
11

Secure Locking Protocols for
Multilevel Database Management
Systems

Sushil Jajodia1, Luigi V. Mancini2 and Indrajit Ray1

1 George Mas on University,
Center for Secure Information Systems and Information and
Software Systems Engineering Department, Fairfax, VA
22030-4444, USA. {jajodia,iray}@isse.gmu.edu
2 Universita La Sapienza di Roma,
Dipartimento di Scienze dell'Informazione, Via Salaria 113, 00100
Roma, Italy. mancini@dsi. uniroma1. it

Abstract
While there are several secure concurrency control protocols for multilevel database management
systems, most of them employ timestamp ordering or multiple versions of data or a hybrid protocol
that utilizes both. The only known secure locking protocol that maintains single version data and
can guarantee serializability, immediately aborts a higher level transaction whenever any of its
locks at the lower levels is broken.

In this paper, we offer two secure locking protocols. The first protocol produces pairwise seri­
alizable histories. The second protocol generates serializable histories if the security levels form a
total order; however, in general, when the security levels form a partial order, it generates MLS­
serializable histories, a notion of correctness that we introduce. The proposed protocols maintains
single version data and require only the lock manager to be trusted; a higher level transaction
can continue its execution and commit successfully even if some of its locks at the lower levels
are broken. Rather than immediately aborting the high transaction when any of its low lock is
broken, our protocols wait until such time as executing a high level action will actually create
a cycle in the serialization graph, not merely whenever there is the possibility of a cycle being
formed. These protocols work by a method of "painting" certain transactions and the data items
accessed by these transactions and by detecting a cycle at the moment it is imminent in the
serialization graph.

P. Samarati et al. (eds.), Database Security
© IFIP International Federation for Information Processing 1997

178 Part Six Multilevel Databases

Keywords
Database management, transaction processing, concurrency control, serializability, locking, mul­
tilevel security

1 INTRODUCTION

The problem of secure concurrency control makes transaction management in multilevel secure
(MLS) database systems more complex than in traditional databases. In MLS databases, the
data and user processes are classified into different security levels, and access to a data item by
a process is governed by the following mandatory access rules: A transaction T can write to a
data item x only if x is at the same security level as that of T; T can read x only if x is at
a security level lower than or equal to that ofT. Moreover, MLS databases must also prevent
indirect information leakage through covert channels. The latter imposes serious restrictions on
conventional concurrency control algorithms: A lower level transaction cannot be prevented from
accessing a data item because a higher level transaction is already accessing it in a conflicting
mode because doing so opens up a covert channel between the high and low security classes. •

Secure concurrency control has been studied by researchers in the context of multilevel database
systems. Reed and Kanodia (1979) use the notions of eventcounts and sequencers to solve the
secure readers-writers problem. Lamport (1977) and Schaefer (1974) offer a similar solution using
version numbers. However, as shown in (Ammann & Jajodia 1992), none of these solutions gen­
erate serializable histories when applied to transactions. Moreover, these solutions suffer from the
problem of starvation, i.e., transactions that are reading lower level data items may be subject
to indefinite delays.

Other algorithms have been proposed that employ timestamp ordering or multiversion data or
both. Ammann & Jajodia (1992) give two timestamp based algorithms on single version data that
yield serializable histories. Keefe & Tsai (1990) propose a scheduler based on multiple versions
of data and a priority queue of transactions according to their access classes. A third work by
Ammann, Jaeckle & Jajodia (1995) proposes a concurrency control protocol using two snapshots
of the database in addition to the most recently committed version, i.e. three copies of the
database. This protocol can be naturally implemented using timestamp ordering to control the
transactions executing at a given security level, although other scheduling algorithms can also
be used. Other works, including Jajodia & Kogan (1990), Ammann & Jajodia (1994), Kang &
Keefe (1995), and Ammann, Jajodia & Frankl (1996) are based on the subtle properties of the
underlying database system architecture.

Although locking protocols have been found to be not only easy to implement but also efficient
for transaction processing in conventional database systems, there are not many lock based secure
concurrency control protocols. An exception is the set of orange locking protocols (McDermott
& Jajodia 1993) that provide covert channel free concurrency control of database transactions.
These protocols do not use multiversion data and can be implemented using single level untrusted
schedulers. However, as we show here, except for the optimistic orange locking protocol with the
assumption that a high transaction is always aborted whenever its low lock is broken, the other
variations cannot guarantee the serializability of multilevel histories.

*Throughout this paper, we use the terms high and low to refer to two security levels such that
the former is strictly higher than the latter in the partial order.

Secure locking protocols for multilevel database systems 179

In this paper, we propose two locking protocols for secure concurrency control that maintain
single version data and require only the lock manager to be trusted. t Rather than immediately
aborting the high transaction when its low lock is broken, these algorithms wait until the last
possible moment; they wait until such time as executing a high level action will actually create
a cycle in the serialization graph and not whenever there is the possibility of a cycle being
formed. This is achieved by a method of "painting" certain transactions and the data items they
access and by detecting a cycle at the moment it is imminent in the serialization graph. The first
algorithm guarantee pairwise serializability, a notion of correctness introduced in (Jajodia & At! uri
1992). The second algorithm guarantees serializability when the security levels of transactions and
data items form a total order. As we discuss below, if the security levels form a partial order,
such delayed abort may not be always possible without opening up a covert channel between
transactions at incomparable levels. We present a new notion of correctness, MLS-serializability,
and show that the second protocol guarantees MLS-serializable histories for partial orders.

This paper is organized as follows. Section 2 introduces the basic definitions and gives an exam­
ple to motivate the coloring schemes we use. In section 3, we give our first protocol that generates
pairwise serializability. In section 4, we present our notion of MLS-serializability, followed by a
protocol that yields MLS-serializability. The rest of the paper deals with the second protocol.
Section 5 discusses some issues relevant to its implementation. In section 6, we compare it with
different orange locking algorithms. Section 7 gives a formal proof of its correctness. Finally
section 8 concludes the paper.

