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Abstract 
The extended term graph rewriting formalism of MONSTR is described, together with 
some of its more important rigorously established properties, particularly regarding se­
rialisability and acyclicit.y. This basis is used for giving a convenient description of the 
global runtime structure of a concurrent object oriented language. The formalism proves 
especially convenient for describing very precisely a variety of intended synchronisation 
properties of objects in a concurrent OOL, and this flexibility is illustrated by considering 
a variety of possible operational semantics for a simple counter object. A lower bound 
object example illustrates that even more extreme synchronisation properties for objects 
may be contemplated without stretching the capabilities of the MONSTR formalism. The 
presentation is independent of any specific high level OOL. 
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1 INTRODUCTION 

Recently a number of proposals have been put forward with the aim of combining concur­
rency and object-orientation. They differ in many aspects regarding the way they handle 
the issues pertaining to this combination, such as degree of concurrency allowed not only 
between objects but also within an object (and how the internal state of the latter can be 
protected), synchronisation mechanisms e.g. locks, wait. queues, synchronisation counters 
or activation conditions, process structures, and implementation techniques for objects, 
etc. In Papa thomas ( 1990) six different categories of 00 languages are identified. It has 
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also been argued {Nierstrasz and Pa.pathomas 1990) that there is a need to develop seman­
tic frameworks for reasoning about the way various features of concurrent 00 languages 
operate, and to provide a common point of reference in comparing various such languages. 

In the current work we exploit the generalised computational model of Term Graph 
Rewriting {Sleep et a!. 1993) and iu particular the MONSTR model and associated com­
piler target language (Banach 1993, 1996a-d), to develop an abstract formal framework 
for reasoning about some of the above mentioned issues. We pay particular attention 
to the way the global runtime structures are set up and to how various synchronisation 
properties of objects can be supported. 

The rest of the paper is organised as follows. The next section introduces MONSTR, 
paying particular attention to properties of particular interest in the present context: 
atomicity of rewrites, serialisability and acyclicity. The next section provides a simple but 
useful abstract representation of what constitutes an object. The next section comprises 
the main part of the paper and discusses the way inter- and intra-object interaction takes 
place by examining a variety of possible concurrent semantics for a specific example, 
a counter object and a mild generalisation of it, a lower bound object. Note that the 
presentation is independent of any specific high level 001. The paper ends with some 
concluding remarks. 

2 MONSTR 

One of the main advantages in using a rule based rewriting model of computation for 
specifying properties of systems is that one important issue, namely the atomicity of 
primitive actions, is made precise automatically; i.e. each rule must execute as an atomic 
action. When this approach is used for distributed systems, sufficient thought must go 
into the design of the permitted rules, in order that the synchronisation capabilities of 
a distributed system are not unduly taxed. MONSTR is a rule based language that was 
designed with distributed systems in mind and in fact it has been implemented on at least 
one such architecture (Watson et al. 1988). 

2.1 MONSTR Rewrites 

The fundamental objects of MONSTR are term graphs. A term graph, is a directed graph 
where the nodes are labelled with symbols, assumed of fixed arity, and each node has a 
sequence of out-arcs to its child nodes. The nodes and arcs of term graphs are marked 
to control rewriting strategy as we will see below. The term graph that represents the 
instantaneous state of the computation is modified by the application of some rule. Let 
us look at a rule in action, to see what happens during a rewrite. 

F[Cons[a b] s:Var] => #G[a -*b], s:=*SUCCEED; 

First the LHS (the part before =>) is matched. F is the root node and has two children, the 
Cons node, and the Var node. The Cons node has two unlabelled children; such undefined 
nodes may match anything. Note that the pattern is shallow; this is fundamental to 
MONSTR as large patterns demand large scale locking to ensure atomicity. 
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Figure 1 A MONSTR rewrite. 

Once a match is located, which must be at an active (*-marked) node of the graph, 
the nodes on the RHS are built into the redex area. Thus a once-suspended (#-marked) G 
node is constructed, with arcs to the existing LHS nodes referred to by a and b (so these 
nodes become shared even if they weren't previously). Also the arc to b is a notification 
arc (--marked). The other new node is the active SUCCEED node. 

The notation => indicates that the root is to be redirected to the node immediately 
following the => i.e. G. Also the Var node is to be redirected to SUCCEED by the notation 
s: =SUCCEED. During redirection, all in-arcs to the respective redirection subjects (i.e. F and 
Var) are replaced by in-arcs to the respective targets (i.e. G and SUCCEED). Redirection is 
the fundamental notion of update in term graph rewriting, being a graph-oriented version 
of substitution. 

