29
Supporting ODP - Translating LOTOS to Z

J. Derrick, E.A. Boiten, H. Bowman and M.W.A. Steen !

Computing Laboratory, University of Kent, Canterbury, CT2 7TNF, UK
Phone: + 44 1227 827570, Fax: + 44 1227 762811,
Email: {J.Derrick,E.A.Boiten, H. Bownan, mwas} Qukc. ac.uk.

Abstract

This paper describes a translation of full LOTOS into Z. A common semantic
model is defined and the translation is proved correct with respect to the semantics.

The motivation for such a translation is the use of multiple viewpoints for spec-
ifying complex systems defined by the reference model of the Open Distributed
Processing (ODP) standardization initiative.

Keywords: Open Distributed Processing; Z; LOTOS; Consistency.

1 INTRODUCTION

The aim of this paper is to support the use of FDTs within distributed system design by
providing a translation between full LOTOS and Z.

An important example of open object-based distributed systems is the Open Dis-
tributed Processing (ODP) Reference Model. The ODP standardization initiative is a
natural progression from OSI, broadening the target of standardization from the point
of interconnection to the end-to-end system behaviour. One of the cornerstones of this
framework is a model of multiple viewpoints which enables different participants each to
observe a system from a suitable perspective and at a suitable level of abstraction.

Formal description techniques (FDTs) are likely to be used for the specification of ODP
systems. Of the available FDTs, Z is likely to be used for at least the information, and
possibly other, viewpoints (the ODP Trader specification is being written using Z for the
information viewpoint), whilst LOTOS is a strong candidate for use in the computational
viewpoint.

One of the consequences of adopting a multiple viewpoint approach to specification
is that descriptions of the same or related entities can appear in different viewpoints and
must co-exist. Consistency of specifications across viewpoints thus becomes a central
issue. We have shown how consistency checking may be performed within a single FDT,
[BDLS95, DBS95a, DBS95b, SBD95], however, the real challenge lies in checking for

consistency across language boundaries, and this requires translation between FDTs.

1This work was partially funded by British Telecom Research Labs., Martlesham, Ipswich, UK. and
the Engineering and Physical Sciences Research Council under grant number GR/K13035.

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

400 Part Nine Open Distributed Processing II

The work described here makes a first step towards a solution, by defining a translation
of full LOTOS into Z using a common semantic model. Section 2 explains the model.
Section 3 then provides a semantics for Z in this model. Section 4 then defines the LOTOS
to Z translation.

2 EXTENDED TRANSITION SYSTEMS

In [WC89] extended transition systems (ETS) are used to define a semantics for full
LOTOS, and we will use them as our common semantic model. An extended transition
system provides a semantic model for the data in addition to the control behaviour of a
system. Given a signature X, and a set of variables V, the set of terms over ¥ and V is
denoted Tx(V) (we assume it includes all boolean terms).

Definition 1 An extended transition system is a 6-tuple ETS = (S, E, A, R, s, fo) where
S is a set of states of the ETS; E C S x Id is a finite set of extensions on ETS, and
Id a finite set of identifiers; A is a set of actions on ETS (see below); R is a set of
transition relations on ETS (see below); sy is the initial state of the system; fo is the
initial assignment of the variables.

Definition 2 Let G be a set of gates over which an extended transition system can com-
municate. Actions are elements of G with a finite list of attributes: either a value or
variable declaration of the form e, or a variable declaration of the form 7v : t. Let I be
a set of internal (unobservable) actions. Elements of I are denoted i. The set of actions
of an ETS is the set

A={g%7:t... 7 tn ler. . Loy | geEGUI, e € Tn(V),v € V}
The function name(a) returns the gate name in action a (either observable or internal).

Definition 3 Each element of the set of transition relations R is a 5-tuple r = (a, s, ', p, f)
where a is an enabling action; s,s' € S are states of the ETS (not necessarily distinct);
p € Tx(V) is an enabling predicate associated with r; f : V — Tx(V) is an action
function associated with r.

The intuitive meaning of a transition relations r is that if the ETS is in state s and
the enabling action a is offered, then the enabling predicate is evaluated on the current
assignment of variables. When p is true, the ETS will go into the new state s’ and the
variables are updated by the action function f.