2 SECURITY MODEL AND MOTIVATION FOR THE
COLORING SCHEME

The multilevel secure system consists of a set D of data items; a set T of transactions (subjects)
which manipulate these data items; and a partial order S of security levels, whose elements are
ordered by the dominance relation ::5. If two security levels s; and Sj are ordered such that s; ::5
Sj, then Sj dominates s;. A security levels; is said to be strictly dominated by a security level Sj,

denoted ass; -< Sj, if s; ::5 Sj and i "I j. Each data item from the set D and every transaction
from the set T is assigned a fixed security level by a mapping L.

In order for a transaction T; to access a data item x, the following two necessary conditions
must be satisfied:

1. T; is allowed a read access to data item x only if L(x) ::5 L(T;).
2. T; is allowed a write access to the data item x only if L(x) = L(T;).

Note that the second constraint is the restricted version of the T-property which allows trans­
actions to write to higher levels (Denning 1982); the restricted version is desirable in databases
for integrity reasons.

The simplest locking protocol on single version data that guarantees serializable histories and
is secure at the same time, aborts a higher level transaction whenever one of the transaction's

tThe whole body of a standard Lock Manager, written with all the requisite defensive program­
ming, exception handlers, optimizations, deadlock detectors, etc. comes to about a thousand lines
of actual code (see for example (Gray & Reuter 1993)) and, therefore, is easily verifiable.

180 Part Six Multilevel Databases

W 1 [z) c1

Figure I A serializable history rejected by the simplest secure algorithm

lower level read locks is broken by a lower level transaction. However, this simple algorithm is
too pessimistic; it rejects even simple serializable histories like the one shown in figure 1 where
the only dependency is T 1 -+ T 2.

The reason why the simplest algorithm is too pessimistic is because the algorithm assumes that
whenever there is a possibility of violation of the two-phase locking rule, a cycle will occur in the
serialization graph. However, as figure 1 shows this is not always the case.

3 AN ALGORITHM THAT GUARANTEES PAIRWISE
SERIALIZABILITY

The important observation about the history in figure 1 in particular, and histories in general, in
which the low level read lock of a high level transaction T1 is broken by a low level transaction
T2, is that T2 and any other transaction Tk that reads data items that are written by T2 or
writes data items that are read by T2 , must serialize after T1. This observation motivates us
to present a simple algorithm based on a scheme of coloring transactions like T2 and Tk and
data items they access with an after-T1 color (signifying that they must serialize after T1).
The data items are colored with after-T1 color in order to pass on the transitive dependency to
subsequent transactions. If T 1 ever reads or writes an after-T 1 data item, it indicates a cycle
in the serialization graph and consequently T1 is aborted at that time. This algorithm uses two
colors for transactions - colorless and an "after" color - and three colors for data items - colorless,
an "after" color and a "read-after" color. A transaction T; becomes after-Ti if T; is painted
with an after-T1 color; a data item x becomes after-T; or read-after-T; if it is painted with an
after-T; or read-after-T; color respectively. Moreover, a transaction or a data item can be painted
with more than one color. Suppose a transaction T; is painted with colors after-Tj, after-Tk and
after-T,. Then the transaction is considered to have turned after-Tj, after-Tk and after-T,. Same
for data items. The algorithm is summarized below:

1. Initially transactions and data items are painted colorless.
2. If a transaction T1 writes a data item x on which a higher level transaction T; has a read lock,

T1 becomes an after-T; transaction and x an after-T; data item.
3. If an after-T; transaction T1 reads a data item z, z becomes a read-after-T; data item; if T1

writes a data item y, y becomes an after-T; data item.

Secure locking protocols for multilevel database systems 181

Mid T2 : r2[y] w2[x] c2

Figure 2 A nonserializable history accepted by simple coloring scheme

4. Any transaction Tk that reads an after-T; data item becomes after-T;. If transaction Tk reads
a read-after-T; data item, there is no change in color of either the transaction or the data
item.

5. Any transaction Tk that writes a read-after-T; data item or an after-T; data item becomes
after-T;.

6. Data items which have been read or written by Tj before Tj turned after-T;, also turn read­
after-T; or'after-T;, respectively.

7. If at any point T; tries to read or write a data item that is after-T;, T; is aborted.

It is easy to see that this algorithm guarantees pairwise serializability, but not serializability.
Pair-wise serializability (Jajodia & Atluri 1992) requires that for any pair of security levels the
sub-history restricted to those levels is serializable. We omit a proof due to lack of space.

To see why this algorithm does not guarantee serializability, consider the history shown in
figure 2 where Low -< Mid -< High. Although this history is non-serializable, the coloring scheme
just described does not reject this history. T 3 breaks the low read lock of T 2 first and is colored
after-T2 ; y is also colored after-T2 at this time. T3 then writes z; thus z is colored after-T2. T3
then commits. When T2 breaks the low read lock of T 1 , T2 is colored after-T1 , and both x and
y are colored after-Tt. Thus at this time we have the two edges T2 ~ T3 and T1 ~ T2. By
serialization theory we should have the path Tt ~ T2 ~ T3. To do this however, T2 has to pass
on the after-T1 color from itself to all transactions which are after-T2 - viz., T3 in this case. The
algorithm just presented does not guarantee the transitivity of the "after" color: It fails to color
the data item z after-T1 • As a result the cycle in the history cannot be detected by the algorithm.

To overcome this difficulty, our second protocol uses a third color, the "before" color, to paint
transactions T 1 and T 2, to indicate that they are before T 3 in the serialization order. Consequently
Tt will know that T3 is after-Tt (we will paint Tt as before-T3); if at any time Tt becomes after­
T3, Tt is aborted.

In the rest of this paper, we deal only with the second protocol.

4 MLS-SERIALIZIBILITY AND AN ALGORITHM THAT
GUARANTEES MLS-SERIALIZIBILITY

Before we give our second protocol, we introduce a new correctness criterion called MLS-serializability.

182 Part Six Multilevel Databases

Definition 1 An history H is MLS-serializable if for any transaction T;, the serialization graph
SG (H) does not contain a cycle such that T; is in the cycle and all other transactions in the cycle
are at levels dominated by the level of T;.

