
16

Determining the Availability of
Distributed Applications

Gabi Dreo Rodosek
Thomas Kaiser
Leibniz Supercomputing Center
Barer Str. 21, 80333 Munich, Germany
Email: { dreo, kaiser}@ lrz.de

Abstract
Distributed applications can be seen as complex pieces of software which are distributed
across various heterogeneous end systems in a network. Mostly, they rely on the provision
of other applications as well. Adequate methods for testing the availability of distributed
applications do not exist yet. Availability must be determined based on the availability of
the involved end systems and network nodes. In view of this, we propose (i) a service graph
for the description of functional dependencies, (ii) extend it to a parameterized availability
graph to describe the involved components, instantiate the graph, and (iii) give calculation
rules for determining the availability of applications. Although most dependencies are
described during the design phase, some of them can be recognized only during operation.
To deal with this, user trouble reports about unavailable services are used to refine the
availability graph and improve the availability calculations.

Keywords: Distributed Applications, Service graph, Availability graph

1 INTRODUCTION

During the past decade worldwide network and system capabilities have rapidly advanced
to meet the challenge of the information age imposing high requirements on network and
systems management ([HeAb 94], [Slom 94]). The pace has been further fueled by cus­
tomer demand for a variety of innovative services that require the support of high-quality
reliable networks. Availability of provided services, as one of the most important Quality
of Service (QoS) parameters, is another customer demand. Until recently, availability
is mostly referred to the availability of particular links, network nodes or end systems.
However, when talking about the availability of applications, it is necessary to deal with
complex dependency relations between several components which are necessary for the
provision of an application. Obviously, this increases the complexity substantially. Since

A. A. Lazar et al. (eds.), Integrated Network Management V
© Springer Science+Business Media Dordrecht 1997

208 Part Five Management Paradigms

users perceive degradations in terms of used services, it becomes crucial to solve this topic.
To clarify the terminology, a service provider uses distributed applications (e.g., MHS) to
provide services (e.g., email) to users (customers) with certain QoS parameters, as agreed
in service-level agreements (SLAs).*

In spite of the relevance of this topic, an adequate solution - being applicable also
in a production environment - has not yet been found. The difficulty is to recognize
the dependencies, and thus, to identify the involved components for the provision of an
application. In general, it is necessary to describe (i) functional dependencies between
services, and (ii) environmental dependencies (i.e., how services are realized in a con­
crete environment). With a service description, it is possible to identify the constituent
functional building blocks, and thus recognize functional dependencies. Existing ap­
proaches (e.g., [ISO 10746], [ITU-T Q.l201], [TINA-C 95], [ITU-T M.3010], [Gosc 91],
[KPM 96], [Dreo 95]) refer to a service description with respect to certain requirements
(e.g., for trading, for correlation of trouble tickets). Dependencies between resources are
for example modeled using relationships ([Kaet 96]) to determine the root cause of a fault.
However, availability aspects have not yet been tackled.

The paper proceeds as follows: Section 2 illustrates the complexity of the problem area,
especially functional and environmental dependencies, and clarifies the term availability
from the user and the service provider view. Section 3 describes the proposed methodology,
including three steps: firstly, we propose a service graph for the description of functional
dependencies and extend it to a parameterized availability graph to describe environmental
dependencies as well as give calculation rules for determining the availability. Additionally,
the instantiation of the availability graph is discussed. Secondly, we answer the question
how to test the availability of end systems and network nodes hereby referring to the
testing capabilities of management tools. Thirdly, in order to cope with the dependencies
which are not known during the design phase, we discuss some enhancements of the
proposed approach to calculate the availability as precise as possible. Implementational
aspects, namely the realization of the proposed methodology in a production environment,
are described in Section 4. Finally, Section 5 gives some concluding remarks and outlines
further work.

