
26

Expressing Runtime Structure and
Synchronisation in Concurrent 00
Languages with MONSTR

R. Banach
Department of Computer Science, Uni11ersity of Manchester,
Manchester, M13 9PL, U.K., banach@cs. man. ac. uk

G. A. Papadopoulos
Department of Computer Science, University of Cyprus,
CY-1678, Nicosia, Cyprus., george@turing.cs.ucy.ac.cy

Abstract
The extended term graph rewriting formalism of MONSTR is described, together with
some of its more important rigorously established properties, particularly regarding se­
rialisability and acyclicit.y. This basis is used for giving a convenient description of the
global runtime structure of a concurrent object oriented language. The formalism proves
especially convenient for describing very precisely a variety of intended synchronisation
properties of objects in a concurrent OOL, and this flexibility is illustrated by considering
a variety of possible operational semantics for a simple counter object. A lower bound
object example illustrates that even more extreme synchronisation properties for objects
may be contemplated without stretching the capabilities of the MONSTR formalism. The
presentation is independent of any specific high level OOL.

Keywords
Object Oriented Languages, Object Synchronisation, Term Graph Rewriting, MONSTR,
Distributed Processing, Serialisability.

1 INTRODUCTION

Recently a number of proposals have been put forward with the aim of combining concur­
rency and object-orientation. They differ in many aspects regarding the way they handle
the issues pertaining to this combination, such as degree of concurrency allowed not only
between objects but also within an object (and how the internal state of the latter can be
protected), synchronisation mechanisms e.g. locks, wait. queues, synchronisation counters
or activation conditions, process structures, and implementation techniques for objects,
etc. In Papa thomas (1990) six different categories of 00 languages are identified. It has

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

358 Part Eight Specification and Design Distributed Systems

also been argued {Nierstrasz and Pa.pathomas 1990) that there is a need to develop seman­
tic frameworks for reasoning about the way various features of concurrent 00 languages
operate, and to provide a common point of reference in comparing various such languages.

In the current work we exploit the generalised computational model of Term Graph
Rewriting {Sleep et a!. 1993) and iu particular the MONSTR model and associated com­
piler target language (Banach 1993, 1996a-d), to develop an abstract formal framework
for reasoning about some of the above mentioned issues. We pay particular attention
to the way the global runtime structures are set up and to how various synchronisation
properties of objects can be supported.

The rest of the paper is organised as follows. The next section introduces MONSTR,
paying particular attention to properties of particular interest in the present context:
atomicity of rewrites, serialisability and acyclicity. The next section provides a simple but
useful abstract representation of what constitutes an object. The next section comprises
the main part of the paper and discusses the way inter- and intra-object interaction takes
place by examining a variety of possible concurrent semantics for a specific example,
a counter object and a mild generalisation of it, a lower bound object. Note that the
presentation is independent of any specific high level 001. The paper ends with some
concluding remarks.

2 MONSTR

One of the main advantages in using a rule based rewriting model of computation for
specifying properties of systems is that one important issue, namely the atomicity of
primitive actions, is made precise automatically; i.e. each rule must execute as an atomic
action. When this approach is used for distributed systems, sufficient thought must go
into the design of the permitted rules, in order that the synchronisation capabilities of
a distributed system are not unduly taxed. MONSTR is a rule based language that was
designed with distributed systems in mind and in fact it has been implemented on at least
one such architecture (Watson et al. 1988).

2.1 MONSTR Rewrites

The fundamental objects of MONSTR are term graphs. A term graph, is a directed graph
where the nodes are labelled with symbols, assumed of fixed arity, and each node has a
sequence of out-arcs to its child nodes. The nodes and arcs of term graphs are marked
to control rewriting strategy as we will see below. The term graph that represents the
instantaneous state of the computation is modified by the application of some rule. Let
us look at a rule in action, to see what happens during a rewrite.

F[Cons[a b] s:Var] => #G[a -*b], s:=*SUCCEED;

First the LHS (the part before =>) is matched. F is the root node and has two children, the
Cons node, and the Var node. The Cons node has two unlabelled children; such undefined
nodes may match anything. Note that the pattern is shallow; this is fundamental to
MONSTR as large patterns demand large scale locking to ensure atomicity.

Runtime structure and synchronisation in concurrent 00 languages 359

~\ \\
*/ \ ! => #G~ \~ #?~)

Cons~ \) Var

Data *Nil *SUCCEED
Data Nil

Figure 1 A MONSTR rewrite.

Once a match is located, which must be at an active (*-marked) node of the graph,
the nodes on the RHS are built into the redex area. Thus a once-suspended (#-marked) G
node is constructed, with arcs to the existing LHS nodes referred to by a and b (so these
nodes become shared even if they weren't previously). Also the arc to b is a notification
arc (--marked). The other new node is the active SUCCEED node.

The notation => indicates that the root is to be redirected to the node immediately
following the => i.e. G. Also the Var node is to be redirected to SUCCEED by the notation
s: =SUCCEED. During redirection, all in-arcs to the respective redirection subjects (i.e. F and
Var) are replaced by in-arcs to the respective targets (i.e. G and SUCCEED). Redirection is
the fundamental notion of update in term graph rewriting, being a graph-oriented version
of substitution.