The final tasks of a MONSTR rewrite are to make the root inactive (idle); and to acti­
vate specified LHS nodes (which causes them to be marked active if otherwise unmarked). 
In the concrete syntax, this is accomplished by mentioning the relevant nodes on the RHS 
of the rule, with a * marking e.g. b above. We illustrate the action of the rule described 
above in Figure 1. 

In the Figure, note how the in-arcs ofF now point toG after redirection, and those of Var 
point to SUCCEED. We are assuming in the rewrite illustrated, that the LHS nodes F and 
Cons, had no further in-arcs, and thus became inaccessible and were garbage collected. 

The above assumed that there was a rule which matched. If not then notification occurs. 
This is an alternative atomic action to rewriting, in which the root becomes idle, and for all 
its all its- -marked in-arcs (notification arcs), the " marking is removed, and the number 
of suspensions (#'s) in the parent node's marking is decremented (with #0 = *). In this 
manner subcomputations can signal their completion to their parents. 

2.2 MONSTR Syntactic Restrictions 

To make the above a computational model suited to distributed machines, a number of 
restrictions are imposed on the syntactic structure of systems so that some useful runtime 
properties hold. We paraphrase from Banach (1996a), where there is a thorough study of 
why these are appropriate. 

Alphabets and Symbols. The alphabet of symbols S, is the disjoint union of three 
subalphabets S = F ltJ C ltJ V where: F is the alphabet of function symbols which may 
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label the root of the LHS L of a rule, but not any subroot node of L, and which may 
be the LHS of a redirection. C is the alphabet of constructor symbols which may label 
a subroot node of the LHS of a rule, but not the root, and which may not be the LHS 
of a redirection. V is the alphabet of stateholders, or variables. A stateholder symbol 
may label a subroot node of the LHS of a rule, but not the root. Stateholders may label 
the LHS of a redirection. Each S E S has a (fixed) arity A(S). For each F E F, there 
are subsets State(F) <;;:Map( F)<;;: A(F), with State(F) either a singleton or empty. Root 
E C. 

In the formal model, for a node x in a graph, we write a( x) for its symbol, a( x) for its 
sequence of child nodes, with a(x)[k] its k'th child, J.l(.r) for its marking, and v(x)[k] for 
the marking on its k'th out-arc. Also rules are of two kinds: those which pattern match 
(normal rules); and those which do not. (default rules). Every function symbol must have 
at least one default rule. In the definition of a rule, implicit nodes are the ones that may 
match anything; others are called explicit. 

Rules. Let D == ( P, root, Red, Act) be a rule, with root the root of the LHS L, P a graph 
which is the union of the LHS and RHS of the rule, (with all implicit nodes accessible 
from root), redirections Red, (where the LHS of each redirection is an explicit node of L, 
and where each node of L is the LHS of at most one redirection), and activations Act. 
Then 

1. Each node of P has the arity dictated by its symbol, i.e. for all x E P, A(x) = A(a(x )). 
2. Each normal rule for a symbol matches the same set of arguments of the root, i.e. if 

a(root) == F, and Dis a normal rule then a(root)[k] is explicit¢} k E Map( F). 
3. A rule for a function may match at most one stateholder*, and then only in a fixed 

position; all other explicit arguments must be constructors, i.e. if a( root)= F, and D 
is a normal rule then a(a(root)[k]) E V =? k E St.ate(F). 

4. All grandchildren of the root are implicit, i.e. for all k E A( a( root)), and j E A( a( a( root)[ k])), 
a(a(root)[k])[j] is implicit. 

5. Implicit nodes of the LHS have only one parent in the LHS (left linearity), i.e. if yEP 
is implicit, there is precisely one x E L such that for some k E A(x),y = a(x)[k]. 

6. Every x E Pis balanced, i.e. 11-(x) = #n (for n 2: 1) ¢} !{k I v(x)[k] = '}! = n. 
7. Every arc (Pk, c) of Pis either state saturated or activated, i.e. v(p)[k] =' and 11-(c) = 

E =? a( c) E V or c E Act. 
8. The root is always redirected, i.e. for some bE P, (root, b) E Red. 
9. No arc can lose state saturatedness through redirection, i.e. (a, b) E Red and J.l(b) = 

c; =? a(b) E V or bE Act. 
10. A node which is the LIIS but not the RHS of a redirection should be garbaged by a 

rewrite whenever possible, i.e. (b, c) E Red and b E Act =? there is a b i' a E L such 
that (a, b) E Red. 

Desirable Properties of Rewriting. By convention rewriting always starts with a 
single active node labelled Initial. When a.ll rules used conform to the restrictions given 
above, induction over executions yields many desirable properties. N a.mely: 

*This explains the MONSTR acronym. It stands for: a Maximum of One Non-root STateholder per 
Rewrite 
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• All execution graph nodes respect the arities of their symbols. 
• The pattern matching requirements of each redex, depend solely on the symbol at the 

root (and so can be delegated to simple hardware). 
• No pointer equivalence is required for matching any redex node, that is not evident 

from Map(O"(root)), (ditto). 
• All execution graphs are balanced and state saturated. 
• The overwriting lemma (Banach 1996a, Le.mma 5.10), applies to most redirections, in 

practice enabling the convenient representation of rewriting by packet store manipula­
tions, (and particularly the representation of redirection by packet overwriting). 