A LOTOS specification of a system defines the temporal relationships among the in-
teractions that constitute the externally observable behaviour of the system [BB88]. A
specification consists of two parts: the behaviour expression describes the process be-
haviour and its interaction with the environment whilst the abstract data type (ADT)
describes the data structures and value expressions.

The translation from LOTOS to ETS given in [WC89] is based on the standard transi-
tion derivation system defined in [ISO89] extended to cover data representation and value

Supporting ODP - translating LOTOS to Z 401

passing in full LOTOS. The algorithm generates an extended transition system with a
finite set of transition relations.

The transition rules work bottom-up beginning with the LOTOS terminals. A trans-
lation algorithm is then developed using the transition rules (full details are given in
[WC89]). Chanson also defines a weak bisimulation for extended transition systems. This
will be used as the equivalence in our common semantic model.

3 AN ETS SEMANTICS FOR Z

The Z specification language [Spi89] has gained acceptance as one of the viewpoint spec-
ification languages for ODP, particularly for the information viewpoint. Because ODP is
object-based, there is a need to provide object-oriented capabilities in FDTs used within
ODP. ZEST [CR92] is an extension to Z to support specification in an object-oriented
style, developed by British Telecom specifically to support distributed system specifica-
tion.

ZEST does not increase the expressive power of Z, and a flattening to Z is provided.
What ZEST provides is structuring at a suitable level of abstraction by associating in-
dividual operations with one state schema. A class is a state schema together with its
associated operations and attributes. A class is a template for objects: each object of the
class has a state which conforms to the class state schema, and is subject to state transi-
tions which conform to the class operations. In many ways ZEST is similar to Object-Z
[DRS95], although the latter does not provide a flattening to Z.

The standard semantics for Z is denotational [Spi88]. Consideration of object-oriented
issues, however, leads naturally to viewing objects as processes and hence to an observa-
tional view of the semantics of the specification. Z state changes occur by application of
Z operation schemas, thus an observational view regards invocation of a Z operation as a
transition in a labelled transition system (LTS).

We will provide an ETS for each ZEST specification, in such a way that a LOTOS
specification and its ZEST translation are observationally equivalent in the ETS seman-
tics. The semantics of a ZEST specification is defined to be the ETS of the top level
object. We assume that all inheritance has been expanded out in the given ZEST class.
The set of variables in the ETS consists of all state variables defined together with all
inputs and outputs declared in the operation schemas. The ETS of a ZEST object is de-
rived from considering the application of the last operation schema defined in the object
to the ETS derived from the object excluding that schema.

The base ETS
To start, the ETS of an object with no operations is defined. Consider the ZEST object:

P
Attributes
State
Initial_State

402 Part Nine Open Distributed Processing II

the ETS of this is given by ETS = ({0}, @, 3,9, %, fo) where f; is the assignment of
Initial_State, ie the predicate. (The LOTOS translation always produces such an assign-
ment.)

The inductive case

To calculate the effect of operations on the transition system, suppose that the ZEST
object P’ has an associated ETS of ETS' = (S', E', A", R', s{, fy). Then we calculate the
ETS of the object P (where A is an operation schema) in terms of ETS’ in the following
fashion, where P’ and P are:

P _r

Attributes Attributes

State State

Initial _State Initial_State

Operationy Operation;

Operationy, Operation,
A

Consider each s’ € S' in turn. Given such an s’ € §’, we evaluate pre A at that state
(ic on the current assignment of the variables). If A is not applicable, no new relation is
added to R’ and the ETS is not extended. If A is applicable at s, then a new transition
is added to R’ and the ETS is extended. We calculate the transitions as follows.

Calculating a transition from an operation schema

An operation schema A given by

A
A(state_vars)
Declarations

OpPred

maps to a transition r = (a, s', s, p, f) where

1. a = A?0? ¢ t...72,7 ¢ by 'in! - wp .. ym! ¢ up, for declarations 1?7 : 6, ..., 2,7
toy 1!t Uy, Ym! t Uy within A

2. p is the precondition of OpPred at the current assignment of variables;

3. f gives the effect on state and output variables of performing operations A; and

Supporting ODP - translating LOTOS to Z 403

4. If the effect of f on s’ produces an assignment of variables that corresponds to a
state s” € §’, then s = s”. If not (or it is undecidable), then a new state, s is added
(§ = S"u{s}).