Clearly if we assume that the security levels form a total order, then any MLS-serializable history
is also serializable. We will give an example below to show that MLS-serializability is weaker than
serializability in general. MLS-serializability seems useful if we do not allow database integrity
constraints to span security levels.

We now describe our secure locking protocol with the coloring algorithm. We require a trans­
action to obtain a lock on a data item in the appropriate mode from the lock manager before
accessing the data item. The locking used by a transaction is strict on all data items that are at
the same level as that of the transaction; i.e., a transaction T; releases all its locks on data items at
security level L(T;) together, when T; terminates (see Bernstein, Hadzilacos & Goodman 1987).

When reading a data item x at a lower level, a transaction T; must acquire a read lock on x.
However, if a transaction Ti requests a write lock on x while T; has a read lock on x, the lock
manager takes the read lock away from T; and grants a write lock to Ti immediately.

Rather than notifying T; to abort at this point, the lock manager simply starts to keep track
of all the data items y that are accessed by Ti. To accomplish this, the lock manager "paints"
transaction T; with a before-Ti color, transaction Tj with an after-T; color, any data item z read
by Ti with a read-after-T; color, and any data item y written by Tj with an after-T; color. The
after color of transaction Tj is propagated in an iterative manner to any transaction that follows
Ti and executes an operation that conflicts directly or indirectly with some operation of Ti; the
before color of transaction T; is propagated to all active transactions that are before T; in the
serialization order, in a recursive manner. The following rules are used by the lock manager for
coloring transactions after-T;, before-Ti and data items read-after-T; or after-T;:

1. If a transaction Tj writes a data item x on which a higher level transaction T; has a read
lock, T; is painted with the color before-Ti and Ti is painted with the color after-T;. The
data item xis also painted with after-T;.

2. If a transaction T i that is colored after-T i reads a data item z, z is painted read-after-T ;; if
Tj writes a data item y, y is painted after-T;.

3. When Tj turns after-T;, Tj inherits all the after-colors ofT;, i.e., if T; is painted with (say)
some after-Tm color, then Tj is also painted with the after-Tm color.

4. When T; turns before-Tj, T; inherits all the before-colors of Ti. Further the before-colors of
T i are recursively propagated from T; to any transaction T k that is already colored before-T i,
from Tk to transactions T, that are colored before-Tk and so on.

5. Any transaction Tk that reads an after-T; data item becomes after-T;. If Tk reads a read­
after-T; data item, Tk does not change color.

6. Any transaction Tk that writes either a read-after-T; data item or an after-T; data item,
becomes after-T;.

7. Once a transaction Tk turns after-T;, any data items which have been read or written by Tk
before it turned after-T;, turns read-after-T; or after-T;, respectively.

If at any point a transaction T; is colored after-Tk and before-Tk for some transaction Tk, it
signifies a cycle in the serialization graph. The lock manager at this point selects a suitable victim
T i (i may equal j) on the cycle such that L(T i) dominates the level of every other transactions

Secure locking protocols for multilevel database systems 183

in the cycle and informs Tj to abort thus removing the cycle from the history. If there does
not exist such a Tj, the lock manager does not take any action. (Note that in this case the lock
manager allows the cycle to remain in the history which nonetheless will still be MLS-serializable.
We discuss this further below.)

Figure 3 gives the algorithm for the Trusted Lock Manager module. The Lock Manager is
responsible for coloring the data items and the transactions in an appropriate manner. The
coloring is done at the time a transactions requests a lock on some data item.

The algorithm works as follows: When a transaction requests a lock to the Lock Manager,
the latter first verifies if the lock request violates the security policy, i.e., a write lock cannot
be requested on a data item x by a transaction Ti if L(Tj) 'f; L(x) and a read lock cannot be
requested by a transaction T i on data item y if L(T i) -< L(y). Once the Lock Manager is satisfied
that the lock request does not violate the security policy, the Lock Manager tries to satisfy the
lock request.

If the requested lock by Ti on x is a write lock, the lock manager first checks if there is a read
lock already acquired on x by some T; such that L(Tj) -< L(T;). If there is such a read lock
on x, the lock manager paints Tj with an after-T; color by inserting transaction T; in After­
Set(Tj)· During this time if the data item xis colored by some after-Tm or read-after-Tn colors,
Ti acquires those colors of x too (i.e. the transactions Tm, Tn are entered in After-Set(Tj)). Next
the recursive procedure Propagate-Before-Color() is invoked with the parameters Ti and Tj. The
procedure starts by marking Tj as visited and then checks for transactions in After-Set(Tj)· T; is
one such transaction in the After-Set(Tj)· T; is not yet marked as visited; as a result the procedure
recursively calls itself with parameter T; and Tj. During this pass T; is marked as visited. For
simplicity let us assume that After-Set(T;) is empty and T; is active. Then Before-Set(T;) is
set to the union of Before-Set(T;) and Before-Set(Tj)· Thus T; is colored before-Ti by inserting
Ti in the Before-Set(T;). If there are other transactions in Before-Set(Tj) those transactions get
inserted in Before-Set(T ;) .

If After-Set(T;) is not empty, for all active Tk E After-Set(T;), the transactions in Before­
Set(Tj) are inserted in Before-Set(Tk)· Then this process is repeated for transactions in the
After-Set(Tk) and so on till there are no more active transactions to be considered. The intuitive
reason behind this recursive before color propagation is that if Tj becomes after some active
transaction Tk, Tk should be colored before-Tj, even if there is no direct dependency between
Ti and Tk.

Once this "before" color propagation is over the Lock Manager checks if for any of the trans­
actions Tk (including Tj) whose Before-Set was just updated, the transaction Tk is colored both
before-T, as well as after-T, for some T,. If this is the case it implies that this transaction Tk
is involved in a cycle in the serialization graph and the Lock Manager aborts Tk. Note that this
check for transaction Tk is performed from the highest security level going down; this ensures
that the highest transaction involved in a cycle is aborted. This strategy ensures that if a high
level transaction and a low level transaction are involved in a cycle, the low level transaction is
never aborted because of the high level transaction. Sacrificing the high level transaction prevents
potential covert channels.