The final tasks of a MONSTR rewrite are to make the root inactive (idle); and to acti­
vate specified LHS nodes (which causes them to be marked active if otherwise unmarked).
In the concrete syntax, this is accomplished by mentioning the relevant nodes on the RHS
of the rule, with a * marking e.g. b above. We illustrate the action of the rule described
above in Figure 1.

In the Figure, note how the in-arcs ofF now point toG after redirection, and those of Var
point to SUCCEED. We are assuming in the rewrite illustrated, that the LHS nodes F and
Cons, had no further in-arcs, and thus became inaccessible and were garbage collected.

The above assumed that there was a rule which matched. If not then notification occurs.
This is an alternative atomic action to rewriting, in which the root becomes idle, and for all
its all its- -marked in-arcs (notification arcs), the " marking is removed, and the number
of suspensions (#'s) in the parent node's marking is decremented (with #0 = *). In this
manner subcomputations can signal their completion to their parents.

2.2 MONSTR Syntactic Restrictions

To make the above a computational model suited to distributed machines, a number of
restrictions are imposed on the syntactic structure of systems so that some useful runtime
properties hold. We paraphrase from Banach (1996a), where there is a thorough study of
why these are appropriate.

Alphabets and Symbols. The alphabet of symbols S, is the disjoint union of three
subalphabets S = F ltJ C ltJ V where: F is the alphabet of function symbols which may

360 Part Eight Specification and Design Distributed Systems

label the root of the LHS L of a rule, but not any subroot node of L, and which may
be the LHS of a redirection. C is the alphabet of constructor symbols which may label
a subroot node of the LHS of a rule, but not the root, and which may not be the LHS
of a redirection. V is the alphabet of stateholders, or variables. A stateholder symbol
may label a subroot node of the LHS of a rule, but not the root. Stateholders may label
the LHS of a redirection. Each S E S has a (fixed) arity A(S). For each F E F, there
are subsets State(F) <;;:Map(F)<;;: A(F), with State(F) either a singleton or empty. Root
E C.

In the formal model, for a node x in a graph, we write a(x) for its symbol, a(x) for its
sequence of child nodes, with a(x)[k] its k'th child, J.l(.r) for its marking, and v(x)[k] for
the marking on its k'th out-arc. Also rules are of two kinds: those which pattern match
(normal rules); and those which do not. (default rules). Every function symbol must have
at least one default rule. In the definition of a rule, implicit nodes are the ones that may
match anything; others are called explicit.

Rules. Let D == (P, root, Red, Act) be a rule, with root the root of the LHS L, P a graph
which is the union of the LHS and RHS of the rule, (with all implicit nodes accessible
from root), redirections Red, (where the LHS of each redirection is an explicit node of L,
and where each node of L is the LHS of at most one redirection), and activations Act.
Then

1. Each node of P has the arity dictated by its symbol, i.e. for all x E P, A(x) = A(a(x)).
2. Each normal rule for a symbol matches the same set of arguments of the root, i.e. if

a(root) == F, and Dis a normal rule then a(root)[k] is explicit¢} k E Map(F).
3. A rule for a function may match at most one stateholder*, and then only in a fixed

position; all other explicit arguments must be constructors, i.e. if a(root)= F, and D
is a normal rule then a(a(root)[k]) E V =? k E St.ate(F).

4. All grandchildren of the root are implicit, i.e. for all k E A(a(root)), and j E A(a(a(root)[k])),
a(a(root)[k])[j] is implicit.

5. Implicit nodes of the LHS have only one parent in the LHS (left linearity), i.e. if yEP
is implicit, there is precisely one x E L such that for some k E A(x),y = a(x)[k].

6. Every x E Pis balanced, i.e. 11-(x) = #n (for n 2: 1) ¢} !{k I v(x)[k] = '}! = n.
7. Every arc (Pk, c) of Pis either state saturated or activated, i.e. v(p)[k] =' and 11-(c) =

E =? a(c) E V or c E Act.
8. The root is always redirected, i.e. for some bE P, (root, b) E Red.
9. No arc can lose state saturatedness through redirection, i.e. (a, b) E Red and J.l(b) =

c; =? a(b) E V or bE Act.
10. A node which is the LIIS but not the RHS of a redirection should be garbaged by a

rewrite whenever possible, i.e. (b, c) E Red and b E Act =? there is a b i' a E L such
that (a, b) E Red.

Desirable Properties of Rewriting. By convention rewriting always starts with a
single active node labelled Initial. When a.ll rules used conform to the restrictions given
above, induction over executions yields many desirable properties. N a.mely:

*This explains the MONSTR acronym. It stands for: a Maximum of One Non-root STateholder per
Rewrite

Runtime structure and synchronisation in concurrent 00 languages 361

• All execution graph nodes respect the arities of their symbols.
• The pattern matching requirements of each redex, depend solely on the symbol at the

root (and so can be delegated to simple hardware).
• No pointer equivalence is required for matching any redex node, that is not evident

from Map(O"(root)), (ditto).
• All execution graphs are balanced and state saturated.
• The overwriting lemma (Banach 1996a, Le.mma 5.10), applies to most redirections, in

practice enabling the convenient representation of rewriting by packet store manipula­
tions, (and particularly the representation of redirection by packet overwriting).