2 PROBLEM DESCRIPTION

The complexity of determining the availability of distributed applications results from
various points such as functional dependencies between applications, their distributed re­
alization on various end systems (e.g., servers) and the used communication infrastructure.
To give an idea about the complexity, we describe a relatively simple example of a WWW
proxy depicted in Figure 1.

The example starts with a user requesting a WWW page. The WWW client requests
first the IP address of the proxy server for which a request is sent to the DNS (domain
name service) and served by a corresponding DNS server of the provider (steps 1-4).
Afterwards, the WWW client sends its request for a WWW page to the proxy server
(step 5). The proxy server itself requires the IP address of the remote WWW server and
therefr,~e makes a request to the DNS server (steps 6-9). The WWW proxy either retrieves

*The terms service and distributed application are used interchangeably.

Determining the availability of distributed applications 209

the page from the remote WWW server (steps 10-11) or provides the WWW page from
the cache (steps 10' -11 '). If all steps are successful, the proxy server sends the reply to
the WWW client (step 12). This example simplifies the real situation. For example, we
assume that there is only one configured DNS server in the resolver part. Besides, we
have not discussed the functionality of the WWW client (e.g., the possibility of internal
caching). Additionally, we assume (IP) connectivity between all involved devices, that the
WWW proxy server has enough resources (e.g., memory, CPU), and all required processes
are running. Finally, we have demonstrated only some functional dependencies between
applications. For example, that a WWW application requires only the provision of a DNS.
We have not assumed that the WWW application can be distributed over a distributed file
system. As illustrated, the concrete environmental dependencies are very complex and
cannot all be foreseen.

0
c=J ~ "n ,~//,,-~"

~ q:p--·
WWWserver

DNS server

User

2
···>

<!·······
3

8
DNSserver

7 0
:;; ~ ~ ~ ~ ~ ~ ~ ~- ~ ~ ~ ~ ~ .!"':.. c=J

DNS server

Service provider External providers

Figure 1 Example: WWW proxy

Since the provision of services in today's distributed environment is a complex task,
many applications rely on a hierarchy of underlying services. A distributed application
(e.g., remote printing) depends on client, server and gateway processes, which themselves
depend on system software and hardware. Besides, networking devices and communication
links must be properly configured and in operating state. For example, the usability
of a WWW application depends on whether the DNS application is available, whether
the DNS server can resolve the stated name, whether the WWW server workstation
is in operation and the network connectivity provided. In general, the availability of a
distributed application depends on the availability of (i) other applications, such as DNS,
the availability of (ii) end systems (e.g., workstations) where the software is running, and
availability of the (iii) connecting communication infrastructure, the network.

As depicted in Figure 1, it is necessary to distinguish between different views of
availability. A service is available for a user if he can use it at a certain time with the
agreed QoS parameters at a predefined access point. It is the obligation of the service
provider to assure the correct provision of services at this access point. We define the

210 Part Five Management Paradigms

interface between a user and a service provider as a service access point (SAP) where
the usage and provision of services take place. If the provision of a service relies on the
provision of services from an external service provider, we define this interface between
providers as SAPs as well. The QoS parameters at the SAP are handled within SLAs, too.

To illustrate the various availability views, let us consider the Leibniz Supercomputing
Center (LRZ) as a service provider of network connectivity and computing power for
the Munich Universities. The Department of Computer Science of the University uses
the provided IP connectivity from the LRZ to realize a distributed file system. In our
example, the connecting router interfaces are the SAPs. If one of these interfaces is down,
the availability of services such as NFS mounts within the department is 0% for the time
ofthe outage of the interface. However, from the service provider's viewpoint, only one of
250 interfaces is down. On the other side, the LRZ itself uses services from other service
providers. In such a case, the LRZ acts as a user.

Besides, the term availability of distributed applications itself is imprecise. Is an appli­
cation available, for example, if the end systems and the network nodes 'involved in its
provision are available or if only n-1 of n building blocks of an application are available
or if there is no user trouble report?

