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Abstract 
We propose a new executable algebraic specification method for object -oriented concurrent and 
distributed systems. We formalize a concurrent object-oriented model that can explicitly handle 
communication networks. In this model, a system is described as a collection of primitive ob­
jects and network objects. We use the algebraic specification language CafeOBJ[Futatsugi and 
Sawada 1995] [Sawada and Futatsugi 1995] for describing specifications. Since specifications 
using our method can be executed, the CafeOBJ processor aids semi-automatic verifications. 
We illustrate some actual verifications via an example. 
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1 INTRODUCTION 

Concurrent and distributed systems are the basis for many powerful computing environments. 
But it is more difficult to grasp the properties of these systems than the properties of sequen­
tial systems. Hence, the ability of verifications in the first stages of development processes be­
comes more important. The purpose of this research is to propose a method for verifying formal 
specifications of concurrent and distributed systems which is based on algebraic specification 
techniques. 

Dividing large specifications into several parts such that each of them can be easily understood 
seems to be almost the only way in which we can reduce their complexity. We adopt a concurrent 
object-oriented model for this division, because objects have the ability of naturally representing 
the processing elements of concurrent and distributed systems. Also, concurrent object-oriented 
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342 Part Eight Specification and Design Distributed Systems 

models can simulate the behaviour of concurrent and distributed systems having several running 
paths. 

There is a formalization of the concurrent object-oriented model based on rewriting logic in 
the algebraic specification language Maude[Meseguer 1990]. Rewriting logic has the power of 
naturally representing the behaviour of concurrent objects. In this paper, we formalize a con­
current object-oriented model that supports various kinds of communication networks using 
CafeOBJ[Futatsugi and Sawada 1995][Sawada and Futatsugi 1995] which is based on rewrit­
ing logic. CafeOBJ syntax is very similar to Maude syntax. Examples are presented in order to 
show the effectiveness of our formalism. We especially focused on how to automate verification 
processes. 

2 A FORMALIZATION OF CONCURRENT OBJECT-ORIENTED 
MODEL 

In concurrent object-oriented models, systems are represented as objects and messages. These 
models, like the Actor model [Agha 1986], can be represented in as Figure 1. Meseguer showed 
how to represent these models in rewriting logic. We first briefly explain rewriting logic and 
then explain how Meseguer formalizes concurrent objects in rewriting logic. 

~ 
B .. _ 

Message . 

G 
Figure 1 Concurrent object-oriented model 

2.1 Rewriting logic 

In order to formalize concurrent objects in an algebraic specification language, we need rewriting 
logic[Meseguer 1990][Meseguer 1993] rather than equational logic. A theory in equational logic 
is called equational theory, and it is defined as tuple (:E, E), where :Eisa signature and Eisa set of 
equations. A theory in rewriting logic is called rewrite theory, and it is defined as (:E, E, L, R), 
where L is a set of labels for rules and R is a set of rules. In rewriting logic there are four 
deduction rules, ( 1 )reflexivity, (2)congruence, (3)replacement, ( 4 )transitivity. 

When we write specifications in an algebraic specification language based on equational 
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logic, such as OBJ3 [Goguen, Wmlder, Meseguer and Futatsugi 1993], the executable speci­
fications must satisfy the confluence and terminating properties. There are many kinds of non­
deterministic behaviour in concurrent object-oriented model, and their behaviour does not sat­
isfying these two properties. In rewriting logic we can use rules for describing this kind of be­
haviour. 

In Maude, the transitions of objects is done in parallel because Maude is based on concurrent 
rewriting. But CafeOBJ is based on sequential term rewriting. Hence, in our formalism, concur­
rent behaviour of objects will be simulated with sequential term rewriting. We think this kind of 
simulation is a necessary step in the verification process. 

