposed previously in (CzachOrski, 1993, 1994). Its main idea is to express 
f(x, t; xo) with the use of a superposition 

f(x,t;xo) = 1/J(x,t;xo)+ fotut(T)t/>(x,t-T;1)dT+ 

lot UN-t(T)tj>(x, t- T; N- l)dT (2) 

of densities 1/J(x,t;xo) of diffusion process with another kind ofboundary con­
ditions: absorbing barriers placed at x = 0 and x = N; the process bounded 
by these barriers is finished when it comes to one of them. The densities 
t/>(x, t; xo) are easier to obtain than f(x, t; xo) and their form is known, see 
e.g. (Cox, 1965). 

In practice, we obtain the Laplace transform of f(x, t; xo) and invert it 
numerically. Hence, we obtain transient f(x, t; 1/J) and steady-state f(x) di­
stributions of the diffusion process for 0 ~ x ~ M +B. This gives us the 
distribution of the number of tokens and cells in the leaky bucket, the re­
sponse time distribution, the loss probabilities, the properties of the output 
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stream, etc. The capacities of cell and token buffers may be null, so we are 
able to consider a number of leaky bucket variants. 

The output process of the leaky bucket is the same as the cell input process 
provided, with probability Pc(t), that there are tokens available and it is the 
same as token input process with probability 1 - PT(t) that tokens are not 
available; at the time moment t the pdf d(x) of interdeparture times in the 
output stream is 

1 
d(x, t) = Pc(t)a(x, t) + (1- Pt(X, t)]6(x- At), (3) 

where a(x, t) is the time-dependent pdf of cell interarrival times distribution. 
Eq. (3) gives us the mean value and squared coefficient ofinterdeparture times 
distribution, i.e. whole information needed to incorporate one or multiple 
leaky-bucket stations (for example a cascade of leaky-buckets with different 
parameters) in the diffusion queueing network model of G/G/1 or G/G/1/N 
stations. 
Numerical example. At t = 0 the cell buffer is empty and the token buffer 
contains M(O) tokens. The tokens are generated regularly each time-unit. The 
cell arrival stream is Poisson; the mean interarrival time is 0.5 time-unit for 
0 ~ t < 100 and 1.5 time units fort 2: 100, i.e. there is a traffic wave exceeding 
the accorded level during the first 100 units and then the traffic goes down 
below this level. 

The buffer capacities are B = M = 100. Figure 2 displays the diffusion 
and simulation results concerning the output stream of leaky bucket for the 
initial number of tokens M(O) = 0, 50 and 100. The output dynamics given 
by simulation and by difusion model are very similar. Simulation results are 
obtained as a mean of 100 000 independent runs. If there is no tokens at the 
beginning, the cell stream is immediately cut to the level of token intensity 
(one cell per time unit), the excess of cells is stocked in the cell buffer and 
transmitted later, when t > 100 and input rate becomes smaller. If there are 
tokens in the token buffer, a part (for M(O) = 50) or almost to.tality (for 
M(O) = 100) of the traffic wave may enter into the network. 

Figure 3 presents the comparison of mean number of cells in the cell buffer 
as a function of time, for different initial content of the token buffer M(O) = 
0, 50 and 100, obtained by diffusion and simulation models. In Figure 5 the 
distributions of cell buffer contents obtained by simulation and by diffusion 
are presented for t = 100, i.e. at the end of high traffic period, when the 
congestion is the biggest. We see that although the mean queue length is below 
the buffer capacity, the probability that the buffer is full is important(~ 0.4). 
Note that we could not obtain this result with the use of fluid approximation 
even if the mean number of cells in the buffer predicted by diffusion and fluid 
approximations were similar. Figures 4, 6, 7 present distribution of the number 
of waiting cells in different moments of the considered period. Diffusion results 
are compared with simulation. 
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Figure 2 The input and output of leaky bucket as a function of time 
the stream intensities for the initial number of tokens M(O) = 0, 50 and 100; 
diffusion and simulation results 
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Figure 3 Mean number of cells in the cell buffer as a function of time, M(O) = 
0, 50 and 100; diffusion and simulation results 
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Figure 4 Density of the number of cells during high source activity period, 
t = 25, 50, 75, M(O) = 0; diffusion and simulation results 
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Figure 5 Density of the number of cells at the end of high source activity 
period, t = 100, M(O) = 0; diffusion and simulation results 
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Figure 6 Density of the number of cells at the beginning of low source activity 
period, t = 120, 140,200,300, M(O) = 0; diffusion and simulation results 
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Figure 7 Density of the number of cells at the end of low source activity 
period, t = 300,400,500, M(O) = 0; diffusion and simulation results 
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3 PARTIAL BUFFER SHARING POLICY 

