
42
Automating Tasks for Groups of Users A System-Wide

"Epiphyte" Approach

Zeiliger R. *, Kosbie D. **

* CNRS-GATE, 93 chemin des Mouilles
69130 Ecully

FRANCE
zeiliger@gate.cms.fr

** Microsoft Corporation, One Microsoft Way
Redmond, W A 98052

USA
dkosbie@microsoft.com

ABSTRACT End-users have to use macro-recorders when they want to automate tedious tasks. Their tasks often
include actions from multiple applications. While some application-specific macro facilities or PBD systems have
proved efficient to automate single-application tasks, system-wide - and hence application-independent - systems are
few. Most system-wide recorders operate on low-level events whereas most repetitive activities are repetitive at a
somewhat higher level of abstraction. We present a so-called "epiphyte" approach allowing automation of some of
the repetitive tasks only, but working with unmodified applications. It uses external and partial application models to
allow recording of hierarchical event histories which in tum facilitate the detection, generalization, anticipation and
completion of repetitive sequences of actions. In this approach, experts are in charge of building external application
models. We present some features which facilitate and quicken their work particularly in the context of a group of
users.

KEYWORDS Programming By Demonstration, Macro commands, End User Programming, Interface agents,
Hierarchical Event Histories.

1. INTRODUCTION

People often use generic applications developed by
distant, unknown programmers to handle tasks similar
to theirs (Cypher, 1993). In the process of mapping

their activities into the capabilities of these generic
applications, end-users are inevitably led to perform
tedious repetitive actions. Automation of these tasks
would be possible if only end-users were also
programmers. But programming is difficult : Potter

Human-Computer Interaction: INTERACT'97 S. Howard. J. Hammond & G. Lindgaard (editors)

Published by Chapman & Hall ©IFIP 1997

Automating tasks for groups of users 245

(potter, 1993) identified the obstacles users have to
overcome to achieve "just-in-time" programming
defined as the "implementing of algorithms during
task-time" : inaccessible data, the effort of entering the
algorithm, limited computational generality, effort of
invoking the algorithm, and risk. Various techniques
have been developed to allow programming by end-user
: preferences, script languages, macro-recorders and
programming-by-demonstration (PBD). In most
modem commercial systems, end-users have to use
macro-recorders when they want to automate tedious
tasks. Macro-recorders are either application-specific
(such as EXCEL macro recorder) or system-wide (such
as Quickeys or Automator). While the former can be
efficient, the latter would be more useful because user's
tasks often include actions from multiple applications.
Unfortunately system-wide macro-recorders are still too
"literal" (Cypher,1993) : "they replay a sequence of
keystrokes and mouse-clicks, whereas most repetitive
activities are repetitive at a somewhat higher level of
abstraction". PBD goes a step further in creating
generalized programs from the recorded actions. But
again most successful PBD programs today are
application-dependent (the best example is EAGER
which is dedicated to Apple's Hypercard (Cypher,
1991». Architectures have been proposed to facilitate
system-wide PBD (piernot, Yvon, 1993, 1995) (Kosbie,
Myers, 1994, 1995) but none of the proposed
architectural enhancements have yet been incorporated
into popular systems such as Microsoft Windows.

In the next section we are presenting some of the
issues related to building a system-wide Microsoft­
windows based PBD system.

2. SYSTEM ARCHITECTURE
OVERVIEW AND RELATED ISSUES.

The proposed system has to record system-wide user
actions, detect repetitive action sequences and
generalize to produce a program automating the task,
under user's control. It matches the definition of
software agents as suggested by P. Maes : "a set of
programs which have a specific user-understandable
competence, which are capable of learning about their
environment and to which the user can delegate tasks
that she is unwilling to perform" (Maes, 1996). Our

agent has to go through the following steps :

1. Capturing in the system the low-level events (LLE)
such as mouse-click and keyboard strokes. This module
should not contain any application-specific code. The
successive events constitute a history.

2. Generating higher-level events (HLE). This is a
crucial step. A good example of a high-level event is
"save-file"; different low-level events map to this
higher-level event: the "control-S" keyboard stroke, the
selection with the mouse of the "Save" item from the
"File" menu or a mouse-click on the "save-file button"
in the tool bar. In LLE history - based on mouse-clicks
and key strokes - those events will be different, while
the events will appear identical if we record an HLE
history, thus resulting in an increase in power of the
inference engine. Two sequences of actions which have
the same meaning for the user can differ considerably
in their expression. Crow and Smith showed that
incorporating minimal knowledge about the underlying
system (particularly a "small amount of low-level
domain syntax") greatly improves the performance of a
PBD system (Crow, Smith, 1993).