3 PROPOSED APPROACH

Beside the specification of an appropriate testing interval, the question is how to test
whether a complex distributed application, like DNS, is available at the SAP. A straight­
forward method could be to test the usage of a service also by a service provider with
the maximal possible request rate for a service. This is of course unrealistic. Another
unrealistic approach is to document user trouble reports about unavailabilities of services,
and perform availability calculations solely on these reports.

Availability is closely related with faults. Because a distributed application is realized
with components (network nodes, end systems), a straightforward definition is that an
application is available if there are no faults in a distributed system. Faults in our context
are breakdowns of devices or wrong configurations of software which could have an
influence on the availability. From the user's view, performance degradations may also be
seen as faults, which we assume are handled with SLAs.

The proposed methodology consists of the following three steps.

3.1 Identifying the involved components for the provision of
distributed applications

In order to recognize the involved components for the provision of an application, we need
to describe (i) generic functional dependencies between applications, and (ii) specific
environmental dependencies (i.e., the realization of a distributed application in a concrete
environment).

We propose to describe the functional dependencies between services in terms of a
layered service graph where the nodes represent the services and the edges represent the
relationship isjunctionaLdependent, as depicted in Figure 2. For example, the provision
of the WWW service depends on the provision of the IP connectivity service. In terms

Determining the availability of distributed applications 211

of a service hierarchy, we may distinguish between application services (e.g., email,
backup) as well as basic and communication services, which are used for the provision of
application services. In order to determine the availability of distributed applications, it is

application services

basic services

communication services

-- is functional dependent

Figure 2 Layered service graphs

necessary to (i) recognize the involved components, and (ii) to determine the availability
of these components. For this purpose, we use the service graph as a basis to generate a
parameterized availability graph (Figure 3). Some ideas for the design of the availability
graph have been adopted from [JeVa 87].

The availability graph serves two purposes: firstly, it describes dependencies in the
system, and secondly, it gives calculation rules for determining the availability of appli­
cations.

The nodes of the availability graph represent the parameterized service descriptions,
such as IP connectivity(client, server), whereas the edges are used for calculation purposes.
As depicted in Figure 3, we distinguish between AND and OR edges.

The skeleton of the availability graph (refer to Figure 3) represents the functional depen­
dencies between services (e.g., the WWW service requests the provision of the DNS). For
example, the WWW service is available if the DNS service AND the IP connectivity service
are available. Referring to Figure 3, the service WWW(client, server, file) is available if
WWW _client(host) AND DNS(client, server, request) AND WWW ..server(host) are avail­
able. In other words, the application is not available if there is a fault(WWW _client(host))
OR a fault(DNS(client, server, request)) OR a fault(WWW_server(host)).

From this skeleton, we further refine the nodes. The refinement of the DNS node is
shown in Figure 3. The DNS service is available if either one of the two name servers is
available (an example of the OR operation).

Parameters are used to represent functional and environmental (i.e., implementational)
aspects. Functional aspects, like WWW(client, server, file), refer to the functionality of a
service (e.g., the functionality of the WWW service which is to transfer files from server to
client). Environmental aspects are used to describe, for example, that a WWW server may
be realized over a distributed file system (AFS) or local disk. In such a case, we extend the
node WWW server with the graph on the lowest layer. For example, the WWW server runs
on a host with minimum requirements on cpu power and disk space, which are additional
parameters of the node host(process, cpu, disk). This means that the WWW server on the
host(process, cpu, disk) is available if the process is running, the currently available cpu
is over the limit cpu, and there is at least disk space available.

212 Part Five Management Paradigms

To summarize, during the design phase the availability graph is generated from the
service graph and extended/refined to deal with known environmental dependencies. In
case new dependencies or "hidden" side-effects are encountered during operation, the
availability graph needs to be extended. An example of such a "hidden" side-effect is the
unavailability of a service due to performance problems of another workstation caused by
NFS timeouts. We have the possibility to extend the graph by including either new AND
and/or OR edges and/or new parameters.