If Tj is not aborted by the above step, the Lock Manager updates the color of the data item x
with the after colors of Tj. It also updates the after colors of all data items Tj has written and
the read-after colors of all data items T i has read, with the after colors of T i. Finally it grants
the write lock to T i.

If there is no read lock on x by some higher level T;, the Lock Manager finds out if there is
any conflicting lock on x by a transaction Tk at the same level as Ti. If there are none, the write

184 Part Six Multilevel Databases

TrustedLock~anager()
% This algorithm uses three colors for data items: after, read-after and colorless and three colors
% for transactions: before, after and colorless.
% The Lock Manager maintains two sets of colors for each T1 -the After-Set(Tj)
%and the Before-Set(Tj)· Every transaction Tj is colored before-Tj when it is submitted.
% T; E After-Set(Tj) implies Tj is colored after-T;. Similar forT; E Before-Set(T1).
% The lock manager also maintains two sets of colors for each data item x -
%the After-Color(x) and Read-After-Color(x). Tj E After-Color(x) implies x
%is colored after-Tj. Similar for Read-After-Color(x).

procedure Propagate-Before-Color(T m, T n)
% This procedure recursively propagates the before colors of T n

% to any active T1 E After-Set(T m)
begin

end

mark T m as visited;
for all Tk E After-Set(Tm)

if T k is not marked as visited, then
Propagate-Before-Color(Tk ,T n)

if Tk is active then
Before-Set(Tk) +-- Before-Set(Tk) U Before-Set(Tn)

endfor

repeat
receive (TM,Tj,op,x);
case op do

Write-Lock:
If L(TM)#L(TJ)#L(x) then
send (TM,T1,Lockillegal);

Read-Lock

end case

If L(TM)#L(TJ) OR L(TJ)-<L(x)
send (TM,T1 ,Lockillegal);

case op do
Write-Lock:

if (there is a read lock that is already set on x by some T;) and L(Tj)-<L(T;) then
After-Set(Tj) +-- After-Set(Tj) U After-Color(x) U Read-After-Color(x) U T;;
Propagate-Before-Color(Tj ,Tj);
Let Sbe/ore be the set of transactions whose before colors have been
updated in the previous step, sorted in descending security level
for each Tk E {Sbefore U Tj} do

if (After-Set(Tk) n Before-Set(Tk) # 0) 1\ (V Tn E {{Sbe/ore U TJ}-Tk}, L(Tn) j L(Tk)) then
abort Tk ;
remove Tk from all the color sets ;
if Tk = Tj then send(TM,Tj·aborted); return endif;

endif;
After-Color(x) +-- After-Color(x) U After-Set(Tj);
for all the data items y which have been read previously by Tj do

Read-After-Color(y) +-- Read-After-Color(y) U After-Set(Tj);
for all the data items y which have been written previously by Tj do

After-Color(y) t- After-Color(y) U After-Set(Tj);

Figure 3 Trusted Lock Manager Module (continued)

Secure locking protocols for multilevel database systems

setLock(Tj ,x,Write-Lock); send(TM,Tj ,LockOK)
elseif (there is no conflicting lock already set on x) then

Old-Set(Ti) f- After-Set(Tj)
After-Set(Tj) f- After-Set(Tj) U After-Color(x) U Read-After-Color(x) ;
if After-Set(Tj) # Old-Set(Tj) then

Propagate-Before-Color(T i ,T i)
Let Sbefore be the set of transactions whose before colors have been
updated in the previous step, sorted in descending security levels
for each Tk E {Sbefore U Tj} do

185

if (After-Set(Tk) n Before-Set(Tk) # 0) II (If Tn E {{Sbefore U Tj}-Tk}, L(Tn) ~ L(Tk)) then
abort Tk ;

remove T k from all the color sets ;
if Tk = Tj then send(TM,Tj-aborted)

return
endif;

endif;
After-Color(x) f- After-Color(x) U After-Set(Tj);
for all the data items y which have been read previously by Tj do

Read-After-Color(y) f- Read-After-Color(y) U After-Set(Tj) ;
for all the data items y which have been written previously by Tj do

After-Color(y) f- After-Color(y) U After-Set(T i) ;
setLock(Tj ,x,Write-Lock); send(TM,Tj,LockOK)

else delay(Tj);
Read-Lock:

if there is no conflicting locks already set on x then
Old-Set(Tj) f- After-Set(Tj)
After-Set(Tj) f- After-Set(Tj) U After-Color(x);
if After-Set(Tj) # Old-Set(Tj) then

Propagate-Before-Color(T i, Ti)
Let Sbefore be the set of transactions whose before colors have been
updated in the previous step, sorted in descending security levels
for each Tk E {Sbefore U Tj} do

if (After-Set(Tk) n Before-Set(Tk) # 0) II (If Tn E {{Sbefore U Tj}-Tk}, L(Tn) ~ L(Tk)) then
abort Tk ;

remove Tk from all the color sets ;
if Tk = Tj then send{TM,Tj-aborted)

return
endif;

endif;
Read-After-Color(x) f- Read-After-Color(x) U After-Set(Tj);
for all the data items y which have been read previously by T i do

Read-After-Color(y) f- Read-After-Color(y) U After-Set(Tj);
for all the data items y which have been written previously by T i do

After-Color(y) f- After-Color(y) U After-Set(Tj);
setLock(Tj ,x,Read-Lock); send(TM,Tj ,LockOK)

else delay(T i);
Unlock:

endcase
forever

release(Tj ,x); send(TM,Tj ,UnlockOK);
awake transactions that are no more conflicting, if anyj

Figure 3 Trusted Lock Manager Module

186

receive(TM,T;,op,x) :

send(TM,T;,msg) :

setLock(T;,x,ltype) :

release(T;,x) :
delay(T;) :