3. Including context. Events must also include
application contell:t if they are to be adequately
reasoned over. The canonical example here is deleting
all mail messages from a certain person. The only way
to infer this behavior is to be able to reason over "who
sent" the messages. This information should be part of
the context of a "delete-mail" event. The problem, of
course, is how much context should be included: in the
case of an email event, we may include the entire
header, but probably not the body, so any inferences
requiring the body cannot be made.

Another problem when working with existing,
unmodified applications is how a software agent can
access this context : user interaction with applications
such as text editors or graphical editors is achieved
through the use of controls (buttons, menus, dialog­
boxes) which have a well-defined system-wide semantic
: clicking on a check box for example results in setting
an option to "on" or "off" and the check box caption
usually indicates the option name. On the contrary,
interaction through the edit-window of a graphical
editor has a specific semantic determined by the editor

246 Part Two Technical Sessions

itself : a mouse-click in such a window may result for
example in selecting or on the contrary de-selecting an
object, depending on what was the previous state of this
object. The information about the state of an editable
object - which can be an important contextual
information - is stored in the application itself and
cannot be accessed by an external agent without
modifying the application. This is an important
drawback when working with unmodified applications.

4. Storing and accessing history. Two aspects of
history have to be considered here (Cypher, Kosbie,
Maulsby, 1993) : after a bit of user's interaction with
the system, a good deal of event-history has
accumulated. This is called the static history. From
this static history, the system can infer templates of
repetitive events, or patterns to search for. This process
of inferring templates can be very e:-.:pensive and thus
may have to be done off-line (for example over night).
Then the system has to deal with a part of history
which is called the dynamic history. It encompasses
the more recent user's activity which the system has to
process in order to recognize that a patterned activity is
beginning : that is, the system has to match the user's
actions against part of one of the stored templates.
This is obviously an on-line process and so must be
very efficient.

5. Inferring templates of repeated activItIes in the
static history. Various machine learning techniques can
be used here but basically most PBD systems use
symbolic techniques.

6. Matching dynamic history against the stored
templates : specific algorithms have been developed to
resolve this problem (Cypher, 1991)(Maulsby,
1993)(Frank, 1994). They rely on linear event histories.

7. Interacting with the user to control the completion of
the task in a mixed-initiative fashion. There are many
important issues here such as how the system informs
the user that a possible match has been inferred? How
the system completes the task (step-by-step or
monolithically with an undo facility) ? How can the
user help disambiguate when there are multiple
reasonable generalizations? Can the user directly
modify the stored procedure, effectively parameterizing

it (thUS the user demonstrates deleting every message
from "Bill", but then can invoke this routine to delete
all messages from anyone)? How can the user
explicitly invoke a stored procedure?

8. Completing the repetitive task, that is generating
the events to be sent to the application in order to
perform the task.

A simple prototype agent was first built and field tests
were conducted in our lab over 3 month with 8 users. It
was based on flat low-level event histories. Two main
things were learned and informed the work which is
partly reported here: i) very few repetitive sequences
were found in the LLE histories we had recorded, while
a human observer watching a user at work could
quickly identify repetitive tasks, ii) repetitive tasks
should not be confused with habits : when users
perform repetitive tasks they are still conscious; they
perform an intentional activity; they are still intentional
users. If a software capable of automating their
repetitive tasks was available, they want control over it.

We will now present the new prototype agent under
development within the framework of the ACCEL
project, focusing particularly on solutions we have
developed to overcome the issues mentioned in points 2
and 3 above : the use of external application models to
generate hierarchical event histories.

3. THE ACCEL PROJECT "EPIPHYTE"
APPROACH

The research work within the framework of the
ACCEL project is supported by French CNRS' and
CNET2. It aims at building a Microsoft Windows­
based agent capable of automating repetitive user tasks
involving any unmodified applications. This system is
qualified "epiphyte" : a term coming from the domain
of biology and first coined by S. Giroux (Giroux, 1996)
in the domain of information systems to refer to a
system which is developed on the surface of an
unmodified pre-existing system with the aim to

1 Centre National de la Recherche Scientifique

2 Centre National d' Etude des Telecommunications

Automating tasks for groups of users 247

empower it.