The next step is the instantiation of the parameterized availability graph, which means
to replace parameters with concrete values. Afterwards, the instantiated availability graph
is the basis for the calculation of the availability of a service, because the leaves of the
graph specify the involved components for the provision of a service and the dependencies
in terms of AND and OR. By testing the correct operation of the involved components, it
is possible to calculate the availability of applications.

SPECIFICATION during DESIGN phase

WWW(client,server,file)

DNS(client,server,reque;·~

functional dependencies
(skeleton)

o6 client(host)
IP conne · ity(host,server1b 0~ connectivity(host,serve

Name_ er_1(server1) ~ b Name_server server2)

Figure 3 Parameterized availability graph

A topic deserving more attention is the instantiation of the parameterized availability
graph. For example, host(www process, cpu, disk) is instantiated to sunmanager(httpd,
JOMIPS, lOMB). The problem herewith is that a complete automatic instantiation is not
possible due to the complexity of the environment. A semi-automatic instantiation can be
achieved if the (i) distributed system is described with relevant attributes (i.e., workstation
with a specific amount of memory, CPUs), and (ii) if there exist certain rules (e.g., that a
DNS server workstation needs to have certain attributes.) These rules may represent a part
of the organizational policies. Combined with inventory tools to recognize the devices and
their attributes in a system, such instantiation can be performed automatically to a large
extent. Despite this, certain steps during the instantiation need to be performed manually.

An open question is the granularity of the availability graph. The refinement of the
graph should stop if the leaves of the instantiated availability graph can be either tested
with existing testing methods or they point to other services, as shown in Figure 3 and
Figure 4.

Determining the availability of distributed applications 213

if--;======;----r ;----;::::::==~~-----?,

-a.r--------,
«< ..
01
~ client, server, request)

:c
..!!!
'iii
>
<(

OR

WWW server
I
1 (client, server, request)

expands

Host

www process, cpu, disk)

Figure 4 Example: Intranet WWW service

3.2 Testing and calculating the availability of involved components

' ' ' ' I
I
I

After having identified the involved components, it is necessary to analyze how to test
the availability of these components. Rather then describing various testing methods,
we analyze this problem by calculating the availability of the IP connectivity service in
our environment. In this case, the components we have to deal with are IP routers with
IP interfaces. Because there exists a relatively simple built-in IP test (e.g., "icmp echo
request"), this is considered to be a simple service.

To determine the availability of components we need to repeat tests for each device
every !lt, which needs to be short enough to recognize relevant faults, i.e. there is no
degradation of the service perceived. Thus, the availability A of an IP interface I within a
time period [t1, t2[is defined as

where 7; = t 1 + i * !lt for every i 2: 0 and fault(!, t) means fault of I at timet.
For the provision of the IP connectivity service, a backbone of IP routers is required.

The SAPs are the interfaces of the routers. The task is to determine the availability of the IP
connectivity service between these SAPs. However, to test the connectivity of n interfaces
in a shared medium backbone, we need to perform n x (n - 1) tests. Due to the enormous

214 Part Five Management Paradigms

effort it is necessary to reduce the number of tests. Therefore, the testing is performed

centrally from one interface (i.e., the interface lp where the provider has its workstations)

to any other interface. In this case, we do not measure the availability A(I~, h) of IP

connectivity between the two interfaces / 1 and h. but the availability A(Ip, 11) and

A(lp, h) combined to A(lp, 11, h). We can assume that A(Ip, 11, h) ~ A(/1, h)t. We

also assume that all interfaces have the same priority for the provider.

For the IP connectivity service, the following availability calculations are of interest:

• Availability A (I) for one user access point (i.e., interface I) which can be calculated as

stated previously.
• Assume that a user (e.g., the Department of Computer Science) runs, for example, a

distributed file system over the Munich Network. Thus several SAPs (i.e., / 1, / 2, •.•)

are of interest. The availability A(/1, / 2, .••) of all relevant IP interfaces for a user is

reduced by the sum of time intervals in which at least one interface is down.