To ensure that rewriting conforms to the exigencies of MO.'\TSTR garbage collection, an
issue we will not discuss further here, and for the operational convenience of distributed
hardware, we must restrict rewrites only to redexes where the explicitly matched children
of the root are idle, i.e. JL(a(t)[k]) =E. If not, a suspension takes place, where the root
of the rewrite becomes suspended on the non-idle matched children, waiting for them to
notify. This is described in Banach (1996b). The next definition states the circumstances
under which each kind of atomic action is performed.

Execution Steps. Let G be a graph and t an active node of G, at which we wish to
perform a step. The kind of step to be performed is determined as follows.

IfO"(t)ECUV
Then Perform a notification at t
Else If For all k EMap(O"(t)), fl.(a(t)[k]) = E (and JJ(t)[k] =E)

Then Perform a rewrite using a rule chosen nondeterministically from Sel,
where Sel is the set of normal rules that match at t if there are any,
otherwise any default rule for the root symbol.

Else Perform a suspension at t

2.3 Serialisability

The above described the atomic semantics of MONSTR. Though LHSs of rules are small,
there is still quite a potential demand for locking in a distributed implementation, as
matching, redirection and activation are all required to be performed in a synchronised
manner. In principle we want a distributed implementation to be able to work as follows.

Since both the function symbol at the root, and the stateholder symbol at its fixed
stateholder position represent mutable computational state, it would be hard in a general
computational framework, to avoid having to update them simultaneously if an overall
serial semantics is desired. So we allow an active function node to migrate to its single
stateholder argument (whose position is known statically, which thus enables the migra­
tion to be performed by autonomous hardware). Note that the suspension mechanism
alluded to above conceals this movement from other rewrites anyway. Once the active
function node was in the processor containing the stateholder, the other arguments, be­
ing constructors, could be copied asynchronously. Rule matching could then take place,
with the building of new nodes and redirection being done atomically. Finally activation
messages could be sent to any nodes requiring activation, wherever they may be.

Notifications would be performed by message passing, while constructor fetch messages
happening upon non-idle nodes would suspend, as in the a.tornic suspension mechanism.

362 Part Eight Specification and Design Distributed Systems

The above sounds innocuous enough, and it seems plausible that such a rewriting
mechanism ought to be equivalent to a serial model, but in fact there is still plenty of
scope for constructing non-serialisable shedules. Nevertheless, the counterexamples that
one can construct invariably seem rather pathological, and it turns out that one can recover
seria1isability under rather mild assumptions. We make three preliminary definitions.

Resuspending Rule. A normal rule for a function F is a resuspending rule for F and
S iff the rule explicitly matches S at its stateholder position, and the only RHS node is
another F, suspended once on the matched stateholder S. !:<or example:

F[a b:Cl c:S d:C2 e] => #F[a b ~c d e]

Refiring Rule. A default rule for a function F is a refiring rule iff the only RHS node
is another F, suspended on all the explicitly matched arguments, which are activated. For
example, for the same F as above:

Resuspending Property. Let R be a MONSTR system. Let D = (P, root, Red, Act)
be a rule of R. Let (pk, c) be an arc of the graph P of D. Suppose that if (pk, c) is
a notification arc and c is an idle stateholder, then u(p) is a function symbol, k is its
stateholder position, cis not the RHS of a redirection, and every rule for u(p) in R in
which the root matches u(c) is a resuspending rule for u(p) and u(c). If the preceding
holds for all such arcs in all rules of R; and if furthermore all redirections of stateholders
are to non-idle nodes, then R has the resuspending property.

Lemma. Let R be a MO.\JSTR system with the resuspending property and let H =
[H 0 , H 1 , .. .] be an execution of R according to either atomic or finegrained semantics.
Then in every graph Hi in H, every notification arc (pk, c) whose child cis an idle state­
holder, has a-(p) E F, k EState(u(p)), and all rules for a-(p) which match a-(c) in position
k are resuspending rules for a-(p) and u(c).

Strongly Resilient System. Let R be a MONSTR system. Then R is a strongly
resilient system if:

1. R has the resuspending property.
2. No ruleD= (P, root, Red, Acl) of R contains an idle function node in P-L.
3. Each default rule in R for every symbol F with Map(F) f 0 is a refiring rule.

Serialisability Theorem. Let R be a strongly resilient system and let H = [H0 , H 1 , . ..]

be an execution of R according to finegrained semantics. Then His serialisable; i.e. there
is an atomic execution g =[Go, G1 , ...] of R that corresponds to H in a natural way.

Of course the above is very vague; we have not said what we mean by "corresponds ...
in a natural way", any more than we have been precise in the definition of the finegrained
model. Here we merely say that all the "important" events in H can be identified in Q, so
that g can be said to "compute the same thing" as H. "Important" events include at least
all rewrites by nonresuspending norma1 rules. (These are the rules that cause changes in
the structure of the execution graph.) We do not have space to say more here; for further
details see Banach (1996c).