3.1. Capturing low-level events.
Low level events (LLE) - also called device-Ievel­

events- are captured through the standard Windows
hook mechanism : mouse events, keyboard events and
system messages are processed by the ACCEL agent
before they reach the target application. On-line LLE
processing at this stage encompasses aggregation and
enrichment :
• aggregation: several "very low-level events" can be

grouped and recorded as one basic user's operation :
for example opening the open-file dialog box
through the file-menu necessitates several mouse
operations (main-menu-selection and then menu­
item-selection) generating a set of events whose
details are not important in our project : they are
grouped and recorded as a "open-open-file-dialog­
box-thru-menu" unique operation (a unique LLE).
This aggregation is based on an external model of
the target application described in the next chapter.

• enrichment: LLE are then enriched with contextual
information including the current date and time, the
target application name and the currently opened
file if any. More contextual information can be
added depending on the specifications attached to
the current event in the target-application model :
for example, if the LLE is a selection in a list -box,
tlle text (name or value) of the selected item is
incorporated to the context: if the LLE is a click on
a check-box or a radio-button, the final value (ON
or OFF) of the control is recorded. If the LLE
concerns an untitled widget (a list-box for example)
then the system searches for a title in the form of a
text-label aligned either horizontally or vertically
with the list-box in the same parent window. In the
example shown in figure I a mouse-click in the
combo-box will be recorded as the LLE :
"Font.SetSize(IO)" which is composed of : i) the
basic low-level operation: SELECT 10, ii) enriched
with the contell.1ual information : SIZE (found in a
tell.1-label aligned with the combo-box and closer to
it than any other label), iii) and enriched with the
contextual information : FONT (found in the
caption of the parent window).

This on-line enrichment mechanism could not apply

automatically to every LLE : as we will see it is
controlled through the specifications incorporated by a
human expert in the target application model.
Recording enriched LLEs facilitates the generation of
structured HLEs which is the next operation performed
by the agent.

Fonl la i
Size .-
III

Figure I : set font size to 10 example

3.2. Generating high-level events.
Incoming LLEs are then aggregated again and

structured to constitute mid-level events. This process
is then repeated again to form even higher-level events.
With this technique users' actions are recorded in the
form of hierarchical event histories. This step is
performed on the base of external models of the
targeted applications which have to be built by expert
users. This solution constitutes the key aspect of our
approach.

Advantages of imposing a hierarchical structure on
events' history have been exposed by D. Kosbie :
hierarchical event histories are closer to user's task
structure, they are more robust in the generalization
process, they facilitate script matching (point 5 and 6 in
previous chapter), they are more intuitive when read­
controlled by end users, they are more efficient when
played back. Detailed argumentation can be found in
(Kosbie, Myers, 1993, 1994).

Unfortunately, the hierarchical structure of events
cannot be fully inferred from the read-write patterns of
the event handlers which do not provide enough
information (Kosbie, Myers, 94). Due to heterogeneity
in applications interface, the "enriched" LLE
mechanism we have used cannot be fully automated
and moreover it does not completely determine the
event's hierarchical structure.

For hierarchical event histories to be feasible, there
must be a way for applications to generate the event
hierarchy. Different architectures have been proposed
to allow application designers to incorporate the
generation of hierarchical events in the new

248 Part Two Technical Sessiolls

applications they build : the hieractors model (Kosbie,
Myers, 1994), hierarchical command objects (Myers,
Kosbie, 1996), AIDE events (piernot, Yvon, 1994) or
the AppleEvents model.

In the ACCEL project, since we want to work with
unmodified off-the-shelf applications running under
Microsoft Windows, we need an "external" model for
every involved application : i.e. a complementary
knowledge source which is not originally built-in the
application but which can be built separately by an
expert user to allow the hierarchical structuring of the
stream of low-level events. This approach is named
"epiphyte" because of the analogy - in the domain of
biology - with plants which grow at the surface of other
plants without being parasitic. Making a complete
model of an application would be a great deal of
difficult work; our system is designed to enable an
ell:pert user to make a more limited model which
allows rich inferencing over a subset of user actions
only.