For all states added which are not in §’, the effect of the object has to be calculated on
those states because an existing operation may be applicable at the new state. Therefore
all the operations Opy,..., Op,, A are applied to these new states to extend the ETS
further.

The result of this process is an ETS containing a (not necessarily finite) set of transition
relations R. The final ETS consists of the updated set of states and transitions, together
with £ =FE', A=A"U{a}, so =5, o =14

4 TRANSLATION FROM FULL LOTOS TO Z

The essential idea behind the translation is to turn LOTOS processes into ZEST objects,
and hence if necessary into Z. The ADT component of a LOTOS specification is translated
directly into the Z type system. For the behaviour expression of a LOTOS specification,
we first derive the ETS from the LOTOS, and use this to gencrate the Z specification.
This will involve translating each LOTOS action into a ZEST operation schema with
explicit pre- and post-conditions to preserve the temporal ordering.

For example, the LOTOS. process in?z : nat; out!(z + 2); stop will be translated
into a ZEST object which contains operation schemas with names in and out. The
operation schemas have appropriate inputs and outputs to perform the value passing
defined in the LOTOS process. Each operation schema includes a predicate (derived from
the ETS) to ensure that it is applicable in accordance with the temporal behaviour of the
LOTOS specification. Because a finite ETS is generated from any LOTOS specification
(see [WC89]), a ZEST specification can be generated which fully describes the LOTOS
correctly.

Let ETS = (S, E, A, R, so, fy) be the unique finite extended transition system associ-
ated with the LOTOS behaviour expression P. The translation 7T'(P) of the behaviour
expression P will be the ZEST object given by:

P
States == S

J—

s : States
Declarations derived from the transition relation R

__INIT
A(s)

SZSO/\fO

Operationy

Operationy,

404 Part Nine Open Distributed Processing Il

Operation Schemas

The operation schemas contained within the ZEST object are derived from the finite set of
transition relations generated from the LOTOS specification. For each r € R we generate
a (partial) operation schema, and when all relations in R have been considered we merge
together operation schemas which have the same name in a manner we describe below.

Let r = (a, s1,%,p,f) € R with ¢ = name(a). Then r will define a template schema
of the form:

—9
A(s)
Declarations derived from a

(transition condition derived from sy, s2)A
(pre-constraint derived from p)A
(post-condition derived from f)

The constituent parts of this are:

1. Transition condition: The transition predicate will be (s = s; A 8" = sp).

2. Declarations: An action of the form g7z : ¢;...7z, : t,!Ey .. \F,, is translated to
the declaration

— 9
A(s), Az, ...,)
tlchl? : tl, ey tnch,,7 : tn
tnt1 Chn+1‘~ Slagly e bngm Chn+m! D ngm

where t,4; = type(F;), and the appearance of t; in a declaration #;ch;? or t;ch;! is its
syntactic representation as a string of characters. This is needed for technical reasons.

In addition, the state schema is amended to include the declarations: z; : #,...,z, : ¢,.

3. Pre-constraint: The pre-constraint is derived from the input/output of an action
together with the predicate p. For an action of the form above, the pre-constraint is:

(z] = heh? Ao Azl = tacha?) A (i chngr! = By AL A tgem Chngem! = E)A
pltich?/m] ... [tncha?/2s]

where p[u/v] denotes substitution in the standard fashion. A further relabelling is also
applied to p and the expressions E;: for any variable, z say, which is bound when consid-
ering the schema alone (ie its binding occurrence occurs at the gate under consideration),
any other subsequent occurrence of z in that action are replaced by z'. Furthermore, for
any free variable, say y, that appears in the expressions E; we conjoin (y = y') to the
predicate p. An example will make this clear:

(a) g7z : ;!(z + 2) will become:

Supporting ODP - translating LOTOS to Z 405

—9
A(s), Alz)
tlchl? h
tlchzl : tl

(.’L'I = t] Chl? N tlchg! = (.T’ + 2))

where here the relabelling has been applied to the expression E; = (z + 2).