• Availability A(/au) for all IP interfaces of the service provider is the average of the

availability of all interfaces. This result is relevant for the service provider to gain

information about the reliability of the used devices.

Determining the availability of the IP connectivity service is relatively simple because the

service itself is simple. The availability of the IP service depends only on the availability

of the IP network devices. Besides, there exists a simple testing mechanism.

If we want to determine the availability of end systems like hosts for our applications,

there exists no easy test mechanism. We do not test only the connectivity, but need to test at

least whether all required system processes are running and whether there are enough free

resources. Existing management tools enable us to perform some of these tests. However,
without describing some dependencies, we cannot conclude that an application running on

some end systems is working correctly. In order to calculate the availability of distributed

applications calculation rules and adequate testing methods are necessary.
To improve and to refine the availability graph as well as to recognize what are the most

relevant parameters in a production environment, we introduce another step proposing a

learning approach.

3.3 Improving the methodology by refining the availability graph

It is impossible to specify all dependencies in a large production environment during the

design phase. Some of them cannot be foreseen and are only recognized during operation.

Therefore, it is necessary to extend and refine the availability graph.

For this, we propose a "learning" approach by analyzing user trouble reports about

unavailable services. When a user reports an unavailable service, and a fault (the cause of

the reported unavailable service) has not been diagnosed by a provider, a discrepancy has

occurred. In general, there may be three reasons for this:

• either the testing methods are imprecise for this specific case, or
• the existing availability graph for this specific problem is not complete, or

• the problem description of the user was imprecise or has pointed to another fault.

t1n practice a partial outage only between 11 and h is rare in a shared medium backbone.

Determining the availability of distributed applications 215

Since user trouble reports are in general imprecise, we developed the so-called "Intelligent
Assistant", a specialized tool which supports the user during the report and the localization
of a fault in a predefined way. When the cause of a fault is identified, we can either (i)
improve our testing method, or (ii) extend the availability graph, or (iii) change the decision
trees in the "Intelligent Assistant". Let us illustrate this on an example. A user reports a
trouble ticket with "WWW service unavailable", but a fault could not be recognized by
the provider by testing the components as identified by the instantiated availability graph.
After diagnosing the fault, we may recognize that the reason for the degradation of the
service was, for example, an overload due to NFS problems. Thus, we need to extend
our availability graph to describe a dependency with NFS and to install or develop an
appropriate testing method.

3.4 Assessment of the solution

To summarize, we have proposed a methodology which consists of the following steps:

• build generic service graphs for each service, extend the service graphs to parameterized
availability graphs to describe the involved components, instantiate the availability
graphs in a concrete environment,

• perform testing of involved components and calculations based on the given calculation
rules,

• refine the availability graphs with additional parameters and nodes to improve the
availability calculations.

A relevant point is that a core set of service graphs and parameterized availability graphs
can be specified. Such a core set can be applicable also for other service providers. Only
the instantiation of the availability graphs is environment dependent.

The proposed solution - giving us the possibility to determine the actual and statis­
tical availability of applications - is evaluated with respect to the following criteria: (i)
scalability, (ii) manual effort, and (iii) dynamic changes.

There are two types of scalability we have to consider. Firstly, with respect to the
number of services and nodes in an availability graph, and secondly, to the number of
instantiations. Adding a new service requires a specification of a new service graph which
can be considered to scale well. The same appears also for nodes in the availability graphs.
The increasing number of instantiations of the derived availability graph is approached by
adding parameters.

With respect to the manual effort, the main part consists of the definition of the ser­
vice and the availability graphs. As already said, it is possible to specify a core set of
generic service graphs and derived availability graphs. The effort to incorporate specifics
is considered to be acceptable with appropriate tool support.