To ensure that rewriting conforms to the exigencies of MO.'\TSTR garbage collection, an 
issue we will not discuss further here, and for the operational convenience of distributed 
hardware, we must restrict rewrites only to redexes where the explicitly matched children 
of the root are idle, i.e. JL(a(t)[k]) =E. If not, a suspension takes place, where the root 
of the rewrite becomes suspended on the non-idle matched children, waiting for them to 
notify. This is described in Banach ( 1996b ). The next definition states the circumstances 
under which each kind of atomic action is performed. 

Execution Steps. Let G be a graph and t an active node of G, at which we wish to 
perform a step. The kind of step to be performed is determined as follows. 

IfO"(t)ECUV 
Then Perform a notification at t 
Else If For all k EMap(O"(t)), fl.(a(t)[k]) = E (and JJ(t)[k] =E) 

Then Perform a rewrite using a rule chosen nondeterministically from Sel, 
where Sel is the set of normal rules that match at t if there are any, 
otherwise any default rule for the root symbol. 

Else Perform a suspension at t 

2.3 Serialisability 

The above described the atomic semantics of MONSTR. Though LHSs of rules are small, 
there is still quite a potential demand for locking in a distributed implementation, as 
matching, redirection and activation are all required to be performed in a synchronised 
manner. In principle we want a distributed implementation to be able to work as follows. 

Since both the function symbol at the root, and the stateholder symbol at its fixed 
stateholder position represent mutable computational state, it would be hard in a general 
computational framework, to avoid having to update them simultaneously if an overall 
serial semantics is desired. So we allow an active function node to migrate to its single 
stateholder argument (whose position is known statically, which thus enables the migra­
tion to be performed by autonomous hardware). Note that the suspension mechanism 
alluded to above conceals this movement from other rewrites anyway. Once the active 
function node was in the processor containing the stateholder, the other arguments, be­
ing constructors, could be copied asynchronously. Rule matching could then take place, 
with the building of new nodes and redirection being done atomically. Finally activation 
messages could be sent to any nodes requiring activation, wherever they may be. 

Notifications would be performed by message passing, while constructor fetch messages 
happening upon non-idle nodes would suspend, as in the a.tornic suspension mechanism. 
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The above sounds innocuous enough, and it seems plausible that such a rewriting 
mechanism ought to be equivalent to a serial model, but in fact there is still plenty of 
scope for constructing non-serialisable shedules. Nevertheless, the counterexamples that 
one can construct invariably seem rather pathological, and it turns out that one can recover 
seria1isability under rather mild assumptions. We make three preliminary definitions. 

Resuspending Rule. A normal rule for a function F is a resuspending rule for F and 
S iff the rule explicitly matches S at its stateholder position, and the only RHS node is 
another F, suspended once on the matched stateholder S. !:<or example: 

F[ a b:Cl c:S d:C2 e] => #F[ a b ~c d e] 

Refiring Rule. A default rule for a function F is a refiring rule iff the only RHS node 
is another F, suspended on all the explicitly matched arguments, which are activated. For 
example, for the same F as above: 

Resuspending Property. Let R be a MONSTR system. Let D = (P, root, Red, Act) 
be a rule of R. Let (pk, c) be an arc of the graph P of D. Suppose that if (pk, c) is 
a notification arc and c is an idle stateholder, then u(p) is a function symbol, k is its 
stateholder position, cis not the RHS of a redirection, and every rule for u(p) in R in 
which the root matches u(c) is a resuspending rule for u(p) and u(c). If the preceding 
holds for all such arcs in all rules of R; and if furthermore all redirections of stateholders 
are to non-idle nodes, then R has the resuspending property. 

Lemma. Let R be a MO.\JSTR system with the resuspending property and let H = 
[H 0 , H 1 , .. . ] be an execution of R according to either atomic or finegrained semantics. 
Then in every graph Hi in H, every notification arc (pk, c) whose child cis an idle state­
holder, has a-(p) E F, k EState(u(p)), and all rules for a-(p) which match a-( c) in position 
k are resuspending rules for a-(p) and u(c). 

Strongly Resilient System. Let R be a MONSTR system. Then R is a strongly 
resilient system if: 

1. R has the resuspending property. 
2. No ruleD= (P, root, Red, Acl) of R contains an idle function node in P-L. 
3. Each default rule in R for every symbol F with Map( F) f 0 is a refiring rule. 