In a node with partial buffer sharing policy the diffusion process represents the 
content of the cell buffer. The process is determined on the interval x E [0, N] 
where N is the buffer capacity. When the number of cells is equal or greater 
than the threshold N1 (N1 < N), only priority cells are admitted and ordinary 
ones are lost. Diffusion process represents the number cells of both classes, 
hence its parameters depend on their input and service parameters which are 
different for x ::; N1 and x > N1: 

fJ(x) = { fJ1 = _x(l) + .X(2)- f..L for 0 < x::; N1, 
/32 = _x(l) - f..L for N1 < x < N 

and 

a(x) = { 
a 1 = ,X( 1 )C~1 ) 2 + _x(2)C~2 ) 2 + pC~ for 0 < x ::; N1 • 

a 2 = _x(l)C~1)2 + pC~ for N1 < x < N. 

We assume constant service time, hence C~ = 0. 

(4) 

(5) 

Steady state solution. Let ft(x) and h(x) denote the pdffunction of the 
diffusion process in intervals x E (0, Nd and x E [Nt, N). We suppose that 

• limx .... o ft(x,t;xo) = limx .... N h(x,t;xo) = 0, 

• ft(x) and h(x) functions have the same value at the point N1 : ft(Nt) = 
h(Nl), 

• there is no probability mass flow within the interval x E (1, N- 1): 
~ df;£x) -f3nfn(x) = 0 for x E (1. Nl), n = 1 and X E (N1, N -1), n = 2 

and we obtain the solution of diffusion equations: 

{ 
[.XCI)+ _x(2)]po 

for 0<x:S1, (1 _ eZtX) 
-/31 

ft(x) = [,X(1) + _x(2)] Po (1 _ ez1 )ezdx-1) for 1 ::; X ::; N1 ' 
-/31 

{ J,(N,j,»<•-N,) for Nl ::; X ::; N - 1 ' 
h(x) 

f..L;; [ 1 _ ez2(x-N)] for N-1:Sx<N, 
(6) 

where Zn = 213n, n = 1, 2. Probabilities p0 , PN are obtained with the use of an 
normalization condition. The loss ratio £( 1) is expressed by the probability PN, 
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Figure 8 Steady state distribution of the number of cells for traffic densities 
A(l) = A( 2l = A = 0.1 - 0.9; diffusion and simulation results 

the loss ratio £( 2) is determined by the probability P[x > Nt] = J:. h(x )dx+ 
PN· 
Numerical example. Figure 8 presents the steady sate distribution given 
by Eqs. (6) of the number of cells present in a station. The buffer length is 
N = 100, the threshold value is N1 = 50. Some of the values are compared 
with simulation histograms which we were able to obtain only for relatively 
large values of probabilities. In Figure 9 the probabilities that the buffer is full 
and that the threshold is attained are compared with class 2 loss probabilities 
obtained by simulation. Once again, only relatively big values of losses could 
be obtained by simulation. 
Transient solution. The transient solution which we obtain below for a 
diffusion process with coefficients a( x) ,8( x) depending on its value is, as far 
as we know, a novelty on theoretical plan of diffusion models. It makes use 
of the balance equations for probability flows crossing the barrier situated at 
the boundary between the intervals with different diffusion coefficients, i.e. at 
x = N1 . Let us consider two separate diffusion processes X 1(t), X2(t) : 