In the context of our project, six hierarchical levels
have been considered :
• low-level (or device-level) events (LLE) correspond

to the basic operations with the mouse and the
keyboard.

• mid-level (or widget-level) events (MLE)
correspond to user's interaction with the various
controls : list and combo boxes, edit controls,
buttons, etc.

• high-level-events (HLE) aggregate several MLEs
such as those generated by the use of a modal
dialog-box; "Open-file(foo.doc)" is a typical HLE
description.

• application-level-events (ALE) aggregate MLEs and
HLEs resulting from user's interaction with the
same application: EXCEL events and then WORD
events for example.

• modeled/specific level (MSLE) is introduced here in
response to point 3 mentioned above; a MSLE
aggregates a set of events which are generated
through the user's use of modeled controls, as
opposed to a set of events resulting from user's
interaction with application specific unmodeled
features. This level doesn't correspond to a structure
in user's task but it is mandatory in our approach to
differentiate between segments of modeled and un­
modeled events.

• session-level events (SLE) aggregate lower events
which are generated as long as a user works without
resting. SLE are segmented on the basis of time and
rhythm statistics.

While hierarchical levels I to 4 reflect the inherent
structure of "wimb" interfaces, level 5 is project­
specific and it is assumed that level 6 corresponds
more or less to low level tasks; further field tests will
inform on the appropriateness of incorporating new
intermediate levels in this hierarchy.

In figure 2, we present an example of a hierarchical
history structured on the basis of this model. Two
applications (WORDPAD and TOOLBOOK) are
involved in a repetitive task : text files (textel.txt,
texte2.txt ...) are successively opened in WORDPAD,
text is selected, copied into the clipboard and pasted
into TOOLBOOK. Some unmodeled features of
WORDP AD have been used before the beginning of the
repetitive sub-task. In figure 2, the history structure is
partly expanded to show only the full hierarchy of the
first modeled WORDP AD event HLE
: OpenFile(texte1.txt) which was started by MLE
:OpenDialog(Open), which was itself triggered by LLE
:"msg CmdId 7935 ... ". File name (texte1.txt) was
extracted from the enriched LLE part of MLE
:SetFileName (not detailed in figure 2) and transmitted
to its parent HLE.

3.3. Including context : every event descriptor in an
application-model includes a section describing the
contextual information which is required and a method
to access it. When identifying the event, the ACCEL
agent obtains the contextual information and
incorporates it into the history.

3.4. Storing and accessing history : each time it
captures a new LLE, the ACCEL agent selects the
model (.RAM file) of the target-application (the
application to which the event is destined) and it
performs the 6-level hierarchical structuring. It is an
on-line process whose result is the recording of a
hierarchical event static history (.HER file).

3.5. Inferring templates. In the ACCEL project, this is
a heavy off-line process which is achieved by a

Automating tasks for groups of users 249

specialized agent : a "light" agent is installed on every
end-user's computer; it permanently captures the LLE,
includes the context, generates the hierarchical history
and transmits the history data (through TCPIIP
protocol) to a distant specialized agent which records it.
The specialized agent searches for templates of

.... ca..ession 1 tGloun-modeled
LOWORDPAD

."~mo*~;!.DPAD

repetitive activIties. If some templates are detected,
then the specialized agent informs the local agent
which can then start to match the dynamic history
against those templates. The specialized agent is
supervised by an expert user.

1~~::3:::i~~n) ~[msR CmdID:-7935JWORDPADII[N--I] rr-Document - WorclPadJ [V-] [S-WorclPadClass]
OSetFileNarne(textel.txt)
OClo.eDiaJoI';{Open.ok)

OSelectAll
OCopy()

GloTOOLBOOK
L.OPuteO lWORDPAD

OOpenFile{text.2.txt)
eJSelectAll
OCopy()

~TOOLBOOK
L.~!BIIII

Figure 2: example of hierarchical history including a repetitive task involving applications WORDPAD and
TOOLBOOK (partly expanded).

Advantages of a hierarchical history when searching
for templates can be easily seen in the example shown
in figure 2 : at ALE level, the pattern is obvious :
WORDP AD, TOOLBOOK and so on; it is still obvious
at HLE level (thanks to the processing of the file name
as a contextual information) and at MLE level (thanks
to hiding equivalent LLEs).