2.2 Meseguer's model 

Meseguer showed how to deal with concurrent object-oriented models in Maude[Meseguer 
1990][Meseguer 1993]. In his method, the state of a concurrent object-oriented system is repre­
sented as a "configuration" which is a multi-set of objects and messages. Computation is done 
by transitions between configurations using the rules of rewriting logic. Concurrent rewriting is 
used as a deduction in rewriting logic. A configuration is defined in the following way: 

m,nE Nat 
0 E Object 
ME Message 

Transition rules are defined over this configuration. Generally, when objects and correspond­
ing messages are in configuration then the messages disappear, the state and the class of the 
objects may change, all other objects vanish, maybe several new objects and messages are cre­
ated. 

2.3 Supporting communication networks 

Concurrent object-oriented models seem to suit the process of describing concurrent and dis­
tributed systems. But in many cases, it is convenient to directly use more functional, highly 
abstracted communication networks. In Meseguer's formalization it is possible to have commu­
nication networks using objects. But since wo are interested only in concurrent and distributed 
systems, we can consider a model that is more suitable for describing them. Communication 
networks are necessary infrastructure for concurrent and distributed systems. So we propose a 
model like Figure 2. 

In this model, there are two types of objects: primitive objects and network objects. Processing 
elements of concurrent and distributed systems are represented as primitive objects and commu­
nication networks are represented as network object. Primitive objects can communicate only 
with network objects, and these communications are all done in a synchronous way. Primitive 
objects behave actively and network objects behave passively. So only primitive objects decide 

"[e •... enl denotes a multi-set 

configuration configuration configuration 
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sychronous communication 

Figure 2 Our model 

when they receive and put a message from network objects. In Meseguer's model, there are two 
kinds of communication mechanisms: asynchronous message passing and synchronous commu­
nication. In our model, there is only one communication mechanism. In our model, asynchronous 
message passing can be represented as a network object that has a multi-set as an attribute. This 
model has following properties: 

• we assume no shared global state; 
• an object can deal with only one message at the same time; 
• each object has an unique identifier; 
• when an object receives a message then it changes its own state and create nothing or several 

objects and messages; 
• the state of an object changes only when receiving a message; 
• primitive objects are communicate only with network objects using synchronous communi­

cation; and 
• network objects can receive any messages from the objects connected to it; 

In this model we only have objects, so the configuration is a set consists of primitive objects 
and network objects. The following is the definition of the configuration. 

m,n E Nat 
0 E Primitive objects 
N E Network objects 

Configuration: { 0 1 •• • 0m N 1 •• • Nn} 
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2.4 Using CafeOBJ 

In this section we are going to explain the whole framework of our formalization using CafeOBJ. 
First we give a brief explanation of CafeOBJ. CafeOBJ is an algebraic specification language 
and it is a member of OBJ[Goguen, Winkler, Meseguer and Futatsugi 1993] [Futatsugi, Goguen 
and Jouannaud and Meseguer 1985]language family. It is based on rewriting logic and its type 
structure is based on order sorted algebra. Since CafeOBJ is executable, it can be used for pro­
totyping and automatic theorem proving. 

In CafeOBJ, module is the basic structure for describing specifications and this module 
consists of two parts: a signature part and an axiom part. The signature part is described within 
signature{ } and a axioms part is described within axioms{}. A signature part is for 
specifying a signature that consists of sort definitions and operator definitions. The axiom part 
is for specifying some equations and rewrite rules. The following is a specification of natural 
number: 

module NAT 
signature { 

[ Nat I 
op 0 : -> Nat 
op s_ : Nat -> Nat 
op _+_ : Nat Nat -> Nat 
attr _+_ (assoc comm} 

axioms ( 
vars N N' : Nat 
eq s N + N' = s (N + N') . 
eq N + 0 = N . 

Sorts are defined with brackets and the subsorting relation defined by using <. The lines be­
ginning with op are definitions of operators. An operator is defined by arguments and a return 
sort. Operators without arguments are constants. One can specify attributes of an operator using 
parenthesis after the definition of an operator. The lines beginning with attr also define the 
attributes for particular operators. For an attribute one can specify associativity, commutativ­
ity, idempotent law, identity, etc. In the axiom part, we define equations and rewrite rules. The 
definition of an equation begins with eq and the definition of a rewrite rule begins with rule, 
and ceq for a conditional equation and crule for a conditional rewrite rules. One may inherit 
other modules using protecting () or extending () . When we using protecting () 
the inherited modules are unchanged. We use extending () for extending inherited modules. 
We abide by the convention of CafeOBJ that variables should be represented in capitals and 
sorts should be represented by a word beginning with a capital letter. For operators we use a 
word beginning with a lower case. 