X 1(t) is defined on the interval x E (0, Nl). At x = 0 there is a barrier 
with sojourn times defined by a pdf 10 (t) and instantaneous returns to the 
point x = 1. At x = N 1 an absorbing barrier is placed. Denote by -rk, 1(t) the 
pdf that the process enters the absorbing barrier at x = N1 . The process is 
reinitiated at x = N1- c with a density 9N1 -e(t). 
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Figure 9 Probability that the threshold is attained and that the buffer is 
full given by diffusion model; probability of class 2 losses as a function of 
_.X(l) = _.X( 2) = .X = 0.3- 0.9, diffusion and simulation results 

X2(t) is defined on the interval x E (N1. N). It is limited by an absorbing 
barrier at x = N1 and by a barrier with instantaneous returns at x = N. 
The sojourn time at this barrier is defined by a pdf IN(t) and the returns are 
performed to x = N- 1. The process is reinitiated at x = N1 + e with a 
density 9N1+e(t). Denote by -y~ 1 (t) the pdf that the process X2(t) enters the 
absorbing barrier at x = N1. 
The interaction between two processes is given by equations 

9N1+e(t) = 7~1 (t) and 9N1 -e(t) = 'Y~1 (t), 
i.e. the probability density that one process enters to its absorbing barrier is 
equal to the density of reinitialization of the other process in the vicinity of 
the barrier. 

As previously for the leaky bucket model, the pdfs !l(x, t; t/Jl), h(x, t; t/J2) 
of both processes are expressed by the pdfs ¢1(x, t; xo), tb2(x, t; xo) of processes 
with two absorbing barriers: at x = 0, x = N1 for the first process and at 
x = N1 , x = N for the second: 

!l(x,t;t/Jl) = tPl(x,t;t/Jl.)+ fo'ul(r)¢1(x,t-r;l)dr+ 

+ 1t 9N1-e(r)¢1(x,t- r;N1-e)dr, (7) 



436 Part Seven Tools and Techniques 

h(x,t;'¢2) = ¢2(x,t;1P2)+ lot9N-l(r)tP2(x,t-r;N-l)dr+ 

+ fot9N1+e(r)¢2(x,t-r;Nl+ddr. (8) 

In order to use this solution, we need to determine the densities g1(t), 9N,-e(t), 
9N1+e(t), YN-l(r). The equations of probability flows are 

/o(t) = po(0)6(t) + /.p,,o(t) +lot gt( r)/1.0(t- r)dr + 

lot 9N1 -e(T)/N1 -e,o(t- r)dr, 

lf4.1 (t) = /.p 1 ,N1 (t) +lot 91( T)/l,N1 (t- r)dr + 

lot 9N1 -e(T)/N1 -e,N1(t- r)dr, 

'YN(t) = PN(0)6(t) + /~t>2 ,N(t) +lot 9N1+e(T)/N1+e.N(t- r)dr + 

lot 9N-l(T)/N-l,N(t- T)dr, 

1JS1(t) = /,P2 ,Nl(t)+ lot9N1+e(T)/N1 +e,N1 (t-T)dr+ 

lot 9N-l(T)/N-l,N1 (t- T)dT (9) 

and 

Yl(r) = lo" 'Yo(t )lo( T- t )dt , 9N1+e(t) = lk-, (t) , 

9N-l(T) fo" /N(t)JN(T- t)dt, 9N1-e(t) = ,JS,(t). (10) 

