
58 
ConcurTaskTrees: A Diagrammatic Notation for 

Specifying Task Models 

F. Paterno', C.Mancini, S.Meniconi 

CNUCE-C.N.R. 
Via S.Maria 36 

56126 Pisa 
Italy 

{fabio, cristian, silvia} @cnuce.cnr.it 

ABSTRACT In this paper we discuss a notation to describe task models, which can specify a wide range of 
temporal relationships among ta~ks. It is a compact and graphical notation, immediate both to use and understand. Its 
logical structure and the related automatic tool make it suitable for designing even large sized applications. 

KEYWORDS Task models, formal notations, model-based user interface design, tools for design. 

1. INTRODUCTION 

The use of task models in user interface design and 
development has recently been recognised as an 
important contribution to obtain more user-oriented 
interactive applications. A new generation of model­
ha~ed (Foley et al., 1991) tools such a~ Trident (Bodart 
et aI., 1992), TUM (Paterno' et al.. 1996), 
Mastermind (Szekely et al., 1995), Adept (Johnson et 
aI., 1994), leo (Palanque et aI., 1995), and AIDE 
(Sears, 1995), all use, in different ways, ta~k-models 
to support user interface design. 
It is he coming increasingly common for the various 

specialists involved in this process (developers, 
designers, psychologists, application domain experts) 
to discuss the tasks that the system should support. 
To this end it is very important to have notations to 
develop task specifications so that: 

they are easy to understand and use, thus 
improving communication among people 
discussing the design; 
they are able to structure large sized specifications 
which are developed in industrial applications; 
their semantics is precisely defined to avoid 
ambiguities in the communication. 

When choosing the notation we found that some 
important features have to be supported: 
• hierarchical logical structures which were 

introduced by GOMS (Card et aI., 1983) have 
proved to be a useful way to represent task models 
because they allow designers 10 reason about the 
design at differenl abstraction levels and Ihey 
support tJle refinement design process better; 
modem user interfaces are characterized by highly 
interactive behaviours in multimedia 
environments, it is thus important to be able to 
express a wide variety of temporal relationships; 
a task model for an industrial application may be 
complex, it is thus important to be able to 
express relevant relationships precisely and to 
have infonnation on more detailed a~pects in an 
interactive way. 

When we started our work on task models we 
considered HAN (Hartson and Gray, 1995) as a good 
starting point. U AN supports hierarchical 
specifications and has operators 10 express temporal 
relationships mnong tasks. However we found it had 
two main limitations: it has a textual specification 
which makes it difficult to read and interpret (for 
example to find cross-references mnong tasks); and it 
gives limited support for deriving a software 
architecture, a~ its main purpose is to specify only the 

Human--Computer Interaction: INTERACT'97 S. Howard, J. Hammond & G. Lindgaard (editon;) 
Published by Chapman & Hall ©IFIP 1997 



ConcurTaskTrees: a diagrammatic notation for specifying task models 363 

externally perceivable behaviour of the user interface 
by associating tables indicating above all user actions 
and system responses. 

Thus our first contribution was (Paterno' and 
Mezzanotte, 1995) to provide a graphical 
representation of the hierarchical structure and to use 
LOTOS (ISO, 1988) operators to express the temporal 
relationships among tasks at the same abstraction 
level since they have a more formally defined 
semantics. Furthermore LOTOS is an international 
standard notation already used in various industrial and 
research centers to specify applications which have, as 
an important feature, temporal ordering among 
possible actions. 

We found this approach useful but, especially when 
we started to apply it to industrial applications. we 
found some points which required further 
improvements: 

ambiguity in the priority among operators used at 
the same level of the task tree; 
the need to specify which component of the 
Interactive System considered will perform the 
task; 
additional information about the tasks that could 
be used in the user interface development; 
the necessity to define better the relationships 
between a father task and its subtasks: 
new operators for a compact specification of 
common situations. 

In this paper we describe how we overcame these 
problems. We first introduce the main concepts which 
drive how we build task models. Next we show pieces 
of ConcurTaskTrees specifications for expressing 
examples of interactive applications. Then we show 
how the tool supporting these speCifications works. 
and finally some concluding remarks are given. 