Firstly, we define the structure of an object. An object has an unique identifier (Old) and is 
made from a class. Any class has an identifier (Cld). Old is a pair consisting of a class identifier 
and a natural number. An object (OBI) is pair consisting of Old and the attributes of the object. 
Object identifiers and objects are defined in CafeOBJ in the following way: 
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module OID 
protecting(NAT) 
signature { 

[ Oid Cid < Identifier 
op nilOid : -> Oid 
op <_,_> : Cid Nat -> Oid 

module OBJ 
protecting(OID) 
signature { 

[ Obj Attr Aid AValue 
op nullAttr : -> Attr 
op = : Aid AValue -> Attr ( prec 6 ) 
op _,_ : Attr Attr -> Attr { assoc comm id: nullAttr 1 
op [_J_] : Oid Attr -> Obj 

In this definition, if AJ:d and AValue are properly defined then the following term is recog­
nized as Obj. 

< apple , 1 > 1 color = red , weight = 200 ] 

A message is a tuple consisting of three elements: Old (of the sender object), Old (of the 
destination object), and the content of the message. A message is defined in CafeOBJ in the 
following way: 

module MSG { 
protecting (OBJ) 
signature { 

[ Tag MValue Content Msg 
op nullCont : -> Content 
op _ • _ : Tag MValue -> Content ( prec 6 I 
op _,_ : Content Content -> Content { assoc comm id: nullCont I 
op <_l_l_> : Oid Oid Content -> Nag 

Configuration is a set consisting of objects. 

module OBJ-SZT { 
pr (SZT [ X <= view to OBJ 

{ sort Zlt -> Obj ) ]) 

module CONFIGURATION 
protecting (OBJ) 
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protecting (MSG) 
protectinq(OBJ-SET) 
signature { 

[ Confiq I 
op {_} : Set -> Confiq 
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All objects are made of class definitions. Class definitions consist of attribute definitions and 
rewrite rules definitions (Figure 3). 

module FOO-CLASS { 

••• attribute definitions 

[ Nat < AValue ] 
op counter : -> Aid 

*** transition rules 

rule 
trans 0 N => 0' N' 

Figure 3 Class definitions 

3 EXAMPLE 

In this section we are going to explain how to build specifications in our formalism. We also 
show the effectiveness of our new definition of a configuration for the case of the verification 
processes. 

3.1 Alternating Bit Protocol 

The alternating bit protocol (ABP) is a protocol that realizes an ideal network using two FIFO 
but unreliable communication networks. The ideal network (IN) is a FIFO and reliable com­
munication network. In concurrent object-oriented model ABP can be represented as in Figure 
4. 

The sender object has a queue called Sbuf and a boolean variable called Stlag. The receiver 
object also has a queue called Rbuf and a boolean variable called Rtlag. When the system is 
in initial state, Sbuf and Rbuf are empty and Sfiag and Rfiag have different boolean values. 
When the sender object receives the message to be sent, the content of it is buffered in Sbuf. If 
there is an element in Sbuf, the sender object makes a pair of the first (oldest) element of Sbuf 
and a value of Stlag (tag) and sends it to the receiver. The sender object constantly sends this 
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: <from I destination 1 content, tag> Msg Queue 

<flom~doslinaftonl.;.ntent> / 
: ::r:IIII:: Loose-Fifo-Network! 