Dynamic changes refer to the instantiation of the availability graph as a consequence of
changes in the system or network configuration. An approach to deal with new configura­
tions is a version controlled database. Because network and system configurations should
be stored in such a version controlled database, the additional storage of the availability
graphs can be considered to be acceptable.

216 Part Five Management Paradigms

4 IMPLEMENTATIONAL ASPECTS

Due to being in a production environment, we started from a bottom-up approach to
configure and implement a tool set for determining the availability of our IP router
backbone (3.2). To supervise our network nodes, we take two different approaches: firstly,
we use a developed tool to test IP connectivity which allows us to ping 250 nodes in parallel
in a few seconds. Secondly, special configurations of HP Open View Node Manager are
used to poll all important network nodes every 5 minutes. We use both approaches to
tune our tests. In recent years we adopted and refined tests of the former OpC, now
IT/Operations, to supervise our server systems, and automatically generate trouble tickets.
We used these tools as a basis for our own developments. As depicted in Figure 5, we

I Display tools
1
1

(tcVtk-scripts)

I Poller (fping)f

Separate Tools

/
/

r---
L ___ 1 in development already implemented

Figure 5 Tool support in our production environment

developed several tools to implement the proposed methodology. For the evaluation of the
events and to store the detected faults in a database, we have implemented an application
which hooks in HP Open View event processing and stores them after some preprocessing
in an ARS schema. With this tool, we have implemented the availability calculations of
Step 2. Report tools have been developed to display the calculated data. Besides, tools for
the specification, modification and usage of the availability graphs are under development
(Step 1). These tools aquire availability data out of several databases.

To test end systems more precisely, and to obtain more precise information about the
status of the network, we specified rules to correlate network and end systems alarms.
Due to the fact that the correlated alarms generate trouble tickets in ARS, and user
trouble reports are documented in the ARS as well, we apply the proposed approach in
[Dreo 95] for the correlation of device-oriented and service-oriented symptoms. This is
the realization of Step 3. Fault diagnosis is performed according [DrVa 95].

As seen from Figure 5, almost all necessary building blocks (i.e., tools) to develop
the tool to monitor the availability of services have already been implemented and are in
production use. So far, we are testing the semi-automatic realization of the instantiation
of the availability graph. We extend the attributes of the documented components in our
inventory database as well.

Determining the availability of distributed applications 217

Being in an open university environment means that our customers do not have service
subscription profiles. Therefore, we use the "Intelligent Assistant" to enable a user to
specify his used services, and start the availability calculation for these services.

5 CONCLUSION AND FURTHER WORK

The rapid growth of complex, heterogeneous and distributed systems as well as distributed
applications impose new complexity to IT management. In particular, management of dis­
tributed applications is a challenging topic. Distributed applications can be seen as complex
pieces of software which are distributed across various, heterogeneous end systems, the
network, and rely on the provision of other applications.

This paper proposes a methodology for determining the availability of distributed ap­
plications. We approach this by illustrating the complexity of the dependencies between
involved components on an example and discuss the various views of availability. If we
want to determine the availability of a complex distributed application (e.g., DNS), we have
to deal with {i) dependencies between applications, (ii) non-existent testing mechanisms
(e.g., providing information whether the DNS service is operating correctly), and (iii) not
knowing which devices are involved in the provision of which applications. Solutions for
this are presented in the first step. In the second step of the methodology, we clarify the
term availability, and present the availability calculations for the simple IP connectivity
service. This is possible because (i) simple testing methods do exist (e.g., icmp echo
request), (ii) there are no dependencies with other applications, and (iii) it is clear what
devices to test. Besides, in practice, we have to deal with dependencies which are not
known at design phase. Therefore, we need further to improve and extend the availability
graph during the operational phase by analyzing user trouble reports (step 3). In view of
this, we propose a service graph to describe the functional dependencies which are known
at design phase, and extend it to a parameterized availability graph to identify the involved
devices. The availability of an application is calculated based on the availability of devices
and the rules as given by the availability graph.