Equations (9) and (10) form a set of eight equations with eight unk­
nown functions: When we transform these equations with the use of La­
place transform, the convolutions of density functions become products of 
transforms and we have a set of linear equations where the unknown varia­
bles are: Ul(s), UN1 -e(s), UN1+e(s), UN-l(s), 'Yo(s), 'YN(s), 'YN,-e(s), i'N1 +e(s). 
They may be expressed by all other functions, that means 'Yw,,o(s), tw,,N,(s), 
ti,o(s), 'Y1,N1 (s), 'YN1 -e.o(s), 'YN1 -e,N1 (s), 'Y~t~2 ,Nl(s), 'Yw2 ,N(s), i'N1+e,N1 (s), 
tN,+e.N(s), 'YN-l,N, (s), 'YN-l,N(s) which are already determined with the 
use of functions 4> 1(x.t;x0 ), 4>2 (x,t;xo). This way we obtain the functions 
Ul(s), UN,-e(s), UN1+e(s), UN-l(s) and use them in the pdfs (7), (8). The 
time-domain originals h (x, t; '¢1), h(x, t; '¢2) are obtained numerically (Steh-
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fest, 1970) from their transforms. The density of the whole process is 

f(x, t; 1/J) = { ft(x,t;t/Jt) for 0 < x < N1, 
h(x,t;th) for N1 < x < N. 

This algorithm can be extended to include several zones with different diffu­
sion parameters. These zones will be bounded by barriers similar to the one 
which we have placed at x = N 1 . 

To see the evolution of the number of cells belonging to a class, we have 
to consider the composition of input and output streams. Let us denote by 
p(i)(t) probability that a cell arriving at timet belongs to class i. 

( i) 
(i)( ) _ .\eff(t) 

p t - .\~~(t) + .\~~(t) ' 
(11) 

where 

.\~~(t) = ,X( 1)(t)(1- PN(t)], (12) 

and Pn>N1 (t) is probability that the buffer space accessible for class 2 cells 
is full and these cells are rejected. We try to reflect the mutual influence of 
both classes in effective parameters of their service and then analyze the class 
behaviour independently. We know the distribution of the total number n(t) 
of cells in the buffer at timet. Among those cells there are n<2)( t) class 2 cells. 
Let us denote by v(t), 0 :::; v(t) :S n, the number of class 1 cells gathered at 
the end of the buffer behind the last class 2 cell, seen at timet by the arriving 
new class 2 cell. As the service time is equal to one time unit, the effective 
service time for the arriving class 2 cell is 1 + v. If nC2)(t) > 0 then 

where 

m! 
/!(m -/)! 

0 

form~ I~ 0, 

otherwise. 

(13) 

If nC 2 ) = 0 then P(v = i In)= 15i,n where 15i,n is the Kroenecker symbol. 
We determine the probability of v = i when n(t) = n, for all possible n< 2): 

P[v = i I n(t) = n] = 

min{n-i,N1 -1} 

= (1- p(2))i15i,n + L P[n<2J In] P[v = i In, n(2)] = 
n(2):1 

min{n-i,N,-1} (2 ) 

= (1- p(2)/15i,n + L c~~::tP(2)n (1- p(2))n-n(2) (14) 
n<2l=l 
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and the distribution of v is 

P[v = i) = (1 -l2>)i P[n(t) = z1 + 
N mm{l-i,Nt-1} 

LP[n(t) = /) L C~i!1P(2)m(1- p(2))1-m. (15) 
1=0 m=l 

Now we are able to determine the mean and squared coefficient of variation 
of the random variable B(2l representing the effective service time for class 2 
cells, B<2l(t) = 1 + v(t): 

E[B<2>(t)) = 1 + E[v(t)], 

c}Jl2 (t) = E[B<2l2 (t)) _ 1 = E(v2(t)) - E(v(t))2 (16) 
E(B(2)(t))2 (E[v(t)) + 1)2 

The coefficient c}il 2 is given by Eq. (16); c~>2 is deduced on the similar 

principle and c~1)2 ' c~)2 are also deduced from the input streams. 
The changes in the intensities of the input rates at the instant t influence 

the output with a delay of n(t). The service times of v(t) class 1 cells which are 
at the end of the queue are considered as a part of the service of the arriving 
class 2 cell. The change of the input at t is taken into account in the service 
time p< 2>(t+n(t) -v(t)). On the other hand, the tile composition of the queue 
does not depend only on the input composition p(t) but on its evolution since 
the last class 2 cell arrival moment. It is not easy to determine in transient 
analysis the delay with which the input changes act on the v(t). As a rough 
approximation, we considered a delay equal to n(t)/2. This choice permits 
us to deal with sudden falls of the class 2 input rate. Although this method 
captures the dynamics of the second class cell number, further efforts seem to 
be necessary to obtain more general characterization of time dependent queue 
c-omposition. 