Sbuf 

: SflagC] 

' Sender ~ Receiver 

: < Receiver I Sender I ack = tag > < Receiver 1 Sender 1 8Ck "' tag > 

Loose-Fifo-Network2 

Figure 4 Alternating Bit Protocol 

Table 1 behaviour table for the sender object 

message precondition state new messages 

any messages sbuf = sbuf ++ mes 

sbuf != [] create-mes(head(sbuf), 
sflag) 

ack(tag) tag== sflag sbuf = tail(sbuf), sfl.ag = 
!sflag 

ack(tag) tag!= sflag 

message to the receiver object within a certain interval. When the receiver object receives the 
message from the sender object and if the tag of the message and the value ofRflag are not equal, 
then the content of the message is buffered in Rbuf and toggles Rfl.ag, otherwise just throws the 
message away. The receiver object constantly sends the value of Rfl.ag to the sender object for 
an acknowledgment(ack) within a certain interval. When the sender object receives an ack from 
the receiver object and if it is equal to Sflag, then it drops the first (oldest) element from Sbuf 
and toggles Sflag, otherwise just throws the message away. In Figure 4, the inside area of the 
rectangle can be regarded as one object. This object can be regarded as a network object. 

The behaviour of the Sender object and the Receiver object is shown in Table 1 and Table 2. 
We call these tables "behaviour tables". The first column of this behaviour table represent the 
message which the object receives, the second column contains the preconditions for the rewrite 
rules, the third column contains the states after receiving the message (like postcondition), and 
the last column shows the newly created messages. The function "create-mesO" create new 
message from its arguments, and "ack(tag)" replesents a message carrying the value "tag". 

We can directly derive the rewrite rules of class specification from this behaviour table. The 
first row of table 1 shows the behaviour of receiving a message from some other object connected 
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Table 2 behaviour table for the receiver object 

precondition 

tag!= rflag 

tag== rflag 

state 

rbuf = rbuf ++ mes, rflag = 
!rflag 

new messages 

ack(rflag) 
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to the sender object. Because network objects behave passively, this behaviour is not suitable for 
the sender object. The specification of the second and the third row of table 1 can be described 
in CafeOBJ in the following way: 

rule trans 

=> 

< sender , 0 > I (Sbuf = ( (< 0 I 0' I C >) Q)) , (Sflag = F) ] 
<fifo , 0 > I (Fifo= Q') J null } 

< sender , 0 > I (Sbuf = ( (< 0 0' C >) Q)) , (Sflaq = F) I 
< fifo , 0 > (Fifo = (Q' < 0 0' C , (Flag = F) >)} I OBJS } . 

crule trans 

=> 

< sender , 0 > 1 (Sbuf = Q} , (Sflag = F) I 
[ < fifo , 1 > I (Fifo = (< < receiver , 0 > I 

<sender , 0 > I (Cmd = Ack) , (Flag= F') > Q')) I OBJS I 

{ [ < sender , 0 > I (Sbuf = (tail (Q))) , (Sflaq = F') J 
[ <fifo , 1 > (Fifo= Q') ] OBJS } 

:if F == F' . 

The operator trans takes a configuration and returns an other configuration corresponding 
to one step transition of a configuration. 

4 VERIFICATION 

The advantage of using our technique instead of others is that verifications can be done auto­
matically. We apply the state mapping technique [Lynch and Tuttle 1987, Merrit 1989, Weihl 
1993] to the concurrent object-oriented model using communication networks. In order to use 
the technique explained below, we assume that objects are not dynamically created or disappear. 
We first explain the state mapping technique and non-deterministic behaviour of concurrent and 
distributed systems, and then explain our verification method using CafeOBJ. 

4.1 State mapping 

State mapping is used for proofing the equivalence between two automata or state machine. In 
order to prove the two systems are equivalent, we must get an abstraction function explaining 
the relationship between them. 
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We again use ABP to illustrate our method. ABP can be seen as an implementation of an ideal 
network (IN). Ideal network is a FIFO and reliable communication network. IN is modeled as 
FigureS. 