Runtime structure and synchronisation in concurrent 00 languages 363

In fact, by tinkering a little with the operational semantics of MONSTR, a stronger
version of the theorem can be shown, dispensing with the need for clauses 2 and 3 in
the definition of strongly resilient systems (see Banach 1996d). In any case idle func­
tions are rarely used in practice, except for translating case selections, whereupon the
subcomputations for each alternative can be created idle, awaiting activation when the
selector subcomputation completes. Such instances are easily judged to be safe, or one
can reprogram them to avoid the use of idle functions if necessary (see below).

Compositionality. The above gives us a notion of serialisability type for a strongly
resilient system R, being (Sus, Non Sus) where

Sus= {(F, S) I 'R has a resuspending normal rule for F and S}, and
NonSus = {(F,S) I 'R has a non-resuspending normal rule for F and S}

and where Sus n Non Sus = 0. Systems R 1 and 'R2 are serialisability compatible iff
(Sus 1 U NonSus 2) n (Sus 2 U NonSusJ) = 0, and the serialisability type of Rt U R2 is
((Sus1 U Sus2), (NonSus1 U NonSus2)).

Serialisability is vital for a distributed implementation of rewriting in a rewrite rule
based language, as it is almost impossible to design systems that are rule based imple­
mentations of the expected behaviour of anything at all, if one has to take into account
at every step all the potential finegrained executions, in case they throw up pathological
shedules. In some cases good behaviour is relatively evident when the data dependencies
in the system are clearly visible (as is usually the case for the case selections discussed
above), but in a dynamically evolving system, particularly one involving dynamic binding
which allows the system structure to evolve in unexpected ways, a solid serialisability
result is very reassuring, and frees the system designer from worrying about low level
finegrained implementation d~tail, while simultaneously freeing the architecture designer
from the prohibitive costs of excessive locking.

2.4 Acyclicity

In reasoning about data dependencies in a system, acyclicity is often a useful bonus, but it
is interesting that it is neither necessary nor sufficient for serialisability. All the phenomena
that render pathological counterexamples non-serialisable, can be realised within always
acyclic systems. (Nevertheless the correspondence between a finegrained execution and its
serialisation can in some cases be rendered more simply if the system is always acyclic.)

If a graph is acyclic, and we perform some redirections, then the result can contain a
cycle only if there is cycle of paths such that the head of each path is redirected to the
tail of the next (and cyclically). From this we can get the following.

Acyclicity Theorem. Suppose for a ruleD= (P, root, Red, Act), Pis acyclic, and for
each redirection (a, b) in Red, either (i), b is not inLand is not an ancestor of a; or (ii),
b is a descendant of a. Then the rule preserves acyclicity.

Corollary. Suppose for a rule D = (P, root, Red, Act), P is acyclic, and for each
redirection (a, b) in Red, b is not an ancestor of a. Suppose for the non-root redirection
(c,d), dis in L but is not a descendant of c. Suppose in the rewrite of a graph G, a is
matched to x and b to y. Suppose there is no path from y to x in G. Then the rewrite
preserves acyclicity.

Note that the theorem relies on static properties of rules and as such, systems consisting

364 Part Eight Specification and Design Distributed Systems

Cl assNam7

Channel_Empty

Cl assN/

Channe l jl

Class/____

Channel~) -

SendData [I

Ans

Figure 2 A collection of MONSTR objects.

purely of rules complying with its hypotheses guarantee acyclicity of all execution graphs,

and are composable with each other. The corollary however relies on properties of the

matchings that may arise during an execution, and these must be established by more

global analyses . So we do not get immediate composability in the latter case.

3 CONCURRENT 00 PROGRAMMING VIA MONSTR

We are proposing that MONSTR provides a good foundation for defining the behaviour of

concurrent object oriented systems. One can translate a high level 001 into MONSTR,

and then use the operational semantics of the resulting rule system to define the behaviour

of the 001. Different details in the translation yield different operational behaviours for

the rule system, hence a different operational definition for the 001. We claim that the

kinds of behaviour that one might reasonably want an 001 to display, can in fact be

captured fairly naturally in MONSTR systems. The general idea in this approach can be

seen in Figure 2.
The Figure illustrates four objects, two of which are instances of ClassName1 , and one of

ClassName2 and of ClassName3. The objects themselves consist of three pieces each. The

first , an object 's interface to the outside world, is its "self' channel node, bearing either

the Channel_Empty symbol, or in the state Channel[message_contents]. The second is

a function node with symbol usually named after the class , e.g. ClassName1. This function

controls overall activity in the object, and is the "owner" of the self channel node. The

third is the shaded blob, representing everything else about the object; e.g. instance

variables, partially completed subcomputations pertinent to the object, references to (the

self nodes of) other objects , etc. For example, the upper ClassName1 object has references

to ClassName2 and ClassName3, while the lower ClassName1 object has a reference to the

upper ClassName1 object only. The ClassName2 object has references to both ClassName1

objects. And the ClassName3 object refers to no other object.