Serialisability Theorem. Let R be a strongly resilient system and let H = [ H0 , H 1 , . .. ] 

be an execution of R according to finegrained semantics. Then His serialisable; i.e. there 
is an atomic execution g =[Go, G1 , ... ] of R that corresponds to H in a natural way. 

Of course the above is very vague; we have not said what we mean by "corresponds ... 
in a natural way", any more than we have been precise in the definition of the finegrained 
model. Here we merely say that all the "important" events in H can be identified in Q, so 
that g can be said to "compute the same thing" as H. "Important" events include at least 
all rewrites by nonresuspending norma1 rules. (These are the rules that cause changes in 
the structure of the execution graph.) We do not have space to say more here; for further 
details see Banach (1996c). 
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In fact, by tinkering a little with the operational semantics of MONSTR, a stronger 
version of the theorem can be shown, dispensing with the need for clauses 2 and 3 in 
the definition of strongly resilient systems (see Banach 1996d). In any case idle func­
tions are rarely used in practice, except for translating case selections, whereupon the 
subcomputations for each alternative can be created idle, awaiting activation when the 
selector subcomputation completes. Such instances are easily judged to be safe, or one 
can reprogram them to avoid the use of idle functions if necessary (see below). 

Compositionality. The above gives us a notion of serialisability type for a strongly 
resilient system R, being (Sus, Non Sus) where 

Sus= {(F, S) I 'R has a resuspending normal rule for F and S}, and 
NonSus = {(F,S) I 'R has a non-resuspending normal rule for F and S} 

and where Sus n Non Sus = 0. Systems R 1 and 'R2 are serialisability compatible iff 
(Sus 1 U NonSus 2 ) n (Sus 2 U NonSusJ) = 0, and the serialisability type of Rt U R2 is 
((Sus1 U Sus2 ), (NonSus1 U NonSus2)). 

Serialisability is vital for a distributed implementation of rewriting in a rewrite rule 
based language, as it is almost impossible to design systems that are rule based imple­
mentations of the expected behaviour of anything at all, if one has to take into account 
at every step all the potential finegrained executions, in case they throw up pathological 
shedules. In some cases good behaviour is relatively evident when the data dependencies 
in the system are clearly visible (as is usually the case for the case selections discussed 
above), but in a dynamically evolving system, particularly one involving dynamic binding 
which allows the system structure to evolve in unexpected ways, a solid serialisability 
result is very reassuring, and frees the system designer from worrying about low level 
finegrained implementation d~tail, while simultaneously freeing the architecture designer 
from the prohibitive costs of excessive locking. 

2.4 Acyclicity 

In reasoning about data dependencies in a system, acyclicity is often a useful bonus, but it 
is interesting that it is neither necessary nor sufficient for serialisability. All the phenomena 
that render pathological counterexamples non-serialisable, can be realised within always 
acyclic systems. (Nevertheless the correspondence between a finegrained execution and its 
serialisation can in some cases be rendered more simply if the system is always acyclic.) 

If a graph is acyclic, and we perform some redirections, then the result can contain a 
cycle only if there is cycle of paths such that the head of each path is redirected to the 
tail of the next (and cyclically). From this we can get the following. 

Acyclicity Theorem. Suppose for a ruleD= (P, root, Red, Act), Pis acyclic, and for 
each redirection (a, b) in Red, either (i), b is not inLand is not an ancestor of a; or (ii), 
b is a descendant of a. Then the rule preserves acyclicity. 

Corollary. Suppose for a rule D = (P, root, Red, Act), P is acyclic, and for each 
redirection (a, b) in Red, b is not an ancestor of a. Suppose for the non-root redirection 
(c,d), dis in L but is not a descendant of c. Suppose in the rewrite of a graph G, a is 
matched to x and b to y. Suppose there is no path from y to x in G. Then the rewrite 
preserves acyclicity. 

Note that the theorem relies on static properties of rules and as such, systems consisting 
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Figure 2 A collection of MONSTR objects. 

purely of rules complying with its hypotheses guarantee acyclicity of all execution graphs, 

and are composable with each other. The corollary however relies on properties of the 

matchings that may arise during an execution, and these must be established by more 

global analyses . So we do not get immediate composability in the latter case. 