Part Six Multilevel Databases

receives a lock or unlock request op from the transaction
manager TM on behalf of the transaction T; on data item x
send the message msg pertinent to transaction T;
to the transaction manager TM forT;)
sets the lock of type !type on data item x,
requested by transaction T;
release the lock held by T i on data item x
puts the transaction T; in a wait queue for a lock

Figure 4 Functions Invoked by Trusted Lock Manager

High T1 : r![x] r1[z]

Figure 5 An example showing why T1 must commit after T2

lock should be granted. Before actually granting the lock, the Lock Manager updates the after
colors of Ti with the after color or read-after color of x. This is because the data item x may
already be after-Tk or read-after-Tk for some Tk and the transaction Tj by writing x, gets colored
after-Tk.lf Ti does get colored after-Tk (owing to accessing a colored x), the transaction Tk gets
colored before-T1. Tk inherits all the before-colors of Tj and this is propagated recursively to all
transactions Tm that are before-Tk. As before, if some transaction gets colored both before-Tn as
well as after-Tn, that transaction is aborted at this time. This includes T1. Next the after color
of x is updated with the after colors of Ti and finally the lock is granted.

If there is a conflicting lock, the transaction T i is delayed.
For read lock requests, the Lock Manager proceeds as in the case of write lock requests. However,

the lock manager has to check only for conflicting locks; there is no need for the Lock Manager
to check for higher level transactions with low read locks on x. Also the set Read-after-color(x)
is updated in this case.

When the transaction Ti requests the Lock Manager to release a lock on x, the Lock Manager,
after verifying that the request does not violate the security policy, releases the lock. Next it
selects a transaction that is waiting for a lock on x to be granted and performs the lock request
operation for that transaction.

Note that along with the Trusted Lock Manager, there is another trusted component in the
system which coordinates the lock requests by transactions in a strict 2PL manner and which
ensures that when a transaction Tk tries to commit, if Tk is after-T; for some T; such that L(T;)
~ L(Tk) or there is some Ti such that Tk is before-Ti and L(Tj) ~ L(Tk) then the commit of
Tk is delayed till after T; and Ti terminate. The reason this is done is to avoid possible covert
channels as exemplified by the history shown in figure 5.

Secure locking protocols for multilevel database systems 187

Figure 6 A history that is nonserializable. but MLS-serializable

The history in figure 5 is not serializable as we have the cycle T 1 -+ T 2 -+ T 3 -+ T 1· If we allow
T1 to commit after executing r![z] but before w2[x] is executed, then to prevent non-serializability
we will have to abort T2 when it executes w2[x]. However this opens up a covert channel from
level High to level Mid. To prevent this we cannot abort T 2.

To address this problem, our protocol does not allow T1 to commit so long as T2 is active and
aborts transactions from higher security levels to lower security levels (in this order). Data item
z is already colored after-T2 by virtue of its being written by T3 (which is after-T2). Thus T1
is colored after-T2 when T1 reads z. At this stage the commit of T1 is delayed till T2 commits.
When w2[x] is executed T1 is colored before-T2. Since After-Set(T1) n Before-Set(Tl) "# 0, we
abort T1 and not T2.

We next give an example, taken from (Sankarachary 1996), to show under what circumstances
this protocol fails to yield serializable histories: Suppose that there are four transactions T 1, ... ,
T4 such that L(T4) -< L(T3), L(T3) -< L(TI), L(T3) -< L(T2), and L(Tl) and L(T2) are incom­
parable. Data items a and b are at the same level as L(T3) and data items c and d are at the
same level as L(T4).

Consider now the history shown in figure 6. We do not abort T1 when its read lock on data
item a is broken by T3's write operation; neither do we abort T2 when its read lock on c is
broken by T 4. Instead we postpone the abort of T 1 or T 2 till such point as a cycle is imminent in
the serialization graph, i.e., till the execution ofr1[d] by T1. Although our algorithm detects the
existence of the cycle in the serialization graph, it still does not abort T 1 because doing so will
open up a covert channel (T1 is aborted due to T2's read operations) between L(Tl) and L(T2).
Note however that this history is MLS-serializable.

5 IMPLEMENTATION ISSUES

Our protocol can be implemented within a Trusted Lock Manager. A simple implementation is as
follows: The Lock Manager maintains a table, called the data status table, the number of columns
in which equals the number of database items, and the number of rows equals the number of
active transactions. Each cell in the table contains two bits and indicates the three colors of a
data item with respect to transaction T;, viz., colorless (00), read-after-T; (10) and after-T; (11).

188 Part Six Multilevel Databases

When a new transaction Ti arrives, a row corresponding to Ti is added to the table and all its
entries are initialized to 00. Whenever a data item x turns read-after-T i> the cell in the jth-row
and xth-column is set to 10 and when x turns after-Ti> the cell is set to 11.

The Lock Manager also maintains two sets associated with each transaction T i - the Before­
Set(Tj) and the After-Set(Tj)· Initially After-Set(Tj) is empty and the transaction identifier Ti is
inserted in Before-Set(Tj)· When transaction Ti becomes after-T;, T; is added to After-Set(Tj)·
When Tj becomes before-Tk for some transaction Tk, Tk is inserted in Before-Set(Tj)·

The data status table as well as each of the sets Before-Set(Tj) and After-Set(Tj) reside in
the trusted part of the lock manager and are not accessible to any transaction or other untrusted
components; hence these cannot be exploited as covert channels.

As and when transactions add on new colors, the various transaction identifiers are inserted in
the sets. Also the cells in the data status table are set from one bit pattern to another.

The jth row in the data status table and the Before-Set(Tj) and After-Set(Tj) for a transaction
T i can be garbage collected in the following cases: (1) If there is no active transaction T i such that
T; is colored before-Ti or after-Ti. (2) If transaction Ti is aborted. These conditions guarantee
that the protocol does not miss out any dependency in which Ti played a part along with any
currently active transaction.

6 COMPARISON WITH RELATED WORKS

We now show how our protocol compares with the orange locking protocols given in (McDermott
& Jajodia 1993).