The output stream characteristics may be also presented by the equation 
used to describe the interdeparture times pdf at the G/G/1 station (Gelenbe, 
1976): 

(17) 

which gives us the squared coefficient of variation of interevent times in the 
output stream 

(18) 

The transient solution (7), (8) assumes constant diffusion parameters, the­
refore for the use of it we fixe the values of a, {3 during the intervals of the 
length of one time unit. The solution obtained at the end of an interval is 
used as the initial condition, i.e. functions 'lb1. tP2 in Eqs. (7)-(9) determining 
the solution in the next interval with new values of a and (3. 
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Figure 10 Distribution of the number of all cells in the buffer for several time 
moments t = 25- 500; buffer size N = 100, threshold N1 = 50; simulation 
(above) and diffusion (below) results 
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(below) results 



0.8 

0.6 

0 .4 

0.2 

Diffusion models of leaky bucket and partial buffer sharing policy 441 

·· .. r· so •;:: 
:; f! 
:!!! 90 

i,ii 
:;!i 

•::: .. .. / ~~-- ~o::-; 

~~ t 

··- .. ~~ 

90 ...... ~·- .. ~.:.······ ... .-' Probability that the threshold is exceeded 

··· .... ··· .... . 

ProbabHity that the buffer is lull 

buffer overtlow. N t ~so -·-·­
threshold exceeded. NI :SO - - ·­

buffer overflow. N 1 .. 60 --
threshold exceeded, N 1 ~60 .... · 

buffer overtlow. Nl • 70 .... . 
threshold exceeded, N I = 70 .. · .. . 

buffer overflow. NI =BO .. .. 
threshold exceeded , N1c80 .... .. 

buffer overtlow, Nl • 90 -
threshold exceeded, N1•90 -

~l ffl! 
iildf 

o~~g~~v~~·: ____ u-______ ~--------~--------~--------~--------J 
0 100 

0.8 

0.6 

0.4 

0.2 

100 

200 

._ ~--so 
'70 60 \ 

300 400 500 600 

ao • -. 
. ', · ... Probabifity that the threshold os exceeded 

·. . 
·.... . . ~ 

Probability that the buffer Is full 

200 300 

bufler overflow, NI•SO -
threshold exceeded, N1=50 ... . 

bufler overflow, Nl=60 .... . 
threshold exceeded, N I =60 

bufler overflow, Nl•70 --­
threshold exceeded. N 1 .. 70 - • · 

buffer overtlow. NI:BO .... .. 
threshold exceeded. N I · 80 ..... . 

buffer overtlow. Nh90 ..... . 
threshold exceeded, N 1:90 -

400 500 600 

Figure 12 Probability that the buffer of length N = 100 is full (priority 
cells are lost) and that the threshold is exceeded (ordinary cells are lost) as a 
function of time, parametrized by the threshold value N1 = 50, 60, 70, 80, 90; 
simulation (above) and diffusion (below) results 



442 Part Seven Tools and Techniques 

IOOr-----~r-------r-------r-------r-------~------, 
,.~-\ 

90 

80 

70 

60 

-~·,' ~\ 
. ! ~. 
./ \ . 
'i ~. .. \. 

'; '\ . ( \ 
.: o: '~\. 
' ( \\_ 

class 2. Slmulauon -
class 1. s1mulahon -- --

class 1 and 2. slmulalion and ddfusooo ..... 
class 1. doHusiOn 
class 1. dilfusooo - - -
class 2. diHusion • • .. 