3 CONCURRENT 00 PROGRAMMING VIA MONSTR 

We are proposing that MONSTR provides a good foundation for defining the behaviour of 

concurrent object oriented systems. One can translate a high level 001 into MONSTR, 

and then use the operational semantics of the resulting rule system to define the behaviour 

of the 001. Different details in the translation yield different operational behaviours for 

the rule system, hence a different operational definition for the 001. We claim that the 

kinds of behaviour that one might reasonably want an 001 to display, can in fact be 

captured fairly naturally in MONSTR systems. The general idea in this approach can be 

seen in Figure 2. 
The Figure illustrates four objects, two of which are instances of ClassName1 , and one of 

ClassName2 and of ClassName3. The objects themselves consist of three pieces each. The 

first , an object 's interface to the outside world, is its "self' channel node, bearing either 

the Channel_Empty symbol, or in the state Channel[message_contents]. The second is 

a function node with symbol usually named after the class , e.g. ClassName1. This function 

controls overall activity in the object, and is the "owner" of the self channel node. The 

third is the shaded blob, representing everything else about the object; e.g. instance 

variables, partially completed subcomputations pertinent to the object, references to (the 

self nodes of) other objects , etc. For example, the upper ClassName1 object has references 

to ClassName2 and ClassName3, while the lower ClassName1 object has a reference to the 

upper ClassName1 object only. The ClassName2 object has references to both ClassName1 

objects. And the ClassName3 object refers to no other object. 
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The key invariant is that for each object channel node, the owner is unique, being the 
only node with a reference to the object's channel node that does not come from within 
a shaded blob. Objects call upon each other to perform work by posting messages to 
each others' channel nodes, and the processing of a message is a method invocation. For 
example, the lower ClassName1 has been called on to abort, while ClassName2 has been 
called on to read. ClassName3 has been called on to send data, and has provided a channel 
labelled Ans in which to send the response. 

The protocol observed at each self channel node, expressed by the rules for the various 
symbols involved, can accurately describe the synchronisation properties of concurrent 
method invocation in a parallel environment, via the rigorous atomic operational seman­
tics of MONSTR. The natural thing is that various objects having a reference to some 
particular object, say Objl, are responsible for sending it messages via message send func­
tions. These successfully lodge the message in the self channel, but only if the channel was 
empty. Likewise, the unique Objl owner is responsible for extracting and processing the 
messages, but can only do so if it finds the channel not empty. Other possibilities exist, e.g. 
modelling an explicit message queue, if required by the semantics of the high level OOL 
under consideration. Other aspects of synchronisation within and between objects, can 
also be accurately and unambiguously described by appropriate choice of MONSTR rules 
as we shall see below. The suspension markings, for overtly programmed sequencing, and 
the run-time suspension mechanism, both play a role in this. Finally, the serialisability 
theorem reassures us that the primitives used in defining a concurrent OOL via MONSTR 
are in sympathy with what a realistic implementation might hope to achieve, even if its 
implementation philosophy is quite different from term graph rewriting. 

From the point of view of providing a definition of some OOL, the very small LHSs 
of MONSTR rules are sometimes an inconvenience. When there is good justification, it 
is reasonable to relax these r~strictions, but when this is done, the justification should 
always be presented, as a check that too much would not be demanded of an implementa­
tion. Thus deep LHSs, or ones involving more than one stateholder could be regarded as 
acceptable, provided it was made clear what locality considerations justified the assump­
tion that such rules could be executed atomically; in particular how such rules would not 
break the serialisability properties of the ruleset as a whole. We shall sometimes make use 
of such devices below. 

4 STRUCTURE AND SYNCHRONISATION VIA MONSTR 

4.1 Message Sending 

Let us look in detail at some rules that embody the general principles discussed above. 
We start with the module for message sending. This consists of the rules: 

Send[c:Channel_Empty message] => *DK , c:=*Channel[message] 
Send[c:S[ .. ] message]=> #Send[-c message] 
Send[c message] => #Send[-*c message] ; 
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where Sis any symbol in (V- {Channel_Empty} ). In future we will abbreviate collections 
of rules such as are represented by the middle line above by writing the obvious shorthand 
form Send[c: (V - Channel_Empty) message] => ... A real implementation would ob­
viously include the ability to pattern match simple potentially infinite collections of rules 
such as these by using negative matching tests. Note that the serialisability type of the 
Send module is 

({(Send, s) Is E (V- {Channel_Empty}) }, {(Send, Channel_Empty)}). 

We can see that if message contains only nodes that cannot access the destination channel 
node, e.g. it contains only simple method name constructors, having descendants which are 
at worst some constructor parameters, or which contain in addition only response channels 
created for the purpose by the sending object, then the rules above (and specifically the 
first of them) preserve acyclicity. On the other hand, if references to objects are being 
passed around, then the dynamic nature of typical 00 systems means that message may 
contain as a parameter a reference to the destination channel c, and message arrival 
would entail the creation of a cycle. This is not necessarily harmful in itself. An object 01 
may pass around to other objects, various object references, including itself. This activity 
causes no harm even if 01 does not know that it is referring to itself while doing this, 
{perhaps having only an indirection to the location of the object it is passing around). 

