
28 
Managing Systemic Meta-Data for Creating 

QoS-Adaptive CORBA Applications * 
John A. Zinky and David E. Bakken 

BBN Systems and Technologies, {jzinky ,dbakken} @bbn.com 
10 Moulton St. Cambridge, MA 02138 USA 

Abstract 
Systemic meta-data is crucial for creating adaptive distributed applications. But 
managing systemic meta-data is extremely complex and currently is done either 
ad hoc or simply ignored. QoS savvy CORBA middleware is the appropriate place 
to manage systemic meta-data. In this position paper we outline the issues 
involved in this management. 

Keywords: 
Quality of Service, QoS, meta-data, CORBA, Quality Objects, QuO. 

1. Introduction 
Wide area and mobile environments exhibit a large variation in available resources 
and delivered quality of service (QoS). Distributed applications must therefore adapt 
to changes in their environment if they are to be effective under such extreme 
conditions. To adapt, applications must change their behavior at runtime based on 
the state of its environment. A basic requirement for such adaptivity is access to 
information about the underlying resources and application requirements. This 
systemic meta-data describes how applications use resources, their QoS 
requirements, the status of resources, and allocation policies. Without this 
information applications are rigid because they can only run in a limited and 
relatively predictable environment. 

Obtaining this systemic meta-data requires knowledge of how the system is 
implemented and deployed. Unfortunately, the traditional way in which distributed 
applications are developed is by using a black box abstraction which specifies what 
the component does - its functional interface - but hides how it was 
implemented. For example, CORBA's Interface Description Language (IDL) 
defines a functional interface for a remote object; e.g., a method to sort an array 
with a given argument signature. This black box approach works when a priori 
assumptions of the environmental conditions matches reality and when these 
conditions do not change. For a large class of environments the black box 
approach works fine, such as with programs contained in one process, and even in 
distributed programs working over local area networks (LANs). But, experience has 
shown that the black box approach is not adequate for all systems, especially 
distributed system running over a resource constrained network. 

• This research was partially funded by DARPA ITO under Contracts F30602-96-
C-0315 (AQuA Project) and N66001-96-C-8529 (DIRM Project). 

Building QoS into Distributed Systems A. Campbell & K. Nahrstedt (Eds.) 
© 1997 IFIP. Published by Chapman & Hall 



Creating QoS-adaptive CORBA applications 251 

Abstractions 
themselves 

of 
hide 

resources 
their true 

distributed nature in order to 
provide an idealized in-core 
functional interface. For example, 
the socket interface provides a 
communications abstraction which 
allowed applications and networks 
to evolve independently (Fig. 1). 

This black box interface for 
application components and 
resources must be "opened up" to 
expose their internal structure 
because the functional interface is 

pplications beyond Munimadla 

ocket Layer COS interface needs 
to be hidden from applications. 

·It is too complicated 
·It is changing too quickly 

Figure 1: Distributed objects with QoS 
extensions is a powerful abstraction 
layer on which to build adaptive 
distributed applications. 

not enough to create adaptive distributed systems. Open Implementation research 
efforts focus on this problem for a single program [1]. In this approach, an 
additional systemic interface is used to map an application onto its environment in 
a workable fashion. 

In distributed systems many aspects of the internal development and fielding of an 
application are more explicit. They include the system properties, the roles of 
those involved (clients, objects, end users, programmers, etc.), commitment times 
(runtime, compile time, etc.), as well as the mechanisms to move this information 
around (available from a server, measured automatically, configuration parameter, 
etc.). The current state of development tools to support this is unwieldy and 
unintegrated and is a thus a great impediment to development and deployment of 
realistic applications over the wide area. 

2. Possible Solutions 

One solution is to try to provide in-core guarantees for distributed interactions; 
e.g., making a remote object invocation behave like a local procedure call. 
However, we believe this is impossible to provide, because it will be deficient in 
one or more of the following: high latency, prohibitive cost, or unworkable 
complexity. Pursuing this holy grail has driven much research in the last two 
decades, but it has become obvious that it is unachievable. 

