
21

Towards a calculus for generative
communication

P. Ciancarini, R. Gorrieri, G. Zavattaro
Department of Computer Science, University of Bologna
Piazza di Porta S. Donato 5, 1-40127 Bologna, Italy
Telephone: +39 51 354516 Fax: +39 51 354510
email: cianca,gorrieri,zavattarC!cs. unibo. it

Abstract
We introduce a theory for generatively communicating concurrent processes. Generative
communication is an asynchronous interprocess communication mechanism based on a
shared data structure; information items can be introduced into, read or withdrawn from
such a data structure by parallel processes. The most representative language based on
such a paradigm is the coordination language Linda. Our idea is to embed generative com­
munication in a process algebra like CCS. The advantage of having a process algebraic
framework is that formal techniques developed in the process algebra area. can be easily
adapted to the field of generative communication. We investigate three standard obser­
vational equivalences (bisimulation, failure, and trace) and we observe that the failure
semantics is the most appropriate to model the features of generative communication.

Keywords
Coordination languages, generative communication, process algebras, observational equiv­
alences

1 INTRODUCTION

Asynchronous communication realized by means of the insertion, reading, and withdrawal
of elements to and from a shared rtmltiset, is the peculiar feature of a family of coordina­
tion languages (Gelernter and Carriero, 1992). This communication mechanism is referred
to as generative communication, and it was introduced for the first time in the coordi­
nation language Linda (Gelernter, 1985). Linda. provides interprocess communication via
a medium called Tuple Space (TS for short), that is a shared memory which contains a
set of messages that are produced by a set of processes. TS is accessible by every parallel
process by means of three primitives:

out (Message): produces a message;
read(Message): reads (without consuming) a message;
in (Message): reads and consumes a message.

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

284 Part Seven Object and Process Calculi

The peculiar features of generative communication can be listed as follows:

• A process can always insert a message in TS performing an out operation.
• A process can perform an in or a read operation only if the required message is in TS;

if not, it blocks. A side effect of the execution of an in operation is the withdrawal of
the read message.

• The insertion order of messages in TS has no influence on their reading order.
• Multiple occurrences of the same message can be in TS at the same time (TS IS a

multiset of messages).

This communication mechanism is said to be generative because a message generated by
a process has an independent existence in TS until it is explicitly withdrawn. In fact, after
its insertion in TS, a message becomes equally accessible to all processes, and it is bound
to none.

Generative communication is provided not only by Linda, but also by other languages
such as Shared Pro log (Brogi and Ciancarini, 1991) and Bauhaus-Linda (Carriero, Gelern­
ter, and Zuck, 1995). The main difference among these languages is the type of messages in
the shared memory: Linda uses ordered tuples, Shared Prolog logic terms, and Bauhaus­
Linda unordered multisets. For the sake of generality and simplicity, messages will be
treated as atomic items in the remainder of the paper and each of them will be referred
to by means of an identification name.

Our aim is to introduce a framework to reason formally about generative communi­
cation. Our idea is to embed such a communication mechanism in a process algebra. In
this way, all the formal techniques for analyzing concurrent systems used in the process
algebra area will be easily adapted to the field of generative communication. Standard
process algebras like CCS (Milner, 1989), CSP (Hoare, 1978), and ACP (Bergstra and
Klop, 1986) provide a synchronous handshake communication mechanism. On the other
hand, generativeness is based on asynchronous communication. Hence, in order to embed

generative communication in a process algebra, the crucial problem is the way the commu­
nication medium is represented. A first trivial proposal can be to provide an extra agent
T S(M) which is able to receive messages from the senders, to store them as the multiset
M, and to give the required messages to the receivers. This means that we are imple­
menting asynchronous communication by means of synchronous communication using an
auxiliary communication manager. However, some problems arise if the communication
medium is represented by one single agent:

• Since the agent TS(M) has the full responsibility of managing the interprocess com­
munication, its design may become too complex and it may become an execution
bottleneck.

• A unique centralized store for messages may not exist. For example, in distributed Linda
implementations (Carriero and Gelernter, 1986) the messages are usually distributed
too.