Posting methods to unknown object references is potentially more dangerous. Say 01 
sends a method request to some other object 02, of which it knows nothing other than 
(perhaps only the location of an indirection to) its location, (and thus which might un­
knowingly perhaps be 01 itself). If 01 does not need to wait for a response from 02, then 
it is unlikely that problems will arise even if 01 = 02. However if 01 does need to wait for 
a response, then some kind of deadlock might well occur if 01 = 02. This depends criti­
cally on the semantics of method processing in the 001 of interest. Typically, the instance 
variables of 01 will be locked for the duration of method processing, to ensure a unique 
serial semantics associating instance variable values with method requests processed; so 
01 will refuse to service the message it sent itself and will deadlock. However if weaker 
coherence between instance variable values and method requests received is acceptable, 
then there may be a way in which the knot tied when 01 = 02 would not strangle the 
computation. We will allude to this briefly below. 

4.2 A Counter Object 

Let us look at the rules for the inside of an object to illustrate some of these points. Below 
are the MONSTR rules for a simple imperative counter object. They a.re numbered on 
the right for ease of future reference. 

NewCounter[init] 
=> *self:Channel_Empty , *Counter[self init] 

Counter[self:ChannelORead[ans_chan]] state] 
=> *Counter[self state] , self:=•Channel_Empty 

*Assign[ans_chan state] ; 

[1] 

[2) 
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Counter[self:Channel[Inc[value ans_chan]] state] 
=> #Counter[self "newstate:*ADD[value state]] , 

self:=*Channel_Empty , IAssign[ans_chan ·newstate] 

Counter[self:Channel_Empty state] 
=> ICounter["self state] 

Counter[self state] 
=> ICounter["*self state] 

where 

Assign[s:V t] => *OK , s:=*t ; 
Assign[s t] => IAssign["*s t] ; 

367 

(3] 

(4] 

(5] 

Rule [1] is the rule used to create a fresh counter object from within the code for some 
other object OthO say. The object OthO creates an initial value init for the new counter 
instance, and gives it as a parameter to a node •NewCounter[init] that it creates in the 
RHS of some rule for the method it is currently evaluating. The rule for NewCounter is an 
example of a rule which is a default rule for a function symbol F such that Map( F) = 0. 
As such it is not forced by the serialisability theorem to be a refiring rule, the main reason 
being that the function symbol NewCounter requires no pattern matching, and therefore 
there are no potential race conditions to impede serialisability arising from the values of 
parameters at different moments. 

Such rules are useful as they add mobility to a system. In the default execution model 
for MONSTR, stateholders are normally idle, and are referred to from many points in 
the graph, being the seat of shared state. Therefore they are deemed immobile, and 
moving them requires programmed higher level synchronisation in general. However active 
functions, which in the general case must move to their stateholder argument anyway, and 
are rendered unmatchable by other rewrites by virtue of being non-idle, are mobile. So a 
NewCounter node being active, is able to relocate with ease, aiding load balancing, before 
it becomes the self channel node of the new counter object. Note that references to 
NewCounter can be passed around with impunity by the creating object OthO, as the 
target of such references will be unobservable until the self channel is instantiated. 

Rule [4] shows the object waiting for the arrival of a method call. It is a resuspension 
rule for Counter and Channel_Empty and corresponds to the fact that Send can only 
install a message if the channel is in the Channel_Empty state. So the synchronisation 
works as expected, and the serialisability theorem assures us that there are no races in a 
suitable distributed implementation. 

The preceding two rules, [2] and [3], show some basic method call processing. Note 
firstly that they feature deeper pattern matching than is permitted by restriction 4 for 
MONSTR rules. This is a convenient shorthapd to increase readability, as hinted at above. 
A system conforming more faithfully to the letter of the law would replace rules [2] and 
[3] with: 

Counter[self:ChannelOmess] state] 
=> *Counter_Match[self mess state] 

(m] 
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Counter_Match[self:Channel[a] Read[ans_chan] state] 
=> *Counter[self state], self:=*Channel_Empty, 

*Assign[ans_chan state] ; 

Counter_Match[self:Channel[a] Inc[value ans_chan] state] 
=> #Counter[self -newstate:*ADD[value state]] , 

self:=*Channel_Empty, #Assign[ans_chan -newstate] ; 

Counter_Match[self mess state] 
=> ##Counter[-*self -*mess state] 

[2'] 

(3'] 

(6] 

That this works as required relies critically on the fact that each channel node has a unique 
owner, this being the Counter or Counter_Match function node in this case. Because the 
only other nodes allowed to rewrite a channel node are Send functions, and these must 
wait when the channel is occupied, the owner is at liberty to break down the pattern 
matching into several shallow phases without fearing any race conditions. Subsequently, 
once the message in the channel has been decoded, the RHS of rules [2'] or [3'] represent 
the computation of the method involved. 