Runtime structure and synchronisation in concurrent 00 languages 365

The key invariant is that for each object channel node, the owner is unique, being the
only node with a reference to the object's channel node that does not come from within
a shaded blob. Objects call upon each other to perform work by posting messages to
each others' channel nodes, and the processing of a message is a method invocation. For
example, the lower ClassName1 has been called on to abort, while ClassName2 has been
called on to read. ClassName3 has been called on to send data, and has provided a channel
labelled Ans in which to send the response.

The protocol observed at each self channel node, expressed by the rules for the various
symbols involved, can accurately describe the synchronisation properties of concurrent
method invocation in a parallel environment, via the rigorous atomic operational seman­
tics of MONSTR. The natural thing is that various objects having a reference to some
particular object, say Objl, are responsible for sending it messages via message send func­
tions. These successfully lodge the message in the self channel, but only if the channel was
empty. Likewise, the unique Objl owner is responsible for extracting and processing the
messages, but can only do so if it finds the channel not empty. Other possibilities exist, e.g.
modelling an explicit message queue, if required by the semantics of the high level OOL
under consideration. Other aspects of synchronisation within and between objects, can
also be accurately and unambiguously described by appropriate choice of MONSTR rules
as we shall see below. The suspension markings, for overtly programmed sequencing, and
the run-time suspension mechanism, both play a role in this. Finally, the serialisability
theorem reassures us that the primitives used in defining a concurrent OOL via MONSTR
are in sympathy with what a realistic implementation might hope to achieve, even if its
implementation philosophy is quite different from term graph rewriting.

From the point of view of providing a definition of some OOL, the very small LHSs
of MONSTR rules are sometimes an inconvenience. When there is good justification, it
is reasonable to relax these r~strictions, but when this is done, the justification should
always be presented, as a check that too much would not be demanded of an implementa­
tion. Thus deep LHSs, or ones involving more than one stateholder could be regarded as
acceptable, provided it was made clear what locality considerations justified the assump­
tion that such rules could be executed atomically; in particular how such rules would not
break the serialisability properties of the ruleset as a whole. We shall sometimes make use
of such devices below.

4 STRUCTURE AND SYNCHRONISATION VIA MONSTR

4.1 Message Sending

Let us look in detail at some rules that embody the general principles discussed above.
We start with the module for message sending. This consists of the rules:

Send[c:Channel_Empty message] => *DK , c:=*Channel[message]
Send[c:S[..] message]=> #Send[-c message]
Send[c message] => #Send[-*c message] ;

366 Part Eight Specification and Design Distributed Systems

where Sis any symbol in (V- {Channel_Empty}). In future we will abbreviate collections
of rules such as are represented by the middle line above by writing the obvious shorthand
form Send[c: (V - Channel_Empty) message] => ... A real implementation would ob­
viously include the ability to pattern match simple potentially infinite collections of rules
such as these by using negative matching tests. Note that the serialisability type of the
Send module is

({(Send, s) Is E (V- {Channel_Empty}) }, {(Send, Channel_Empty)}).

We can see that if message contains only nodes that cannot access the destination channel
node, e.g. it contains only simple method name constructors, having descendants which are
at worst some constructor parameters, or which contain in addition only response channels
created for the purpose by the sending object, then the rules above (and specifically the
first of them) preserve acyclicity. On the other hand, if references to objects are being
passed around, then the dynamic nature of typical 00 systems means that message may
contain as a parameter a reference to the destination channel c, and message arrival
would entail the creation of a cycle. This is not necessarily harmful in itself. An object 01
may pass around to other objects, various object references, including itself. This activity
causes no harm even if 01 does not know that it is referring to itself while doing this,
{perhaps having only an indirection to the location of the object it is passing around).

Posting methods to unknown object references is potentially more dangerous. Say 01
sends a method request to some other object 02, of which it knows nothing other than
(perhaps only the location of an indirection to) its location, (and thus which might un­
knowingly perhaps be 01 itself). If 01 does not need to wait for a response from 02, then
it is unlikely that problems will arise even if 01 = 02. However if 01 does need to wait for
a response, then some kind of deadlock might well occur if 01 = 02. This depends criti­
cally on the semantics of method processing in the 001 of interest. Typically, the instance
variables of 01 will be locked for the duration of method processing, to ensure a unique
serial semantics associating instance variable values with method requests processed; so
01 will refuse to service the message it sent itself and will deadlock. However if weaker
coherence between instance variable values and method requests received is acceptable,
then there may be a way in which the knot tied when 01 = 02 would not strangle the
computation. We will allude to this briefly below.

4.2 A Counter Object

Let us look at the rules for the inside of an object to illustrate some of these points. Below
are the MONSTR rules for a simple imperative counter object. They a.re numbered on
the right for ease of future reference.