2. TASK MODEL 

A task defines how the user can reach a goal in a 
specific application domain. The goal is a desired 
modification of the state of a system or a query to it. 

A task in our approach is described by the following 
attributes: 
Name: used to identify the task 

Type: there are four possible types: abstract, user, 
application, interaction 
Subtask of' name of father task 
Objects: vector of objects, each element defines: name 
of object, type of object (internal, perceivable), list of 
input object actions, list of output object actions 
Iterative: a Boolean indicating whether the task is 
iterative 
First action: The set of possible initial actions is 
indicated 
Last action: The set of possible final actions is 
indicated. 

At each level the task speCification is built in two 
steps: first the objects are identified and then the 
actions which allow the communication among them 
are defined. 

2.1 Objects 
Objects are entities which are manipulated to perform 
tasks by the associated actions. 
The objects are user-perceivable and internal objects, 

which are both manipulated to perform the tasks by 
using the associated actions. 
Perceivable objects are items which users can interact 

with using their senses, for example menus, icons, 
windows, voice, sounds, and so on. They can belong 
to application or interaction tasks. 
Internal objects are entities which belong to the 

application and which need to be mapped onto 
perceivable objects to be presented to the user. 
Examples of internal objects are: the state of a request 
for a data base, the data base itself. 

Each object can belong to one or more tasks. In the 
task decomposition process when we consider a new 
task level in the task-tree, objects, which were defined 
in the previous task level, may receive two types of 
manipulation: 

decomposition (one object at a task-level is 
decomposed into two or more objects at the next 
task level); 
refinement (the set of actions associated with one 
object is increased when we consider the next task 
level). 

2.2 Actions 
Actions are associated with objects. Actions can be 

cognitive, logical, or physical. For tasks which are 
not iterative we have to indicate what the last action 
is. We need to specify the possible initial actions 



364 Part Two Technical Sessions 

because they are used when we are evaluating 
expressions which indicate a possible choice ([] 
operator, which means that at the beginning, both 
tasks are available and once one of them is started the 
other is no longer available) between tasks or 
disabling among tasks ([> operator, which means that 
once the fIrst action of a task occurs then the other 
task is deactivated). 

2.3 Specification of the component 
performing the task 
We can identify four types of tasks depending on the 
allocation of their performance: 

user tasks are performed entirely by the user, they 
require cognitive or physical activities without 
interacting with the system. Possible examples 
are when the user reads a list of flights satisfying 
some constraints and selects one of them for 
his/her journey or, in a video conference 
application, the possibility to analyze the content 
of some information received and evaluate whether 
or not it is suffIciently clear; if not, the user asks 
for clarification. Thus user tasks are associated 
with some processing performed by the user on 
information received from the environment. 
application tasks are completely executed by the 
system. They receive information from the 
system and they can supply information to the 
user. They are activated by the application. For 
example, compiling a program and sending 
messages when some errors are detected, or 
receiving network messages and displaying them. 
interaction tasks are performed by user 
interactions with the system. These interactions 
are activated by the user. Examples are editing a 
diagram or formulating a query to a data base. 
abstract tasks are tasks which require complex 
actions, and their performance does not 
completely fall into one of the three previous 
cases. 

In the task specification the types of tasks are 
presented differently either by different icons or 
different geometric shapes as in Figure 1: 

User Task 

Abstract Task 

Interaction Task 

<,,"-----J> 
Application Task 

Figure 1: The two possible presentations of Task 
types. 

We make a further distinction. Tasks can be: 
processing tasks, given an input they perform 
some processing and then provide a related result; 

• control task, their main purpose is to generate an 
event control: they inform other tasks that a given 
condition has been reached. 

3. CONCURTASKTREES 

The task model is built in three phases: 
a hierarchical logical decomposition of the tasks 
represented by a tree-like structure; 
an identification of the temporal relationships 
among tasks at the same level; 
an identification of the objects associated with 
each task and of the actions which allow them to 
communicate with each other. The identifIcation 
process is performed layer- by-layer. 