Let us look at [2']. In its RHS, the self channel is reset, and the owner rewrites to 
a Counter function. These are done as part of the atomic action of rewriting. Also an 
Assign function is created to asynchronously assign ans_chan to the current value of the 
counter. That this can indeed be done asynchronously is a consequence of the fact that 
each object's blob, which contains the value of its instance variables, has a unique parent, 
the object's owner, and that when method processing completes, a new owner is created. 
The new owner does not need to refer to the old values of the instance variables, so these 
need never be redirected to any new values created by subsequent message processing. 
Thus the asynchronous assignment is safe. 

In fact the history of the instance variables through a computation may be represented 
by a sequence of constructors if a clean single assignment discipline for creation of new 
instance variable values is adhered to within method computations. (Such a discipline is 
specified in UFO (Sargeant 1993); of course if a less clean story within method computa­
tions pertains, then stateholders may be required. This depends on the desired semantics 
for method computations.) 

For contrast let us see how a less asynchronous assignment discipline would work, in 
which we forced the counter object to wait until the assignment completed successfully. 
We would replace [2'] by 

Counter_Match[self:Channel[a] Read[ans_chan] state] 
=> #Counter_Inter[self -a state] , self:=*Channel_Empty , 

*a:Assign[ans_chan state] 

Counter_Inter[self OK state] 
=> *Counter[self state] ; 

Counter_Inter[self a state] 
=> #Counter_Inter[self -*a state] 

[2'1 

[ci] 

(7] 
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In this specification, we have again chosen to unlock the channel early, by having the 
redirection self: =•Channel_Empty within rule (2"], rather than postponing it till rule 
(ci), where it would be done at the same time that the owner rewrote to a Counter node. 
The early method allows a little more concurrency, as a waiting Send could install the 
next message before the Counter instantiated. (Of course no notice would be taken of 
the new message until the Counter was ready to do so.) Finally, if we were certain that 
locality considerations justified it, we could include the redirection of ans_chan to state 
as a third redirection in rule [2] or its analogues, instead of using the Assign function, 
though such an overreaching of the MONSTR restrictions would need a thorough case for 
support. 

Let us now look at rule (3'). The synchronisation discipline embodied within it is 
again a fairly natural one. The channel is reset early as before, but the new Counter 
function is now suspended waiting for the computation of the new state value (via the 
ADD[value state]), to terminate. Assuming that ADD works directly on integer con­
structors and yields an integer constructor, is consistent with our remarks above, that 
the sequence of instance variable values over time, can be consistently represented by a 
sequence of constructors in the graph. Once more the assignment of the new value to the 
response channel is done by an asynchronous Assign function which waits for the new 
constructor to appear. 

As previously, various other synchronisation disciplines can, be imagined. Noting that 
MONSTR operational semantics specifies that a non-idle node cannot be pattern matched, 
we can give a more eager definition of the increment method, replacing rule (3') by rule 
[3"] below 

Counter_Match[self Inc[value ans_chan] state] 
=> *Counter[self nevstate:*ADD[value state]] , 

self:=•Channel_Empty, •Assign[ans_chan nevstate] 

[3'1 

In this version, computation proceeds before the new state value has been instantiated. 
Unlike the programmed suspensions on newstate previously, we now pass round references 
to the uninstantiated value, relying on the dynamic suspension mechanism for proper 
synchronisation. By contrast a much more sequential definition can be described by 

Counter_Match[self:Channel[a] Inc[value ans_chan] state] 
=> #Counter_Inter[self -a nevstate:•ADD[value state]] , 

self:=•Channel_Empty, a:#Assign[ans_chan -nevstate] ; 

[3"') 

This version which uses the same Counter_Inter function as before, demands that the 
new value be computed first, then that the assignment complete successfully, and only 
then that the owner rewrites to a new Counter function. Meanwhile the self channel is 
reset early as before. The reader will agree that with a slightly different Counter_Inter 
function, the Assign and Counter_Inter rewrites could be permitted to proceed con­
currently if both were suspended on the outcome of the ADD. And various alternative 
possibilities exist for resetting the self channel if required. 

We observe that for all of these cases, the serialisability types of the various Counter 
and Counter _Match functions are 
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( {(Counter(_Match), Channel_Empty)}, 
{(Counter(_Match), Read), (Counter(_Match), Inc)}) 

which are serialisability compatible with the Send module, as we would wish. Note finally 
that as with most well typed MONSTR systems, the default rules demanded as a fail safe 
measure in the syntactic definition of MONSTR are in fact never used. 

4.3 Less Coherent Semantics for an LBound Object 

All the above variations maintained the invariant that there was a precise 1-1 correspon­
dence between instance values and the sequence of method calls that. produced them, 
even if sometimes the values could be passed around before they were fully instantiated. 
Suppose by contrast that an application required a lower bound object for some quantity 
where there would be a system bottleneck if the object always had to wait for the next 
value to be computed. For instance a parallel alpha-beta search might make use of such 
an object to provide a safe if suboptimal bound for tree pruning. Rules for such an object 
(using deep pattern matching for brevity) might appear as follows. 