NewCounter[init]
=> *self:Channel_Empty , *Counter[self init]

Counter[self:ChannelORead[ans_chan]] state]
=> *Counter[self state] , self:=•Channel_Empty

*Assign[ans_chan state] ;

[1]

[2)

Runtime structure and synchronisation in concurrent 00 languages

Counter[self:Channel[Inc[value ans_chan]] state]
=> #Counter[self "newstate:*ADD[value state]] ,

self:=*Channel_Empty , IAssign[ans_chan ·newstate]

Counter[self:Channel_Empty state]
=> ICounter["self state]

Counter[self state]
=> ICounter["*self state]

where

Assign[s:V t] => *OK , s:=*t ;
Assign[s t] => IAssign["*s t] ;

367

(3]

(4]

(5]

Rule [1] is the rule used to create a fresh counter object from within the code for some
other object OthO say. The object OthO creates an initial value init for the new counter
instance, and gives it as a parameter to a node •NewCounter[init] that it creates in the
RHS of some rule for the method it is currently evaluating. The rule for NewCounter is an
example of a rule which is a default rule for a function symbol F such that Map(F) = 0.
As such it is not forced by the serialisability theorem to be a refiring rule, the main reason
being that the function symbol NewCounter requires no pattern matching, and therefore
there are no potential race conditions to impede serialisability arising from the values of
parameters at different moments.

Such rules are useful as they add mobility to a system. In the default execution model
for MONSTR, stateholders are normally idle, and are referred to from many points in
the graph, being the seat of shared state. Therefore they are deemed immobile, and
moving them requires programmed higher level synchronisation in general. However active
functions, which in the general case must move to their stateholder argument anyway, and
are rendered unmatchable by other rewrites by virtue of being non-idle, are mobile. So a
NewCounter node being active, is able to relocate with ease, aiding load balancing, before
it becomes the self channel node of the new counter object. Note that references to
NewCounter can be passed around with impunity by the creating object OthO, as the
target of such references will be unobservable until the self channel is instantiated.

Rule [4] shows the object waiting for the arrival of a method call. It is a resuspension
rule for Counter and Channel_Empty and corresponds to the fact that Send can only
install a message if the channel is in the Channel_Empty state. So the synchronisation
works as expected, and the serialisability theorem assures us that there are no races in a
suitable distributed implementation.

The preceding two rules, [2] and [3], show some basic method call processing. Note
firstly that they feature deeper pattern matching than is permitted by restriction 4 for
MONSTR rules. This is a convenient shorthapd to increase readability, as hinted at above.
A system conforming more faithfully to the letter of the law would replace rules [2] and
[3] with:

Counter[self:ChannelOmess] state]
=> *Counter_Match[self mess state]

(m]

368 Part Eight Specification and Design Distributed Systems

Counter_Match[self:Channel[a] Read[ans_chan] state]
=> *Counter[self state], self:=*Channel_Empty,

*Assign[ans_chan state] ;

Counter_Match[self:Channel[a] Inc[value ans_chan] state]
=> #Counter[self -newstate:*ADD[value state]] ,

self:=*Channel_Empty, #Assign[ans_chan -newstate] ;

Counter_Match[self mess state]
=> ##Counter[-*self -*mess state]

[2']

(3']

(6]

That this works as required relies critically on the fact that each channel node has a unique
owner, this being the Counter or Counter_Match function node in this case. Because the
only other nodes allowed to rewrite a channel node are Send functions, and these must
wait when the channel is occupied, the owner is at liberty to break down the pattern
matching into several shallow phases without fearing any race conditions. Subsequently,
once the message in the channel has been decoded, the RHS of rules [2'] or [3'] represent
the computation of the method involved.

Let us look at [2']. In its RHS, the self channel is reset, and the owner rewrites to
a Counter function. These are done as part of the atomic action of rewriting. Also an
Assign function is created to asynchronously assign ans_chan to the current value of the
counter. That this can indeed be done asynchronously is a consequence of the fact that
each object's blob, which contains the value of its instance variables, has a unique parent,
the object's owner, and that when method processing completes, a new owner is created.
The new owner does not need to refer to the old values of the instance variables, so these
need never be redirected to any new values created by subsequent message processing.
Thus the asynchronous assignment is safe.

In fact the history of the instance variables through a computation may be represented
by a sequence of constructors if a clean single assignment discipline for creation of new
instance variable values is adhered to within method computations. (Such a discipline is
specified in UFO (Sargeant 1993); of course if a less clean story within method computa­
tions pertains, then stateholders may be required. This depends on the desired semantics
for method computations.)

For contrast let us see how a less asynchronous assignment discipline would work, in
which we forced the counter object to wait until the assignment completed successfully.
We would replace [2'] by

Counter_Match[self:Channel[a] Read[ans_chan] state]
=> #Counter_Inter[self -a state] , self:=*Channel_Empty ,

*a:Assign[ans_chan state]

Counter_Inter[self OK state]
=> *Counter[self state] ;

Counter_Inter[self a state]
=> #Counter_Inter[self -*a state]

[2'1

[ci]

(7]

Runtime structure and synchronisation in concurrent 00 languages 369

In this specification, we have again chosen to unlock the channel early, by having the
redirection self: =•Channel_Empty within rule (2"], rather than postponing it till rule
(ci), where it would be done at the same time that the owner rewrote to a Counter node.
The early method allows a little more concurrency, as a waiting Send could install the
next message before the Counter instantiated. (Of course no notice would be taken of
the new message until the Counter was ready to do so.) Finally, if we were certain that
locality considerations justified it, we could include the redirection of ans_chan to state
as a third redirection in rule [2] or its analogues, instead of using the Assign function,
though such an overreaching of the MONSTR restrictions would need a thorough case for
support.