The temporal relationships among tasks are expressed 
by using an extension that we have defined of the 
operators of the LOTOS notation which is a 
concurrent notation. ConcurTaskTrees thus allows 
designers to describe concurrent tasks, unlike the 
GOMS proposal which uses hierarchical task 
decomposition but is only able to analyse sequential 
tasks (though some more recent proposals have tried 
to overcome this limitation). 
Unlike UAN, two tasks can synchronise (I[]I operator) 

in the approach proposed. This happens when they 



ConcurTaskTrees: a diagrammatic notation for specifying task models 365 

have to exchange information: the output information 
of one task is the input information for the other task. 
Tree-like structures with concurrent operators to 
indicate temporal relationships among tasks at the 
same level allow designers to specify more complex 
behaviours than those associated with finite state 
automaton. 

The operators that we use to describe the temporal 
relationships are: 
n 11/ TI, interleaving: the actions of the two tasks can 
be performed in any order; 
n I[]I T2, synchronization: the two tasks have to 
synchronize on some actions in order to exchange 
information; 
n » T2, enabling: when the first task is terminated 
then the second task is activated; 
n []» T2, enabling with infornUltion passing, in 
this case we want to highlight that when n task 
terminates it provides some value for ta~k T2 besides 
activating it; 
n [> T2, deactivation, when one action from the 
second task occurs the first task is deactivated: 
n *, iteration, the task is iterative; 
n(n) finite iteration, how many times the task will 
be performed is specified; 
[Tt], optional task, its performance is not mandatory; 
T, recursion, the possibility to include in the task 
specification the task itself. 

3.1 Solution to the ambiguity problem 
If we simply build task models using these operators 

the first problem is the possible ambiguity of some 
expressions. For example in Figure 2, we can interpret 
the specification in two ways: either (Tt [] T2) III T3 
or n [] (T2 III T3). 

T1 o T2 III T3 
Figure 2: An example of possible ambiguity. 

To solve the ambiguity there are two possibilities: 
we can use the priority order among operators defined 
in the standard LOTOS (choice> parallel composition 
> disabling> enabling), or we can introduce a task 
which disambiguates the expression, as in Figure 3. 
Parallel composition can be either completely 

interleaving among tasks, or interleaving with 
synchronization on some actions. 

T 

/\ 
T1 o TD 

I~ 
T2 III T3 

Figure 3: A solution to solve the ambiguity. 

3.2 Relationships between father task 
and its subtasks 
If we use these operators in a hierarchical context we 

can achieve a lot of flexibility in terms of being able 
to specify different behaviours. For example in the 
next diagram there are two possibilities: the same 
tasks are involved, Tl and T2 are performed in 
interleaving in both cases but if the iteration is at the 
father level then we mean order independence 
performance: tasks can be executed in any order but 
before executing them again both tasks have to be 
terminated. In the second case, with iteration 
introduced at the subtask leveL we have a continuous 
interleaving among tasks which means that once one 
task is terminated it can be executed again without 
waiting for the termination of the other task. 
An example of order independence is when specifying 

a request for a t1ights database then users have to 
specify both departure and arrival towns but the order 
is not meaningful. Once the request is transmitted then 
a new one can be composed in the same way. In the 
same application we have continuous interleaving 
between the task specifying a request and the one 
clearing it: they can both be executed many times 
without any limitation on their order. 

1\ 
Tl III T2 Tl * III T2* 

Order independen~'e pertonnance Continuous interleaving 



366 Part Two Technical Sessions 

Another example which gives a clear indication of the 
possibilities of this type of representation is shown in 
Figure 4. In both cases we have a selection and then a 
choice of two possibilities which provide different 
ways to modify the element selected. However, there 
is one important difference. In one case the choice of 
task to perform is made by the application which 
detects how many elements have been selected, and 
depending on the reSUlt, allows the user either to 
choose between editing and deleting (if there is only 
one selected element) or just deleting (if there is more 
than one selection element). In the other case the 

choice of task (changing an object size or an object 
colour) is made directly by the user. We express these 
different behaviours by specifying the type of task 
which is the father of the tasks that can be chosen: if 
the father task is an application task, this means that 
the choice is made by the application (though the 
performance of the selected task can still be made by 
the user or his/her interactions) otherwise, if the father 
task is an interaction task. the choice is made by a 
user interaction. 