NewLBound[init] 
=> •self:Channel_Empty , •LBound[self CurrVal[init]] 

LBound[self:Channel[Read[ans_chan]] state] 
=> •LBound[self state] , self:=*Channel_Empty , 

#Assign[ans_chan "*Deref[state]] ; 

LBound[self:Channel[Upd[value ans_chan]] state] 
=> •LBound[self state] , self:=*Channel_Empty , 

#IF2.1["#GT[value ·a:*Deref[state]] thenl then2 elsel] , 
thenl:Assign[state CurrVal[value]] , 
then2:Assign[ans_chan value] , 
elsel:Assign[ans_chan a] ; 

LBound[self:Channel_Empty state] 
=> #LBound["self state] 

LBound[self state] 
=> #LBound["*self state] 

where 

Deref[CurrVal[x]] => •x 
Deref[x] => #Deref["*x] 

IF2.1[True thenl then2 elsel] => *OK , *thenl , *then2 ; 
IF2.1[False thenl then2 elsel] =>*OK , •elsel 
IF2.1[x thenl then2 elsel] => #IF2.1["•x thenl then2 elsel] 

[8] 

[9] 

[10] 

[11] 

[12] 

Now the state value has to be enclosed in a stateholder CurrVal as a call of the Upd 
method will lead to its typically being updated after the method call has relinquished 
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control. In general the method processing of several Upd calls may be in progress at once, 
and they are not guaranteed to be inspecting the most up to date lower bound available 
by any means. So now there is a many-1 map between the sequence of calls arriving at the 
self channel of the object and the sequence of values of instance variables in the object, 
(as observed by the calls). 

Note further the idle function nodes then1, then2, else1, in the RHS of the Upd method 
rule. On the face of it they break the serialisability theorem, but as discussed in section 2, 
they are being used to implement case analysis, and it is not too hard to argue that the 
computation specified by the rule is serialisable. We argue thus. By inspection of the RHS 
of rule (10], the only parent of the idle functions is the IF2 .1, node whose first argument 
determines which of them receives an activation. Since no other node can access the idle 
functions, no race conditions can arise from any delay consequent upon not performing 
the activations atomically. 

Finally we note that if an LBound object were (rather bizarrely) to send itself an Upd 
method call from within (a suitably enhanced specification of) an Upd call, it would not 
deadlock, because of the non-serial semantics of instance variable update. The same cannot 
be said for any version of the Counter object with a souped up Inc method, because 
the serial instance variable update discipline used in the Counter definitely would cause 
deadlock. 

5 CONCLUSIONS 

In this paper we have made use of an intermediate formalism to study the semantics 
of concurrent 00 languages (COOLs). In particular, we developed a simple but useful 
abstni.ct'ion of what constitures an object and we showed how this can be mapped onto 
the MONSTR computational model. We then discussed a number of issues pertaining to 
synchronisation of concurrent method invocations between and within an object by lifting 
the relevant discussion from the level of a COOL to that of a set of MONSTR rewrite rules. 
This generalises our initial work (Banach and Papadopoulos 1995b), where we focused 
on the object oriented functional language UFO (Sargeant 1993). It is important to note 
that our simple object abstraction renders the current work independent of any particular 
COOL. This means that MONSTR provides good neutral ground for comparing different 
synchronisation semantics for COOLs, whether existing or proposed. Therefore, during 
the process of designing a new COOL, whether it is an extension of some existing base 
language or a brand new one, the language designer can use the proposed framework to 
study cheaply, various aspects of the language's semantics (Nierstrasz and Papathomas 
1990, Papathomas 1989). Other uses of this framework are also possible. For instance, 
one could use MONSTR as a means of comparing similar features offered by different 
languages, and could thus study issues related to expressiveness or interaction of these 
features. 

Moreover, not only can our work serve as a specification of language features, (and an 
executable one at that via an implementation of MONSTR); but it can be used as an 
implementation framework for COOLs by developing fully fledged language translators 
to MONSTR, where emphasis is on optimising the run-time activities of the generated 
graph rewrite rule sets. This is a traditional and extensively tested approach, having been 
used for a variety of language formalisms (Banach and Papadopoulos 1993, 1995a). A full 
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translation gives the added benefit of allowing rigorous reasoning about all aspects of a 
language; e.g. the way Banach et al. (1995) gives an alternative perspective on process 
calculi. And there is no reason why we could not apply the principles of our approach 
to other similar families of languages such as the concurrent constraint ones (Henz et al. 
1994). 
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