< from 1 destination 1 content > < from 1 destination 1 content > 

Fifo-Network 

Figure 5 Ideal newtork 

We apply the state mapping technique for showing that ABP is a correct implementation of IN. 
Firstly, we must define an abstraction function abs-func that maps ABP's state (configuration) 
to IN's state (Msg Queue). We also define get-state-IN that takes IN's configuration and 
returns the "Msg Queue" of IN. These functions are defined in following way: 

eq get-stat-IN { [ < 'Fifo , 0 > 1 (Fifo = Q) ] OBJS } = Q . 

cq abs-func 
({ [ < 'Sender , 0 > 

[ < 'Receiver , 0 > 
(RQ SQ) :if F =/= F' 

cq abs-func 

(Sbuf = SQ) , (Sflag = F) I 
I (Rbuf = RQ) , (Rflag = F') I OBJS } ) 

( { [ < 'Sender , 0 > I (Sbuf = SQ) , (Sflag = F) 1 
[ < 'Receiver , 0 > I (Rbuf = RQ) , (Rflag = F') 1 OBJS }) 

(RQ (tail (SQ))) if F == F' . 

Then we need a notion of "external message" and "internal message" and "same externally 
messages". Messages are external if they construct an interface of the system and they are in­
ternal if not. The sequence of messages M and M' are called externally the same if they are the 
same after removing all internal messages from both of them. 

ABP is a correct implementation if: 

1. the abstract function abs-func maps the initial state of ABP to the initial state of IN; 
2. for all messages MABP accepted by ABP, there exists the same externally message sequence 

MIN accepted by IN; 
3. show if ABP's states transforms to s' by MABP then M 1N transforms abs-func(s) to 

abs-func(s');and 
4. if there is no corresponding message for MABP then show abs-func (s) equals abs­

func(s'). 

The steps 3 and 4 are done by case analysis and (if needed) using invariants of the system. 
Usually, the number of cases for this case analysis become very large. In the case of ABP, there 
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are four messages: (1) messages from outside of ABP, (2) messages from the sender object to 
the receiver object, and (3) acknowledgement messages form the receiver object to the sender 
object, and (4) messages that send to outside of ABP. For the case (1), there are following cases: 
(Sbuf = [ ], Rbuf = [ ]), (Sbuf = [ ], Rbuf = [Queue]), (Sbuf = [Queue], Rbuf = [ ]), 
(Sbuf =[Queue], Rbuf =[Queue]). Each case has more combinations of Sf lag and Rflag, 
and also we must consider the value of a tag which added to the message from the sender object 
to the receiver object. So the total cases in ABP becomes about 100. 

4.2 Non-deterministic behaviour 

The process of the state mapping technique explained above can be automated by using CafeOBJ. 
But to do so, we must consider about non-deterministic behaviour. In concurrent and distributed 
systems there are two types of non-deterministic behaviour. 

• global non-deterministic behaviour: 

- the order of messages that an object receives from the communication networks is non­
deterministic and 

- objects making messages without receiving messages behave non-deterministically. 

• local non-deterministic behaviour 

- when an object receives a message, two or more rewrite rules can be applied 

When using CafeOBJ we must care of local non-deterministic behaviour and of the sec­
ond case of global non-deterministic behaviour. In the case of specifications with local non­
deterministic behaviour, we have to divide it, build several deterministic specifications, and test 
them all, because in CafeOBJ it is always decided which rule has to be used when more than one 
rule can be applied to a term. For the second case of global non-deterministic behaviour, one 
should remove the corresponding rewrite rules from the specification. The reason that we can 
remove these rewrite rules is that in the state mapping, our interest is only in local behaviour of 
objects so we don't have to care how messages are created. 

4.3 Automatic verification using CafeOBJ 

The following is a verification process: 

1. build the specifications of ABP and IN using CafeOBJ and put them togerther into one spec-
ification; 

2. do appropriate treatment for non-deterministic behaviour; 
3. design the abstraction function; 
4. make proof scores according to the state mapping technique; 
5. execute the proof scores (first stage); and 
6. check the system does not go into any of the cases returning false (second stage). 