Figure 4: Different ways to make the choice. 

3.3 Recursion 
We assume that we want to describe the example 

described in Figure 5. Whenever an edit button is 
selected then a new order is activated. At some time 
the set of orders can be deactivated by the close button 
and the activated orders remain active. 

o 
o 

Figure 5: An example of user interaction with a set of 
orders. 

In ConcurTaskTrees this behaviour can be described 
in the following way where we have a recursive 
definition of the Application task. 

T~ 
I Edit&close I [] I Handle I 

7 

Figure 6: An example of recursive task specification. 

The difference between iterative and recursive 
specifications in ConcurTaskTrees is that in the first 
case, when we use the * operator, the performance of 
the related ta<;k is repeated in the same modalities until 
another task deactivates it. The second case, when in 
the definition of a task we tind the task itself again, 



ConcurTaskTrees: a diagrammatic notation for specifying task models 367 

allows us to describe the cases when. depending on 
some condition (in our example the selection which 
activates a new order form), we want to perform a ta~k 
again without knowing in advance how many times 
we will perform it and, for each new performance, we 
will give the possibility to perform a new, additional 
task (in our example editing a new form). In the task 
tree it is sufficient to specify the possible recursion at 
only one level to indicate that it may happen more 
than once. 
In our example the user can stop the recursion by 

selecting the Edit&close task. Once this task has been 
selected then we stop the possible recursion (because it 
is in the other option of the choice) but we do not 
stop the Edit order tasks created, which can be 
terminated separately. We had to introduce the handle 
task to manage correctly the priorities among 
operators. 

3.4 Examples of specifications in 
ConcurTaskTrees 
One common situation is the need for the user to 

cancel a modification which has just been specified. 
This can be described by the tasks represented in 
Figure 7. We have a generic application during which 
the user can edit various possible modifications. Once 
a modification has been specified the user can either 
perform it or cancel it. In both cases, as editing is an 
iterative task, then the user will be able to specify a 
new modification until the close task is performed. 

Figure 7: Specification of cancelling. 

Another interesting situation is exception handling: a 
request is transmitted to the functional core which 
sends a message to the user indicating that something 
exceptional has happened. If we consider the structure 
of the previous example we have to add an Exception 
task, as a subtask of the Perform task. This Exception 
task has a first phase, performed by the application, 
which generates a warning message and a second part, 

an interactive subtask. which allows the user to 
manage the exception in some way. 

» 

Figure 8: Specification of exception handling. 

4. THE TOOL SUPPORTING TASK 
MODELS DESIGN 

We have developed an automatic environment 
(Paterno' et al., 1997) which supports designers in 
developing task and architectural models (Coutaz, 
1993), and in identifying their relationships. It is 
implemented in Java. At the beginning there are three 
choices: 
• editing a task model: 
• transforming a task model into an architectural 

model in semi-automatically; 
• analysing the relationships between a task and an 

architectural model. 

Whatever choice the designer has made it is always 
possible to select again the other possibilities. The 
task editor is a direct manipulation task which allows 
the designer to build the task tree and to use the 
LOTOS operators to indicate their temporal 
relationships. When a task is selected then by 
selecting one of the icons associated with the possible 
four task types, new subtasks are automatically created 
and located in the editing area. 



368 Part Two Technical Sessions 

Figure 9: An example of the specification of objects. 

It is also possible to select a task and to provide 
additional information about it (Figure 9): the objects 
that it manipulates and what the possible first and last 
actions are. For each of these objects, it is possible to 
activate dialogue boxes which allow the designer to 
specify the actions which they require (see Figure 10). 

Figure 10: An example of specification of actions. 

. Actions are classified depending on whether they are 
mput or output actions. Actions are used to allow 
objects defined at the same level of the task tree to 
communicate. At any task level it is possible to check 
the semantic consistency which means, for example, 
given an input action of an object, at the same task 
level, there must be an object with the corresponding 

output action. A task specification can be saved in 
order to be reused and edited again later on. 