Let us now look at rule (3'). The synchronisation discipline embodied within it is
again a fairly natural one. The channel is reset early as before, but the new Counter
function is now suspended waiting for the computation of the new state value (via the
ADD[value state]), to terminate. Assuming that ADD works directly on integer con­
structors and yields an integer constructor, is consistent with our remarks above, that
the sequence of instance variable values over time, can be consistently represented by a
sequence of constructors in the graph. Once more the assignment of the new value to the
response channel is done by an asynchronous Assign function which waits for the new
constructor to appear.

As previously, various other synchronisation disciplines can, be imagined. Noting that
MONSTR operational semantics specifies that a non-idle node cannot be pattern matched,
we can give a more eager definition of the increment method, replacing rule (3') by rule
[3"] below

Counter_Match[self Inc[value ans_chan] state]
=> *Counter[self nevstate:*ADD[value state]] ,

self:=•Channel_Empty, •Assign[ans_chan nevstate]

[3'1

In this version, computation proceeds before the new state value has been instantiated.
Unlike the programmed suspensions on newstate previously, we now pass round references
to the uninstantiated value, relying on the dynamic suspension mechanism for proper
synchronisation. By contrast a much more sequential definition can be described by

Counter_Match[self:Channel[a] Inc[value ans_chan] state]
=> #Counter_Inter[self -a nevstate:•ADD[value state]] ,

self:=•Channel_Empty, a:#Assign[ans_chan -nevstate] ;

[3"')

This version which uses the same Counter_Inter function as before, demands that the
new value be computed first, then that the assignment complete successfully, and only
then that the owner rewrites to a new Counter function. Meanwhile the self channel is
reset early as before. The reader will agree that with a slightly different Counter_Inter
function, the Assign and Counter_Inter rewrites could be permitted to proceed con­
currently if both were suspended on the outcome of the ADD. And various alternative
possibilities exist for resetting the self channel if required.

We observe that for all of these cases, the serialisability types of the various Counter
and Counter _Match functions are

370 Part Eight Specification and Design Distributed Systems

({(Counter(_Match), Channel_Empty)},
{(Counter(_Match), Read), (Counter(_Match), Inc)})

which are serialisability compatible with the Send module, as we would wish. Note finally
that as with most well typed MONSTR systems, the default rules demanded as a fail safe
measure in the syntactic definition of MONSTR are in fact never used.

4.3 Less Coherent Semantics for an LBound Object

All the above variations maintained the invariant that there was a precise 1-1 correspon­
dence between instance values and the sequence of method calls that. produced them,
even if sometimes the values could be passed around before they were fully instantiated.
Suppose by contrast that an application required a lower bound object for some quantity
where there would be a system bottleneck if the object always had to wait for the next
value to be computed. For instance a parallel alpha-beta search might make use of such
an object to provide a safe if suboptimal bound for tree pruning. Rules for such an object
(using deep pattern matching for brevity) might appear as follows.

NewLBound[init]
=> •self:Channel_Empty , •LBound[self CurrVal[init]]

LBound[self:Channel[Read[ans_chan]] state]
=> •LBound[self state] , self:=*Channel_Empty ,

#Assign[ans_chan "*Deref[state]] ;

LBound[self:Channel[Upd[value ans_chan]] state]
=> •LBound[self state] , self:=*Channel_Empty ,

#IF2.1["#GT[value ·a:*Deref[state]] thenl then2 elsel] ,
thenl:Assign[state CurrVal[value]] ,
then2:Assign[ans_chan value] ,
elsel:Assign[ans_chan a] ;

LBound[self:Channel_Empty state]
=> #LBound["self state]

LBound[self state]
=> #LBound["*self state]

where

Deref[CurrVal[x]] => •x
Deref[x] => #Deref["*x]

IF2.1[True thenl then2 elsel] => *OK , *thenl , *then2 ;
IF2.1[False thenl then2 elsel] =>*OK , •elsel
IF2.1[x thenl then2 elsel] => #IF2.1["•x thenl then2 elsel]

[8]

[9]

[10]

[11]

[12]

Now the state value has to be enclosed in a stateholder CurrVal as a call of the Upd
method will lead to its typically being updated after the method call has relinquished

Runtime structure and synchronisation in concurrent 00 languages 371

control. In general the method processing of several Upd calls may be in progress at once,
and they are not guaranteed to be inspecting the most up to date lower bound available
by any means. So now there is a many-1 map between the sequence of calls arriving at the
self channel of the object and the sequence of values of instance variables in the object,
(as observed by the calls).

Note further the idle function nodes then1, then2, else1, in the RHS of the Upd method
rule. On the face of it they break the serialisability theorem, but as discussed in section 2,
they are being used to implement case analysis, and it is not too hard to argue that the
computation specified by the rule is serialisable. We argue thus. By inspection of the RHS
of rule (10], the only parent of the idle functions is the IF2 .1, node whose first argument
determines which of them receives an activation. Since no other node can access the idle
functions, no race conditions can arise from any delay consequent upon not performing
the activations atomically.