We call the step 5 as the first stage and we call thestep as the 6 second stage. The first stage 
can be done automatically by CafeOBJ, and then use its results in the second stage. Second stage 
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is done by humans. We already built the specification of ABP and IN so we begin with step 2. 
In ABP, there are two non.<Jetenninistic behaviour as following: 

• the behaviour of unreliable networks (Loose-Fifo-Network) 
• the sender object constantly sends messages to the receiver object 
• the receiver object constantly sends ack to the sender object 

The specification of Loose-Fifo-Network consists of the following: 

modul.a LOOSE-QUEUE pr X : : TRIV ] { 
signature { 

[ J:lt < LQuaua 
op nullLQueua : -> LQueue 
op _ : LQuaua LQuaua -> LQuaua 

{ assoc id: nul.lLQueue } 
op tail_ LQuaua -> LQueue 
op head_ : LQueue -> Elt 

axioms { 
var Q : LQueue 
var E : El.t 
ruleQB=>QE 
rul.aQE=>Q. 
eq tail (E Q} = Q 
eq tail. nullQuaua = nullQuaua 
eq head (E Q) • z 

moduel MSG-LOOSB-QUEUE 
pr (LOOSE-QUEUE [ X <= view to MSG 

{ El.t -> Msq } ] ) 

modul.e LOOSE-FIFO-NETWORK-CLASS 
protectinq(MSG-LOOSJ:-QUEUE) 
signature { 
*** Attributes 

op Loose-Fifo : -> Aid 
[ MsqQueue < AVal.ua ] 

This specification must be split into two parts: a specification for FIFO and reliable com­
munication network and a specification for the communication network which completely lost 
messages. For the second and third case we remove the corresponding rewrite rules from the 
specification. 
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We already define the abstraction function abs-func, so the process 3 is finished. Next 
process (process 4) consists of making a proof score. A proof score is a collection of predicates 
which we must prove. We must first define the predicate for the initial state of ABP and IN. 

reduce 
get-stat-IN 

I I < 'Fifo , 0 > I (Fifo 

abs-func~ 

nullMSgQueue) 1 } 

[ < 'Sender , 0 > (Sbuf = nullMSgQueue) , (Sflag = false) 1 
[ < 'Receiver , 0 > I (Rbuf = nullMsgQueue) , (Rflag = true) 1 
[ < 'Loose-Fifo 0 > 1 (Loose-Fifo nullMsgQueue) 1 
[ < 'Loose-Fifo , 1 > 1 (Loose-Fifo = nullMSgQueue) 1 } 

Part of the proof score for the case when ABP receives a message from outside is given below: 

op sbuf-abp : -> MsgQueue . 
op rbuf-abp : -> MsgQueue . 
op rbuf-in : -> MsgQueue 
op foo : -> Oid . 
op bar : -> Oid 
op mea-con : -> Content 

var OBJS : Objects . 

***> case: Sbuf = nullMSgQueue, Rbuf = nullMSgQueue 
***> case: Sflag = false, Rflag = true 

***> abs-func(s) 
let abs-func-s = 
abs-func ( 
I [ < 'Sender , 0 > (Sbuf = nullMSgQueue) , (Sflag = false) 1 

[ < 'Receiver , 0 > I (Rbuf = nullMsgQueue) , (Rflag = true) 1 
[ < 'Loose-Fifo , 0 > I (Loose-Fifo = nullMSgQueue) ] )) . 

***> predicate 
reduce 
(get-stat-IN 

I [ < 'Fifo , 0 > I (Fifo (abs-func-s < foo I bar I mea-con>)) ] } 

abs-func 
[ < 'Sender , 0 > 

[ < 'Receiver , 0 > 
[ < 'Loose-Fifo , 0 

and invl 

(Sbuf = (nullMsgQueue < foo 1 bar 1 mea-con>)) , 
(Sflag = false) ] 
I (Rbuf = nullMsgQueue) , (Rflag = true) 
> I (Loose-Fifo = nullMsgQueue) ] )) 

I [ < 'Sender , 0 > (Sbuf = nullMsgQueue) , (Sflag =false) 
[ < 'Receiver , 0 > 1 (Rbuf = nullMsgQueue) , (Rflag = true) 1 } • 

1 

1 

1 

1 
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The term < foo I bar I mes-con > represents the message which the sender object 
receives from outside of ABP. So this predicate checks the local behaviour of the sender object 
when the state of it is {Sbuf = [], Rbuf = [],Slag = false, Rflag = true). The proof score 
for ABP contains about 100 predicate like this. 