Figure 11 shows a simple example of a task model 
for interacting with an electronic museum. At the 
beginning we identify a session (Handle selection task) 
which can be disabled by a specific task (CloseSession 
task). The session first allows the user to select a type 
of work of art (sculptures, paintings, and so on). Once 
a type has been selected, the application presents 
information related to the selected type of work. 
Further selection criteria can be recursively specified 
and cancelled until the user has made a specific request 
to indicate all the information satisfying the desired 
requirements. Finally, the user can select one of them 
and the application will present it. 

5. CONCLUSIONS 

We have presented a notation supported by a related 
tool to build task models. It uses graphical constructs 
and operators derived from a formal specification. The 
resulting notation gives a compact specification of a 
wide variety of dynamic task behaviours. The tool 
which supports ConcurTaskTrees is available to the 
public at http://verdolo.cnuce.cnr.ititask.tgz. We have 
applied our approach to various applications 
(videoconference, museum systems, business 
applications) which confirmed its ability to address 
many possible situations. 
To facilitate its use in industrial applications we are 

designing a set of templates which allow models for 
common patterns in user interactions to be reused. 
We have developed a method (Paterno' et al., 1997) 
able to derive architectural models and 
implementations which are consistent with the 
temporal and semantical requirements indicated in task 
models obtained following the approach described in 
this paper. 

ACKNOWLEDGEMENTS 

We wish to thank Use Breedvelt and Camjel Severins 
for useful discussions on the topics of the paper, and 
Progetto Finalizzato Beni Culturali for partially 
supporting the work presented. 



ConcurTaskTrees: a diagrammatic notation for specifying task models 369 

Figure 11: An example of task model obtained with the support of the automatic tool. 

6. REFERENCES 

F.Bodart, A.Hennerbert, J.Leheureux, J.Vanderdonckt, 
(1995) "A Model-based approach to Presentation: A 
Continuum from Task Analysis to Prototype", in 
Interactive Systems: Design, Specification, and 
Verification, pp.77-94, Springer Verlag. 

S.Card, T.Moran, A.Newell, (1983) "The Psychology 
of Human-Computer Interaction", Lawrence Erlbaurn 
Ass. Publ., Hillsdale, N.J., 1983 

J.Coutaz, (1993) "Software Architecture. Modelling for 
User Interfaces", in the Enciclopedya of Software 
Engineering, pp.38-50, 1993, Wiley. 

J.Foley, W.Kim, S.Kovacevic, K.Murray, (1991) 
"UIDE - An Intelligent User Interface design 
Environment" In Sullivan and Tylor (OOs.), Intelligent 
User Interfaces, ACM Press, 1991, pp.339-384. 

R.Hartson, P.Gray, (1992) "Temporal Aspects of Tasks 
in the User Action Notation" Human Computer 
Interaction, Vol.7, pp.I-45, 1992. 

ISO (1988) Information Processing Systems - Open 
Systems Interconnection - LOTOS - A Formal 
Description Technique Based on temporal Ordering of 
Observational Behaviour. ISOIIS 8807, ISO Central 
Secretariat. 

P.Palanque, R.Bastide, V.Senges, (1995) "Task model­
system model: towards an unifying formalism", 

Proceedings HCI95 International, Japan, September 
1995. 

F.Paterno', M.Mezzanotte, (1995) "Formal verification 
of undesired behaviours in the CERD case study", 
Proceedings EHCI'95, pp.213-226, Chapman & Hall, 
1995. 

F.Paterno', C .Mancini, S .Meniconi, (1997) 
"Understanding Task and Software Architecture 
Relationships", CNUCE Internal Report, February '97 

P.Szekely, P.Sukaviriya, P.Castells. 
J.Muthukurnarasamy, E.Salcher, (1995) "Declarative 
Interface Models for 1J ser Interface Construction 
Tools: the Mastermind Project", Proceedings 
EHCI'95, pp.120-150. 

Sears, A .. (1995) "AIDE: A step toward metric-based 
user interface development tools". Proceedings of 
UIST'95. ACM Press, pp.101-11O. 

S.Wilson, P.Johnson, C.Kelly, J.Cunningham, 
P.Markopoulos, (1993) "Beyond Hacking: a Model­
based Approach to User Interface Design, Proceedings 
HCI'93. 