A second solution which is much more achievable and features a much bigger 
payoff is to make the application more tolerant of the intrinsic limited guarantees 
(in the spirit of ISO QoS Compulsory levels of agreement [4; Sec. 7.3.2.4]) 
instead of trying to make the distributed infrastructure meet unobtainable system 
properties of a single host. This can be accomplished mainly by recognizing loose 
requirements; providing mechanisms with different, explicit resource tradeoffs; and 
by knowing when throwing more resources at the problem will help. 



252 Part Six Distributed Object Computing 

Our Quality Objects (QuO) framework adopts this second approach by using open 
implementation techniques in the context of CORBA [2,3]. QuO provides a clean 
separation of functional and system issues. Elements of QuO are: contracts to 
define the interaction between clients and objects, system condition objects to 
observe the environment, and layers of delegates to mask variation. 

3. Structure of Systemic Meta-Data 

The basic life cycle of systemic meta-data is: first collecting, reducing, and 
summarizing it; disseminating it to interested parties; analyzing it; and acting upon 
it. However, providing this life cycle in a distributed system involves many facets, 
including: 

Mechanism: Systemic meta-data 
can travel between locations using 
several mechanisms supported by the 
underlying communications 
infrastructure (Figure 2). 

Commitment epochs: As time 
progresses, a distributed system 
accumulates knowledge about its 
environment. E.g., at design time 
the different implementations are 
known, while at runtime the 
availability of a resource can be 
ascertained. 

Independent Mechanism 

SIde-Band 
Same Path 

RSVP Network Flow 

In-Band 
In Packet 
Syalam 
Contoxl 

Paramete,. 

Figure 2: Meta·data about system 
properties are transferred v i a 
disparate mechanisms 

Roles: Distributed systems are created, deployed, and used by multiple personnel, 
often in different organizations, with each responsible for a subset of the 
application. 

Location: Distributed systems ipso facto have multiple locations with high 
noise, limited bandwidth, and long latency between them. 

GranUlarity/Accuracy: Fundamental tradeoffs exist between obtaining accurate 
systemic meta-data and the resources and effort needed to obtain a level of accuracy. 

Kind: Multiple properties (ISO QoS characteristics [4]) such as availability, 
security, real-time, resource allocation need to be provided in an integrated fashion. 

Managing the interrelationship between all these facets is very complicated and is 
well beyond the capability of application programmers. We thus need QoS 
middleware which provides a framework to make these facets explicit and to help 
manage them. 



Creating QoS-adaptive CORRA applications 253 

4. QuO Support for Adaptive Applications 

QuO is a framework which makes these facets explicit with the following 
components (Fig. 3): 

System Condition Object 
Explicit objects which capture 
and maintain a specific piece of 
systemic meta-data. QuO 
supports a spectrum of system 
condition objects, from objects 
local to the client to remote 
CORBA objects. For example, 
one system condition object 
could measure the client's 
method invocation rate while 
another may represent an 
interface to an RSVP session. 

Contracts: QuO contracts 

--Suchu 
Network 

Figure 3: QuO integrates systemic 
meta-data through the use of system 
condition objects, contracts, and 
delegates. 

summarize system condition information and organizes them based on commitment 
epochs. For example, at negotiation time a contract may expect a client's 
throughput to match network capacity. At runtime, however, these may diverge, 
and QuO provides hooks for recognizing this. 

Delegates: Delegates change the behavior of the object based on the region of 
the contract. For example, if the client invocation rate is greater than the capacity 
the delegate may block an invocation to implement traffic shaping. 

5. Areas for Future Research 
Supporting systemic meta-data falls under several areas of research. Networks need 
to support explicit mechanisms for moving and storing systemic meta-data. 
Application programmers need APIs for QoS at the client/object boundary rather 
than at the socket level. Finally, the semantics of the systemic meta-data itself 
needs to be codified so in the future we can automatically synthesize and reason 
about QoS. 

References 
[1] Kiczales, Gregor. Beyond the Black Box: Open Implementation, IEEE 

Software, January 1996. 
[2] Zinky, J., Bakken, D. and Schantz, R. Architectural support for quality of 

service for CORBA objects. Theory and Practice of Object Systems, Special 
Issue on the OMG and CORBA, 3(1), April, 1997. 

[3] QuO, Internet Publication,URL http: / / 
www.dist-systems.bbn.com/tech/QuO 

[4] ISOIIEC 13236 - Quality of Service - Framework - DIS July 1996 