3.6. Inferring matches against templates eXlstmg
algorithms (mentioned above) have been generalized to
apply to hierarchical histories (instead of "flat"
histories). These will be described in a forthcoming
paper. The remaining steps (interacting with the user
and performing the task) are still under development
and cannot be presented here.

We will now focus on some aspects of the modeling
task which is to be achieved by expert users. We
present some features which facilitate and quicken their
work particularly in the context of a group of users.

4. EXTERNAL APPLICA nON MODELS

4.1. Application models overview

There is one model for each application. Model files
are collections of event descriptors. Event description is
inspired from the "hieractor model" (Kosbie, 1994)
which was developed to express arbitrary high-level
application behavior. This model was intended for
application designers building new applications,
however it is used in our approach to make an a­
posteriori modeling of application behavior. The basic
idea behind hieractors is that most application
behaviors are naturally defined in terms of the events
which start, run, end and abort them. Here is an
example of an HLE event descriptor (from WORDP AD
model) :

HLE : SetF ont «name>, <style>, <size>, <color»
start-when : MLE : OpenDialog(font)
end-when : MLE : CloseDialog(font,ok)
abort-when: MLE : CloseDialog(font,cancel)
run-when : MLE : SetFont«name»

or MLE : Set Style «style»
or MLE : SetSize(<size»
or MLE : SetColor(<color»
or MLE : NullO

250 Part Two Technical Sessions

Every event is described in tenns of the events of
level below which start, end, run and abort it. An HLE
is described by MLEs and an MLE is described by
LLEs. For example, we have the following description:

MLE : SetFont«name»
start/end-when :
LLE : [click]WORDPAD/<mfn> - WordPad /
Font! [T=&Font :][V=<name>]

The MLE named NulO corresponds to user's actions
(and thus LLEs) which are of no consequence on the
behavior described by their parent HLE (for example :
using a scrollbar in a list-box). Parameters are
transmitted from an MLE to their parent HLE : MLE
:SetSize(1O) will have for parent: HLE :SetFont(-,­
,10,-).

1
Expert
User

Figure 3 : ACCEL agents architecture.

The MLE OpenDialog(font) can be started by different
LLEs depending whether a menu, shortcut or button is
used: corresponding events are part of its "start-when
LLE :" section.

In the LLE section of the MLE described above,
<mfn> is an abstraction of the name of the file
currently opened in WORDPAD : it is part of the
context.

4.2. Building application models
Using external applications models is a key factor in

our approach but the building of such models might
also appear as a very time-consuming task. Rather than
attempting to improve a fully automated agent based on
sophisticated machine-learning techniques, we prefered
to appeal to a human expert.
So the current situation involves a group of end-users
aided by software agents under control of an expert­
user. The expected benefit is an increase of the

robustness of the agent's detection module; dependence
on a human expert is a cost which can be i) minimized
in developing dedicated tools aimed at facilitating and
quickening the modeling task, ii) shared among a
group of users having similar and time critical tasks.
The entire system evolves toward a kind of groupware
environment which facilitates the automation of end­
users' tasks.

As we have said above, every end-user has a light­
agent running permanently. Light agents (LAs)
communicate with a specialized agent which runs on
the expert-user computer (figure 3). The specialized
agent (SA) provides also features to facilitate the
modeling task :
• SA collects all LLEs sent by LAs; statistical

analysis of all LLE histories gives the list of the
most intensely used applications across the group of
end-users. Using a simple pattern-matching
technique (editing distance) it gives also the list of
those functions in the applications which seem to be
involved in repetitive activities. In short, statistics
indicate those parts of applications which the
expert-user will have to model first. The expert user
does not work for individuals : when a part of an
application get modeled, it benefits to every end­
user.

• Enriched LLEs bring default contextual information
and the system maintains a list of LLE templates
which facilitate extracting of contextual parameters
The enrichment mechanism - which was not robust
enough in a fully automated approach - becomes
very helpful when supervised by a human expert.

• Application models are fully editable while the
agent and the application itself are running, so that
the application model can be built in a nearly
demonstrational mode.

• the specialized agent (SA) provides a debug-mode
allowing the expert user to instantly "click-check "
in a given application and control that the resulting
events have been correctly modeled.