In the next process, first stage, we execute the proof score of ABP. CafeOBJ returns the results 
(true or false) for each predicates. The cases returning true are ok, but for the other cases returning 
false, we must prove that the system does not go into any of these cases. This checking process 
is the step 6 (second stage). In the case of ABP only about ~ cases return false. We have only to 
check these cases using invariants of the system. So we can greatly reduce the size of the process 
of verification. For example the following proof score returns false. 

***> case: Sbuf = nullMSgQueue, Rbuf = nullMSgOueue 
***> case: Sflaq = false, Rflag = false 
***> case: Flag = false 

***> abs-func(s) 
let abs-func-s • 
abs-func ( 
{ [ < 'Sender , 0 > (Sbuf = nullMSgQueue) , (Sflaq = false) ] 

[ < 'Receiver , 0 > 1 (Rbuf = nullMSgQueue) , (Rflag = false) 
[ < 'Loose-Fifo , 0 > 1 (Loose-Fifo = nullMSgQueue) ] 
[ < 'Loose-Fifo , 1 > I (Loose-Fifo = nullMagOueue) ] }) . 

***> predicate 
reduce 
get-stat-Ill 

{ [ < 'Fifo , 0 > I (Fifo 

abs-func 

(abs-func-s < foo I bar I mas-con>)) ] I 

[ < 'Sender , 0 > (Sbuf = (nullMSgQueue < foo 1 bar 1 mas-con>)) , 
(Sflag • false) ] 

[ < 'Receiver , 0 > 1 (Rbuf = nullMSgQueue) , (Rflag • false) 
[ < 'Loose-Fifo , 0 > I (Loose-Fifo = nullMsgQueue) 
[ < 'Loose-Fifo , 1 > 1 (Loose-Fifo = nullMSgQueue) ] } . 

In such a case (Rfiag = Sflag}, the receiver object must have received a value from the 
sender objet, but in this specification Rbuf is empty. So we know that there is no such case for 
this system. Similarly to this case, we must prove that the case cannot occur in this system for 
all the cases returning false. 

5 CONCLUSIONS 

We presented some techniques for formally specifying concurrent and distributed systems in the 
algebraic specification language CafeOBJ. In our formalism, we can directly use communication 
networks in specifications. The message passing mechanism based on communication networks 
increases the expressive power of specifications and provides a powerful verification technique. 
When one specifies a large system there are several abstraction levels. In our formalism, this 

1 
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abstraction level can be easily described. Assume we specify a system which uses an ABP for 
FIFO communication. The lowest level contains a full specification of ABP, and at the higher 
level we can simply use a FIFO communication network instead of ABP and can hide the details 
of the communication networks. If we build the specification of ABP in the formalization not 
using communication networks then the specifications of Loose-Fifo-Networks are spread over 
other objects and reusability and modularity becomes very low. Using our model, modularity of 
specifications naturally becomes high. 

We use ABP as an example for illustrating the advantages of our formalization. We apply the 
state mapping technique for communication network based on the concurrent object-oriented 
model for verifying that ABP is the correct implementation of IN. The cases used in this verifi­
cation can be systematically derived from the state of ABP. Once we build up a proof score, we 
can run it and get the faulty cases that we must prove. In the case of ABP, faulty cases are about 
I 
4· 

It is important how we handle the local non-deterministic behaviour when using CafeOBJ. 
In this paper we separate the non-deterministic specifications and make them deterministic and 
try them all. If we can handle these behaviour more directly and efficiently, the verification pro­
cess of our technique becomes more useful. We think a environment which supports automated 
verifications in CafeOBJ is important and work is being done for building such an environment. 
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