6.1 Optimistic Orange Locking

In the optimistic orange locking protocol (00 L), transactions are serialized at each level by two
phase locking. A high transaction Ti sets read locks on low data items in order to read the data.
If a low transaction T; then tries to set a write lock on any of these data items, T;'s write lock
request is immediately granted and Tj's low read lock is converted to an orange lock. The high
transaction Tj is aborted if any of its low read locks is converted to an orange lock before Ti
performs the first unlock operation.

OOL is more conservative than our protocol, as illustrated by the next example.

Example 1 Consider the history shown in figure 7. Transactions T1 and T3 are high transactions,
while T 2 is a low transaction; y and p are low data items, while x, z, q, I and t are high data
items. The operations of the transactions and the order in which these are submitted are shown
in the figure. Under OOL, when T2 writes to p, the read lock by T1 on p is converted to an
orange lock. Since this occurs before the first unlock operation of T 1 (which can occur only after
ri(t]), 001 aborts the transaction Th even though no cycle is formed in the serialization graph.

With our protocol, T2 becomes after-T1 when it writes top. The data item p also turns after­
T 1 . T 1 is colored before-T 1 and before-T 2. When T 3 reads p, T 3 becomes after-T I· T 1 becomes
before-T3. The data item l becomes after-T1 when T3 writes l. When T1 reads t, it does not read
any after-T1 or after-T2 or after-T3 value and hence T1 is not aborted. D

Secure locking protocols for multilevel database systems 189

Low:

Figure 7 A serializable history rejected by the optimistic orange locking protocol, but accepted
by our protocol

6.2 Conservative Orange Locking

The conservative orange locking protocol (COL) tries to improve upon OOL by not aborting the
high transaction as soon as a conflicting lock is requested by a low transaction; instead the orange
locks are used to identify the low transaction from which the high transaction can safely read.

Briefly, COL assumes that a high transaction T; predeclares the set E; of lower level data items
that it wants to read as well as the set W; of data items that it wants to write. The execution of
a transaction T; proceeds in two phases. In the first phase, T; tries to read the set of lower level
data items into a local workspace. It begins by marking as empty the local workspace reserved
for each element of E;. While some element x is still marked as unread, T; submits read-down
operations for those unread data items. If a read lock can be placed on x, it is read into the local
workspace. If no read lock can be placed, then T; waits. When all the lower level data has been
read into the local workspace, T; is said to reach its home-free point. If before T; reaches its home
free point, a lower level transaction Tj acquires a write lock on a data item y already read by
T;, the read lock by T; on y is converted into an orange lock andy is marked as unread in T;'s
local workspace. T; is then placed on a queue Qi associated with Tj, so that T; can ready from
Tj, after the latter commits. When T; reaches its home free point, either all the elements of E;
have been read locked and read into T;'s local workspace or orange locked and read into the local
workspace. After that, T; follows two phase locking and reads and writes data items at its own
security level.

Example 2 In this example, there are three transactions: T 1 and T 3 of level high and T 2 of level
low, as shown in figure 8. Data items x, y and z are low level data items, while t is a high level
data item. T1 reads x, y and z and writes t; T3 reads z and writes t; T2 writes toy and z. As in
the previous example, each transaction reaches its home free point after it has read all its lower
level data.

This history is accepted by COL scheduler, although it has a cycle. T1 manages to read-lock
all low data items and reach its home free point before T2 acquires write locks on data items y
and z. T2 does not "override" any of the low read lock of T1 and, thus, none of the low-read locks
of T1 gets converted to orange locks. The history, nontheless, has a cycle because COL fails to
ensure the two-phase nature of all transactions in the system.

Note that this history is correctly rejected by our protocol as follows: When T2 writes y, T2
becomes after-T1, y becomes after-T1; T1 is already before-T1 and becomes before-T2. T2 writes
to z; thus z becomes an after-T1 value. T3 reads z; thus T3 becomes after-T1; T1 becomes before­
T3. When T3 writes t, t becomes an after-T1 value. When T1 tries to acquire a write lock on
t, T1 becomes after-T1; the Lock Manager detects that the intersection of Before-Set(TI) and

190 Part Six Multilevel Databases

High T1 :

High T3:
Low T2:

HFP;=

ri[x] r![y] r1 [z] HFP1 w![t] c1
r3[z] HFP3 w3(t] c3
HFP2 w2(y] w2[z] c2

Home free point of transaction T;

High: r![x] ri[y] r![z] HFP1 r3(z] HFP3 w3(t] C3 w![t] cr

Low:

Figure 8 A nonserializable history accepted by conservative orange locking

After-Set(T 1) is non-empty. Hence the protocol aborts T 1, i.e., rejects the history shown in figure
8. 0

6.3 Reset Orange Locking

The Reset Orange Locking (ROL) protocol is very similar to COL. In ROL, when a low-read lock
of a higher level transaction T; is overwritten by a low level transaction Tj, the corresponding
low data item xis orange locked and marked unread in T;'s local workspace. However, unlike in
the COL protocol, T; is not queued up in Tj's queue Qi to read x from Qi. Instead T; at some
later time asks the scheduler to re-acquire the low read lock. T; 's read request is queued waiting
for a chance to read according to the normal rules of two-phase locking. The read may have to
wait for other writes besides Tj's. Further, if another low transaction Tk tries to write lock the
data item x after T; has reacquired the low read lock, Tk overrides T;'s low read lock.

T; reaches its home free point when it has read-locked all low data and read them into its local
workspace or orange locked all low data and read them into its local workspace. Once T; reaches
the home free point it releases the locks on the read-down data items and performs the rest of its
processing using conventional strict two-phase locking.

It is clear that in the ROL protocol a high level transaction is not two phase; consequently, as
in COL, there is no guarantee that histories produced by the ROL scheduler are serializable.

7 CORRECTNESS OF THE ALGORITHM

We assume that the reader is familiar with serializability theory as explicated in (Bernstein
et al. 1987) and adopt the terminology and notation contained therein.