4. Post-condition: By construction, the action function f in the transition relation r
will consist of a finite number of assignments of the form v < E. These are re-written as
v = E. Binding occurrences of a variable are relabelled as in the predicate p described
above.

Merging Schemas together

Given two partial operation schemas with the same name, built from two different tran-
sition relations, we combine them by merging the declarations in the usual fashion (there
can be no clashes by construction) and taking the disjunction of the predicates.

For example, giver® the behaviour input?z : ¢; a?y : u; input!(z + 2)ly; stop, we
generate two partial schemas describing the operation input:

_input — input
A(s), A(z) A(s)
teh?7: t tchy!: t,uchy! : u
(2" =tch?As=s0Ns' = s1) (teh! = (z +2) Auchy! =y As=s3 A8 =s3)
Na'=z)A(y' =y)

the combined schema will be:

input
A(s), A(z)
tchl? i

tchy! i t,uche! : u

(' =tch?As=s9As" =3s1) V
((tchi! = (2 +2) Auche! =y As=s2As' =s3)A(z' =z) A (Y = 1))

To derive a ZEST translation from a LOTOS specification, we apply the translation
algorithm to derive a unique finite ETS from the LOTOS specification, then apply the
above translation rule to derive the ZEST object.

The translation defined here can be verified against the ETS semantics, i.e. a LOTOS
specification and its Z translation will be observationally equivalent in the ETS semantics.

5 CONCLUSIONS

The work described here aims to provide a first step in defining a translation between
LOTOS and Z. The translation mechanism was defined, together with a common semantic

406 Part Nine Open Distributed Processing I1

framework that verifies the translation algorithm.

Extended transition systems provided the common semantic framework and the rela-
tionship between the ETS semantics for LOTOS and the standard LTS semantics needs
to be explored. However, although we have used an ETS semantics for LOTOS, any LTS
semantics for LOTOS that could be embedded in a finite ETS will produce a translation
to Z correct with respect to that semantics.

References

[BB88] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems, 14(1):25-59, 1988.

[BDLS95] H. Bowman, J. Derrick, P. Linington, and M. Steen. FDTs for ODP. Computer
Standards and Interfaces, 17:457-479, September 1995.

[CR92] E. Cusack and G. H. B. Rafsanjani. ZEST. In S. Stepney, R. Barden, and D. Cooper,
editors, Object Orientation in Z, Workshops in Computing, pages 113-126. Springer-
Verlag, 1992.

[DBS95a] J. Derrick, H. Bowman, and M. Steen. Maintaining cross viewpoint consistency using
Z. In K. Raymond and L. Armstrong, editors, IFIP TC6 International Conference
on Open Distributed Processing, pages 413-424, Brisbane, Australia, February 1995.
Chapman and Hall.

[DBS95b] J. Derrick, H. Bowman, and M. Steen. Viewpoints and Objects. In J. P. Bowen and
M. G. Hinchey, editors, Ninth Annual Z User Workshop, LNCS 967, pages 449-468,
Limerick, September 1995. Springer-Verlag.

[DRS95] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated for the
description of standards. Computer Standards and Interfaces, 17:511-533, September
1995.

[ISO89] ISO. Information processing systems — Open Systems Interconnection — LOTOS - A
formal description technique based on the temporal ordering of observational behaviour,
1989. IS 8807.

[SBD95] M. W. A. Steen, H. Bowman, and J. Derrick. Composition of LOTOS specifications.
In P. Dembinski and M. Sredniawa, editors, Protocol Specification, Testing and Verifi-
cation, XV, pages 73-88, Warsaw, Poland, 1995. Chapman & Hall.

[Spi88] J. M. Spivey. Understanding Z: A specification language and its formal semantics.
Cambridge University Press, 1988.

[Spi89] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

[W(C89] J-P. Wu and S. Chanson. Translation from LOTOS and Estelle specifications to ex-
tended transition system and its verification. In S. T. Voung, editor, Formal Description
Techniques, II, pages 533-549, Vancouver, Canada, December 1989. North-Holland.