Finally we note that if an LBound object were (rather bizarrely) to send itself an Upd
method call from within (a suitably enhanced specification of) an Upd call, it would not
deadlock, because of the non-serial semantics of instance variable update. The same cannot
be said for any version of the Counter object with a souped up Inc method, because
the serial instance variable update discipline used in the Counter definitely would cause
deadlock.

5 CONCLUSIONS

In this paper we have made use of an intermediate formalism to study the semantics
of concurrent 00 languages (COOLs). In particular, we developed a simple but useful
abstni.ct'ion of what constitures an object and we showed how this can be mapped onto
the MONSTR computational model. We then discussed a number of issues pertaining to
synchronisation of concurrent method invocations between and within an object by lifting
the relevant discussion from the level of a COOL to that of a set of MONSTR rewrite rules.
This generalises our initial work (Banach and Papadopoulos 1995b), where we focused
on the object oriented functional language UFO (Sargeant 1993). It is important to note
that our simple object abstraction renders the current work independent of any particular
COOL. This means that MONSTR provides good neutral ground for comparing different
synchronisation semantics for COOLs, whether existing or proposed. Therefore, during
the process of designing a new COOL, whether it is an extension of some existing base
language or a brand new one, the language designer can use the proposed framework to
study cheaply, various aspects of the language's semantics (Nierstrasz and Papathomas
1990, Papathomas 1989). Other uses of this framework are also possible. For instance,
one could use MONSTR as a means of comparing similar features offered by different
languages, and could thus study issues related to expressiveness or interaction of these
features.

Moreover, not only can our work serve as a specification of language features, (and an
executable one at that via an implementation of MONSTR); but it can be used as an
implementation framework for COOLs by developing fully fledged language translators
to MONSTR, where emphasis is on optimising the run-time activities of the generated
graph rewrite rule sets. This is a traditional and extensively tested approach, having been
used for a variety of language formalisms (Banach and Papadopoulos 1993, 1995a). A full

372 Part Eight Specification and Design Distributed Systems

translation gives the added benefit of allowing rigorous reasoning about all aspects of a
language; e.g. the way Banach et al. (1995) gives an alternative perspective on process
calculi. And there is no reason why we could not apply the principles of our approach
to other similar families of languages such as the concurrent constraint ones (Henz et al.
1994).

REFERENCES

Banach R. {1993), MONSTR: Term Graph Rewriting for Parallel Machines, in Term
Graph Rewriting: Theory and Practice, Sleep eta! (eds.), Wiley, pp. 243-252.

Banach R. {1996a), MONSTR I - Fundamental Issues and the Design of MONSTR,
Journal of Universal Computer Science, to appear.

Banach R. {1996b), MONSTR II- Suspending MONSTR Semantics and Independence,
submitted to Journal of Universal Computer Science.

Banach R. {1996c), MONSTR III- Finegrained Semantics and Serialisability, in prepa­
ration.

Banach R. {1996d), MONSTR IV- Coercing Semantics and Serialisability for Resilient
Systems, in preparation.

Banach R., Balazs J., Papadopoulos G. A. (1995), A Translation of the Pi-Calculus into
MONSTR, Journal of Universal Computer Science, 1 (6), 335-394.

Banach R., Papadopoulos G. A. {1993), Parallel Term Graph Rewriting and Concurrent
Logic Programs, Proc. WPDP '93, Sofia, Bulgaria, May 4-7, 303-322.

Banach R., Papadopoulos G. A. {1995a), Linear Behaviour of Term Graph Rewriting
Programs, Proc. ACM SAC '95, Nashville TN., USA, Feb. 26-28, ACM Press, 157-163.

Banach R., Papadopoulos G. A. (1995b), Term Graph Rewriting as a Specification and
Implementation Framework for Concurrent Object Oriented Programming Languages,
Proc. MPPM '95, Berlin, Germany, Oct. 9-12, IEEE Press, 151-158.

Henz M.,Smolka G., Wurtz J. (1994), Object-Oriented Concurrent Constraint Program­
ming in Oz, Proc. PPCP, MIT Press, Cambridge MA., 27-48.

Nierstrasz 0., Papathomas M. (1990), Viewing Objects as Patterns of Communicating
Agents, Proc. OOPSLA/ECOOP '90, ACM Press, Ottawa, Canada, Oct. 21-25, 38--43.

Papathomas M. (1989), Concurrency Issues in Object-Oriented Languages, in Object Ori­
ented Development, ed. D. Tsichritzis, Centre Universitaire d' lnformatique, University
of Geneva, 207-245.

Sargeant J. {1993), Uniting Functional and Object-Oriented Programming, Proc. 1st
JSST, Kanazawa, Japan, Nov. 4-6, LNCS 742, Springer Verlag, 1-26.

Sleep M. R., Plasmeijer M. J., van Eekelen M. C. J.D. eds. {1993), Term Graph Rewriting:
Theory and Practice, John Wiley, New York.

Watson 1., Woods V., Watson P., Banach R., Greenberg M., Sargeant J. {1988), Flagship:
A Parallel Architecture for Declarative Programming, Proc. 15th /SCA, Hawaii, May
30-June 2, 124-130.