Our protocol requires each transaction to lock a data item in an appropriate mode before
accessing it and eventually unlocks it before completing (well-formed property). This is expressed
by the following property:

Secure locking protocols for multilevel database systems 191

Property 1 Let o;[x] denote either a read or a write operation on data item x by transaction T;,
ol;[x] denotes the locking operation (i.e. read or write lock) on x and u;[x] denote the corresponding
unlock operation. Given a history H, if o;[x] E H, then both ol;[x], u;[x] E H and ol;[x] <H o;[x]
<H u;[x].

The locking used by a transaction is strict on all data items that are at the same level as that
of the transaction; i.e. a transaction T; releases all its locks on data items at security level L(T;)
only after executing a commit or an abort. This property is expressed as follows:

Property 2 For any pair of data items x andy accessed by a transaction T; such that L(T;) =
L(x) = L(y), if ol;[x] and u;[y] exists in H and either c; or a; exists in H, then either ol;[x] <H
c; <H u;[y] or ol;[x] <H a; <H u;[y].

The serialization graph SG(H) for history His defined as a directed graph in which (1) Each
committed transaction in H is a node in SG(H), and (2) There is a directed edge T; --+ T; in
SG(H) whenever H contains an operation in T; that precedes and conflicts with an operation in
T;.

We distinguish between two different kinds of edges in the serialization graph SG(H), viz.,~,
and~.

Definition 2 Let H be a history over {Tt, ... T;, ... T;, ... Tn}·

1. If there is an operation o;[x] E T; that precedes and conflicts with an operation o; [x] E T;, and
transaction T; is colored before- T;, and transaction T; is colored after- T;, then the directed
edge T; ~ T; is in SG(H).

2. If there is an operation o;[x] E T; that precedes and conflicts with an operation o; [x] E T;,
and T; unlocks some data items before T; locks them in history H, then the directed edge T;
~ T; is in SG(H).

Note that all edges T; --+ T; in the serialization graph for a history H can be labeled either
with T; ~ T; or T; ~ T;.

Lemma 1 Let T1 --+ T2 --+ ... --+ Tn be any path in SG(H) and let T1 be the last transaction to
commit among {T1 , ... , Tn}· Then there exists T' E {Tt, ... , Tn} such that T1 is before-T' and
Tn is after-T'.

Proof. Proof is by induction on n, the number of transactions in the path. First, we show that
the Lemma is true for n=2. Let T 1 --+ T2 be in SG(H). Since T1 commits last, it can only be
the case that T 1 had a read lock on some data item x that was broken by a write lock from T 2;

otherwise T 1 would violate the strict 2PL protocol. Then by definition, T 2 is colored after-T 1
and T 1 is colored before-T 1 and the edge is of type T 1 ~ T 2. Hence T' = T 1 satisfies the lemma.

Let us assume that the lemma holds for paths with n transactions. By the inductive hypothesis,
given any path T1 --+ ... --+ Tn on which T1 is the last transaction to commit, there exists T' E
{T1, ... , Tn} such that T1 is before-T' and Tn is after-T'.

192 Part Six Multilevel Databases

Consider a path consisting of n + 1 transactions, and in particular consider the type of the edge
Tn ~ Tn+l· Either Tn ~ Tn+l or Tn ~ Tn+l·

Let us first consider the case Tn ~ Tn+l· Since Tn is after-T' (by the inductive hypothesis),
there must be at least one operation on[x] in Tn such that on[x] reads or writes an after-T'
data item x; moreover after on[x] is executed, any data item read or written by Tn is colored
read-after-T n or after-T n respectively.

Since Tn ~ Tn+l in SG(H), there must be at least a read operation rn[Y] in Tn such that the
read lock of Tn is broken by Tn+l, and Tn+l andy turn after-Tn.

Now there are two cases: (a) on[x] <H rn[Y] or (b) rn[Y] <H on[x]. We consider each of these
in turn.

If case (a) is true, Tn turns after-T' before Tn+l turns after-Tn. Once Tn is colored after-T'
any data item read by T n is colored read-after-T'. When T n+ 1 writes data item y, T n+ 1 is colored
after-Tn and after-T' as well. Hence, the Lemma holds since T1 is before-T' and Tn+l is after-T'.

If case (b) holds, Tn+l turns after-Tn before Tn turns after-T'. When Tn turns after-T' it
propagates recursively the color before-Tn toT'. And also to T1 since T1 was already colored
before-T'. Hence, the Lemma holds since T1 is before-Tn and Tn+l is after-Tn.

Let us next consider the case Tn ~ Tn+l· Tn commits first, otherwise Tn would violate the
strict 2PL protocol . As there is a dependency between T n and T n+l, it must be the case that
there is some on[x] that preceeds and conflicts with some On+l[x]. If On[x] is rn[x], then data item x
will be colored read-after-T'. In this case On+t[x] has to be a Wn+dx] and Tn+l becomes after-T'.
If on[x] is a wn[x], On+dxJ can be either rn+dx] or Wn+dx].In either case xis after-T' and hence
Tn+l is also after-T'. Hence, the Lemma holds since T1 is before-T' and Tn+l is after-T'. D

Theorem 1 Any history genemted by our protocol is MLS-serializable.

Proof. Assume SG(H) contains the cycle T1 ~ T2 ~ ... ~ Tn ~ T1 in SG(H) such that the
security levels L(Tt), ... , L(Tn) are totally ordered. There must be some transaction T; on the
cycle at the security level L(T;) such that L(T;) dominates the security levels of all the other
transactions in the cycle. Then according to our protocol, T; is the transaction to commit last
compared with all the other transactions participating in the cycle. Consequently the cycle can
be re-written as: T; ~ ... ~ T1 ~ ... ~ Tn ~ ... ~ T;

By lemma 1, it follows that there exists T' E {Tt, ... , Tn} such that T; is colored before-T'
and T; is colored after-T'. But in such a case T; should have been aborted by our protocol and
the cycle could not have resulted. This is a contradiction. D

Corollary 1 Suppose that the set S of security levels forms a total order. Then any history
genemted by our protocol is serializable.