With the availability graph, we have a structure to describe complex dependencies
in a distributed heterogeneous environment. Because we are a large service provider,
experiencing the mentioned problems, we are focusing on completing the availability
graph as precisely as possible according to our expertise. Such an availability graph can
be applicable also for other service provider environments, as well as other applications,
such as event correlation. Another aspect worth noting is that the availability graph - and
the described dependencies - gives the basis to analyze bottlenecks in the system either on
the service or device level. Our further work will therefore concentrate on the optimization
of the availability graph, and the development of methods to recognize bottlenecks (i.e.,
weak points) in the system.

Acknowledgements

The authors wish to thank the members of the Munich Network Management (MNM)
Team for helpful discussions and valuable comments on previous versions of the paper.
The MNM Team is a group of researchers of the Munich Universities and the Leibniz

218 Part Five Management Paradigms

Supercomputing Center of the Bavarian Academy of Sciences. It is directed by Prof. Dr.

Heinz-Gerd Hegering.

6 REFERENCES

[Dreo 95] G. Dreo, A Framework for Supporting Fault Diagnosis in Integrated Network

and Systems Management: Methodologies for the Correlation of Trouble Tickets and
Access to Problem-Solving Expertise, PhD thesis, University of Munich, 1995, Verlag
Shaker.

[DrVa 95] G. Dreo and R. Yalta, "Using Master Tickets as a Storage of Problem-Solving
Expertise", In [INM-IV 95], pages 328-340.

[Gosc 91] A. Goscinski, Distributed Operating Systems- The Logical Design, Addison­
Wesley, 1991.

[HeAb 94] H.-G. Hegering and S. Abeck, Integrated Network and System Management,

Addison-Wesley, September 1994, Reprint 1995.
[ICDP 96] A. Schill, C. Mittasch, 0. Spaniol and C. Popien, editors, Proceedings of

the IFIPIIEEE International Conference on Distributed Platforms: Client/Server and

Beyond: DCE, CORBA, ODP and Advanced Distributed Applications, IFIP, Chapman
& Hall, 1996.

[INM-IV 95] Y. Raynaud, A. Sethi and F. Faure-Vincent, editors, Proceedings of the

4th IFIPIIEEE International Symposium on Integrated Network Management, Santa
Barbara, IFIP, Chapman & Hall, May 1995.

[ISO 10746] "Open Distributed Processing- Reference Model", IS 10746, ISOIIEC, 1995.

[ITU-T M.3010] "Principles for a Telecommunications Management Network", Recom­

mendation M.3010, ITU-T, October 1992.
[ITU-T Q.1201] ITU-T, Principles of Intelligent Network Architecture, Q.l201, 1993.
[JeVa 87] E. Jessen and R. Valk, Computer systems: Basics of Modelling (in german),

Springer Verlag, 1987.
[Kaet 96] S. Katker, "A Modeling Framework for Integrated Distributed Systems Fault

Management", In [ICDP 96], pages 186-198.
[KPM 96] A. Kuepper, C. Popien and B. Meyer, "Service Management using up-to-date

quality properties", In [ICDP 96], pages 448-459.
[Slom 94] M. Sloman, Distributed Systems Management, Addison-Wesley, June 1994.
[TINA-C 95] TINA-C, "TINA-C Deliverable: Service Architecture Version 2.0", Techni­

cal Report, TINA Consortium, 1995.

7 BIOGRAPHY

Gabi Dreo Rodosek received B.S. and M.S. degrees in computer science from the Uni­

versity of Maribor, Slovenia, and the degree of a Dr.rer.nat. in 1995 from the University of

Munich, Germany. Thomas Kaiser received his diploma (Diplom-lnformatiker, M.Sc.)

in computer science in 1989 from the Technical University of Munich, Germany.
Both are research staff members at the Leibniz Supercomputing Center and members of

the Munich Network Management Team, being engaged in several network and systems
management projects.