; ,': \ . 
· ~ ·. 

50 ; ,. , . .. 
40 : !! 

' .. 
30 :.: ... 

100 

·~ .... . ........... -················ .. ····· ..... . 
\ .... 

·· .. ·~-~-~~ ---- -·-- ------- -- - - . -- -- --. --
--------·--····-------------····---------'"'··· 

200 300 400 500 600 

Figure 13 Mean value of class 1 and class 2 cells as a function of time; 
N = 100, N1 = 50 

Numerical example. Let us suppose that at the beginning the buffer is 
empty and during the interval t E (0, 100) the input stream of priority cells 
has ratio A ( 1) = 2 cells per time unit and the one of low priority cells A (2) = 1; 
fort > 100 the ratio of high priority cells is A(l) = 0.6667, the ratio of low 
priority cells does not change. The service time is constant and equal one 
time unit. The buffer length is N = 100, the value of threshold varies between 
N1 = 50 and N1 = 90. The value of c in Eqs. (7)-(9) was chosen c = 0.1. 
In Figure 10 the distributions of the number of cells at the buffer obtained 
by simulation and by diffusion model for chosen time moments are compared. 
Diffusion and simulation results are placed in separate figures to preserve their 
legibility. The shape of curves given by two models is very similar. At the end 
of second period (t = 400,500, 600) the steady state distribution is attained . 

Figure 11 displays the mean number of cells in the buffer as a function 
of time. During the first 100 time units the congestion is clearly visible, the 
buffer quickly becomes saturated; during the second period the queue is also 
overcrowded, probability that the threshold is exceeded is near 0.7 but owing 
to the buffer sharing policy the probability that the buffer is inaccessible 
for priority cells remains negligible- Figure 12. The threshold value N1 is a 
parameter of displayed curves. If N1 increases the mean values of low priority 
cells increases (they have more space in the buffer, hence less of them is 
rejected) and the number of priority cells increases too (as there is more 
class 2 cells in the queue, class 1 cells wait longer). 
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Figure 13 displays the mean number of high and low priority cells given 
by the approach we have described above using Eqs. (11)-(16) and compared 
with simulation results. We see that the steady state mean value of class 2 
cells is underestimated (because of overestimation of class 2 losses by diffusion 
approximation seen in Figure 12) but the dynamics of class 2 cells vanishing 
from the queue during heavy saturation periods is well captured. 

Some numerical problems were encountered when computing expressions 
of ¢(z, t, t/J) and io(t) for very small values of A~~(t), Jt~~(t) and forced us to 
very careful programming. 

4 CONCLUSIONS 

This article is sequel to authors' previous studies applying the diffusion ap­
proximation in analysis of phenomena related to modern telecommunication 
networks: push-out policy (CzachOrski, 1992), dynamics of flow changes along 
virtual path (Czachorski, 1994), jitter and flow synchronization (Czachorski, 
1995), feed-back traffic control using explicit congestion notification (Atmaca, 
1995). It confirms their conviction that the diffusion approximation is a useful 
tool to solve queueing models, in spite of some drawbacks (the method errors 
are not negligible and, when transient states are considered, the time needed 
to develop necessary software, to overcome related numerical problems and to 
perform calculations increases significantly with the complexity of models). 
The advantage of diffusion approximation lies in its flexibility to be adapted 
to various queueing disciplines, in its ease to develop queueing network mo­
dels and to include customer classes with general interarrival and service time 
distributions and, especially, in its possibilities to deal with transient states. 
Both studied models give the characteristics of the output streams, therefore 
leaky buckets and nodes with buffer sharing policy can be included in a ge­
neral queueing network diffusion model. Such a model was formulated for an 
arbitrary topology open network of G/G/1 and G/G/1/N stations in (Ge­
lenbe, 1976) and adapted to transient analysis in (Duda, 1986), (Czachorski, 
1994). 
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