Proof. Follows immediately from Theorem 1. D

8 CONCLUSIONS

In this paper, we have described two lock based concurrency control algorithm for multilevel
secure transactions. Both protocol use single version data and are based on a method of "painting"

Secure locking protocols for multilevel database systems 193

transactions and data items to prevent certain cycles. These algorithms are secure because they
do not require a lower level transaction to wait or abort because a higher level transaction is
accessing the same data in conflicting mode and, moreover, the second protocol does not abort a
transaction resulting from an action of a transaction at an incomparable level.

ACKNOWLEDGEMENTS

The work of Sushi! Jajodia was partially supported by National Science Foundation under grants
IRI-9303416, IRJ-9633541 and INT-9412507 and by National Security Agency under grants
MDA904-96-1-0103 and MDA904-96-1-Q104. The work of Luigi V. Mancini was partially sup­
ported by the Italian M.U.R.S.T. The work of Indrajit Ray was partially supported by National
Science Foundation under grant IRJ-9303416

REFERENCES

Ammann, P., Jaeckle, F. & Jajodia, S. (1995), 'Concurrency control in secure multi-level databases
via a two-snapshot algorithm', Journal of Computer Security 3(3), 87-113.

Ammann, P. & Jajodia, S. (1992), A timestamp ordering algorithm for secure, single-version mul­
tilevel databases, in C. E. Landwehr, ed., 'Database Security, V: Status and Prospects', North­
Holland, Amsterdam, pp. 191-202.

Ammann, P. & Jajodia, S. (1994), Planar lattice security structures for multilevel replicated
databases, in T. F. Keefe & C. E. Landwehr, eds, 'Database Security VII: Status and Prospects',
North-Holland, Amsterdam, pp. 125-134.

Ammann, P., Jajodia, S. & Frankl, P. (1996), 'Globally consistent event ordering in one-directional
distributed environments', IEEE 7rans. on Parallel and Distributed Systems 7(6), 665-670.

Bernstein, P. A., Hadzilacos, V. & Goodman, N. (1987), Concurrency Control and Recovery in
Database Systems, Addison-Wesley, Reading.

Denning, D. E. (1982), Cryptography and Data Security, Addison-Wesley, Reading.
Gray, J. & Reuter, A. (1993), Transaction Processing: Concept and Techniques, Morgan Kaufmann,

San Mateo, CA.
Jajodia, S. & Atluri, V. (1992), Alternative correctness criteria for concurrent execution of trans­

actions in multilevel secure database systems, in 'Proc. IEEE Symposium on Security and
Privacy', Oakland, CA, pp. 216-224.

Jajodia, S. & Kogan, B. (1990), Transaction processing in multilevel secure databases using repli­
cated architecture, in 'Proc. IEEE Symp. on Research in Security and Privacy', Oakland, CA,
pp. 369-383.

Kang, I. E. & Keefe, T. F. (1995), 'Transaction management for multilevel secure replicated
databases', Journal of Computer Security 3, 115-145.

Keefe, T. F. & Tsai, W. T. (1990), Multiversion concurrency control for multilevel secure database
systems, in 'Proc. IEEE Symp. on Research in Security and Privacy', Oakland, California,
pp. 369-383.

Lamport, L. (1977), 'Concurrent reading and writing', Comm. ACM 20(11), 806-811.

194 Part Six Multilevel Databases

McDermott, J. & Jajodia, S. (1993), Orange locking: Channel-free database concurrency control
via locking, in B. Thuraisingham & C. Landwehr, eds, 'Database Security, VI: Status and
Prospects', North-Holland, Amsterdam, pp. 267-284.

Reed, D. P. & Kanodia, R. K. (1979), 'Synchronization with eventcounts and sequencers', Comm.
ACM 22(5), 115-123.

Sankarachary, K. B. (1996), Concurrency control in multilevel secure database management system,
based on serialization graph testing, Master's thesis, Pennsylvania State University.

Schaefer, M. (1974), Quasi-synchronization of readers and writers in a secure multi-level environ­
ment, Technical Report TM-5407 /003, System Development Corporation.

BIOGRAPHY

Sushil Jajodia is Director of Center for Secure Information Systems and Professor of Informa­
tion and Software Systems Engineering at the George Mason University, Fairfax, Virginia. His
research interests include information security, temporal databases, and replicated databases. He
has published more than 150 technical papers in the refereed journals and conference proceedings
and has edited or coedited ten books, including Multimedia Database Systems: Issues and Re­
search Directions, Springer-Verlag Artificial Intelligence Series (1996), Information Security: An
Integrated Collection of Essays, IEEE Computer Society Press (1995), and Temporal Databases:
Theory, Design, and Implementation, Benjamin/Cummings (1993). He received the 1996 Kristian
Beckman award from IFIP TC 11 for his contributions to the discipline of Information Security.
The URL for his web page is http:/ fwww.isse.gmu.edu/~csis/facultyfjajodia.html.

Luigi Mancini received the Laurea degree in Computer Science from the University ofPisa, Italy,
in 1983, and the PhD degree in Computer Science from the University of Newcastle upon Tyne,
Great Britain, in 1989. From 1989 to 1992, he was an Assistant Professor at the Dipartimento
di Informatica of the University of Pisa. From 1992 to 1996 he was an Associate Professor of
the Dipartimento di Informatica e Scienze dell'lnformazione of the University of Genoa. Since
1996 he has been an Associate Professor of the Dipartimento di Scienze dell'Informazione of
the University "La Sapienza" of Rome. His research interests include distributed algorithms and
systems, transaction processing systems, and computer and information security.

Indrajit Ray is a Ph.D. student at the Center for Secure Information Systems within the School
of Information Technology at George Mason University, Fairfax, Virginia. He had his Master
of Engineering in Computer Science and Engineering from Jadavpur University, India in 1991
and Bachelor of Engineering in Computer Science and Technology from B.E. College, Calcutta
University, India in 1988. Mr. Ray's research interests include distributed database systems,
transaction processing and information systems security.