5. RESULTS, FUTURE WORK AND
CONCLUSION

Eight ACCEL agents are currently installed in
ARDEMI (http://www.ardemi.fr/). a software company

Autolllating tasks for groups of users 251

developing multimedia courseware. Text, sound,
graphic editors and authoring tools are to be used in
conjunction to achieve multimedia authoring. Users
often complain that their tasks involve tedious
repetitive operations they cannot automate. Users'
actions were permanently recorded there since
December 1995, however no result was achieved
primarily because the agents reasoned over low-level
events. This was our principal motivation for appealing
to hierarchical event histories. Generating such
histories necessitates that the agents incorporate at least
a minimal knowledge of the underlying system and
applications.

We have recently undertaken the external (and
partial) modeling of applications WORDPAD and
TOOLBOOK in order to validate the mechanism which
generates hierarchical event histories. First results
show a clear increase in power of the inference engine,
but the application modeling task is still too
cumbersome; we are pursuing ways to simplify this
task. More applications need to be modeled before a
real field test can be made.

Research efforts are being pursued in two
complementary directions, both of which are related to
"Programming-by-Demonstration" : the development of
the light-agents interface allowing end-users to control
the automation of their tasks, and the development of a
"modeling-by-demonstration" interface, i.e. an interface
allowing expert-users to build application models in a
more "demonstrational" fashion.

6. ACKNOWLEDGMENTS

Support for the work described in this paper was
provided by CNRS and CNET (ACCEL project
W941BI07). The idea of "Hierarchical event histories"
was introduced by the second author who is completing
a PhD tllesis at Carnegie Mellon University.

7. REFERENCES

Crow, D., Smith, B. (1993), The Role of Built-In
Knowledge in Adaptive Interface Systems,
proceedings of International Workshop on Intelligent

User Interfaces, ACM press, New York.
Cypher, A. (1991), EAGER: Programming Repetitive

Tasks by Example, in proceedings of CHI'91 , ACM
press, New York.

Cypher, A. (1993), Watch What I do, Programming by
Demonstration (ed. A. Cypher), MIT press,
Cambridge, Ma., USA

Frank, M., Foley, 1. (1994), A Pure Reasoning Engine
for Programming by Demonstration, in proceedings
of UIST'94, ACM press, New York.

Frank, M. R. (1996), Standardizing the Representation
of User Tasks, in Acquisition. Learning &
Demonstration: Automating Tasks for Users, AAAI
Symposium, Technical Report SS-96-02, AAAI press,
Menlo Park, Ca., USA

Giroux, S., Paquette, G., Pachet, F., Girard, 1. (1996),
EpiTaJk, a Platform for Epiphyte Advisor Systems
Dedicated to both Individual and Collaborative
Learning, in proceedings of ITS'96, Springer-Verlag
Lecture Notes in Computer Science, to appear, 1996
(http://www.laforia.ibpJr/-fdp/EpiTalk.html).

Kosbie, D., Myers, B. (1993) A System-Wide Macro
Facility Based on Aggregate Events : A proposal, in
Watch What I Do (ed. A. Cypher), MIT press,
Cambridge, Ma., USA

Kosbie, D., Myers, B. (1994) Extending Programming
By Demonstration With Hierarchical Event Histories,
in proceedings of EWHCI'94 (eds. Blumenthal,
Gornostaev, Unger) ICSTI, Moscow.

Maulsby, D. (1994), PhD Thesis, University of Calgary,
Canada.

Myers, B., Kosbie, D. (1996), Reusable Hierarchical
Command Objects, in proceedings of CHl'96, ACM
press, New York.

Piernot, P., Yvon, M. (1993) The AIDE Project: An
Application Independant Demonstrational
Environment, in Watch What I Do (ed. A. Cypher),
MIT press, Cambridge, Ma.

Potter, R. (1993) Just-In-Time Programming, in Watch
What I Do (ed. Cypher), MIT press, Cambridge, Ma.

Yvon, M., Piernot, P., Cot, N. (1996), Programming by
Demonstration : Detect Repetitive Tasks in Telecom
Services, in proceedings of OZCHI'96 (eds. Hasan,
Nicastri), Ergonomics Society of Australia, Canberra,
Australia.

Maes, P., Wexelbat, A. (1996), Interface agents,
CHI'96 tutorial notes, ACM press.