As far as the solution of these problems is concerned, we propose to assume the commu­
nication manager as fully distributed. To be more precise, we propose to consider each
message as an active entity able to give its contents to every potential reader. In this

Towards a calculus for generative communication 285

PIQ

Figure 1 Generatively communicating processes.

way, there is no explicit centralized communication manager because all the messages are
treated as autonomous agents. The basic features of our proposal are the following:

• The autonomous agent (a) is introduced to represent the sent message a.
• The prefix a denotes a message which can be sent. The execution of a consists of the

addition of the agent (a) to the environment:
a.P~ (a)IP

The label is r because this step, representing an out operation, is a local autonomous
step of computation which does not depend on the environment.

• An extra prefix Q is introduced to represent the request of reading message a without
consuming it.

• The agent (a) can be consumed by an agent which performs an in operation:
(a)~.Q.

and it can be read by an agent which performs a read operation:

(a) ____!_. (a)
The labels a and g; represents the "complementary" actions for a and Q respectively.

Figure 1 compares two different cases of generative communication between processes: in
the first graph a reader which performs an in operation is considered, while the second
graph describes the case of a read operation. The most important difference between the
two cases is due to the behavior of the synchronization (i.e. the simultaneous execution of
the complementary actions a, a or Q, g;). In fact, if the reader performs an in operation,
the message is withdrawn, while if it executes a read, the agent (a) is not removed.

The paper is organized as follows. In Section 2 we formally define the syntax and the
operational semantics of the language. In Section 3 some examples of concurrent systems
are presented in order to highlight the peculiar features of the language. In Section 4 we
analyze three observational semantics for our language: bisimulation, failure and trace. We
observe that failure is the most appropriate: in fact, bisimulation is not abstract enough to
describe all the features of generative communication in which we are interested while trace
is too coarse. In Section 5 we report some conclusive remarks: we analyze the originality

286 Part Seven Object and Process Calculi

Table 1 Syntax

E .. - !!_
I (a}
I p.E
I EIE
I E+E
I E \L
I E[f]
I X
I rec x.E

null agent
message agent
prefix operator
parallel operator
choice operator
restriction operator
relabeling operator
agent variable
recursion operator

where: L ~ Message
f : Label ----> Label

{
f('Y) f(t)

such that: J(]_) f(t)
f(r) 7'

of our language with respect to possible representations of the generative communication
mechanism made in standard CCS and we compare our framework with other proposals for
generativeness and for embedding asynchronous communication in process algebras. The
proofs of propositions are reported in the full paper (Ciancarini, Gorrieri, and Zavattaro,
1995).

2 THE LANGUAGE AND ITS SEMANTICS

Let:

• Message, ranged over by a, b, etc., be the set of possible messages;
• Prefix = {a,~' a I a E Message} U { 7' }, ranged over by p, q, etc., be the set of prefixes;
• Label = {a,~' a, :1! I a E Message} U { 7'}, ranged over by a, f3, etc., be the set of labels;
• Obs =Label\ { 7' }, ranged over by "'f, TJ, etc., be the set of visible labels;
• 7, :, :::: Obs ~ Obs be three bijections such that (a) =a, (a) =a, (g) = Q, (:?!) = g,

(a)=~, (a)= g:, (~)=a,(:?!)= a, and ('Y) = (('Y));
• X, ranged over b:YX', y, etZ,be the setOf agent variables.

The agent expressions, ranged over by E, F, etc., are defined in Table 1. The null agent
!!_ and the class of terms (a} represent the possible elementary agents. The agent .!)_ is
deadlocked (i.e. it is not able to perform any kind of action) whereas (a) represents a
message a ready to be read or withdrawn.

The prefix operator is used to define the possible actions executed by the agents: there
are four actions depending on the kind of prefixes. The first and the second one, i.e. a and
~' correspond to the operation in and read, representing the request of the withdrawal
and the reading of the message a, respectively. The third prefix a represents the out
operation which causes the addition of (a) to the environment, and the last one is the

Towards a calculus for generative communication

Table 2 Operational semantics

a.P --"-+ P

Q.P ~ p

T.P~P

a.P~ (a)!P

(a) ~D.

(a)....!... (a)

P~P'

P!Q ~ P'!Q & Q!P ~ QIP'

p ...2.., P' Q .2_, Q'

P!Q~P'IQ'

P~P'

P + Q ~ P' & Q + P ~ P'

P _:!__, P' /,"f,]_,'J. r/c L

P \ L _:!__, P' \ L

P~P'

P~P'

P(f] ~ P'[f]

P[rec x.Pfx] ~ P'

recx.P ~ P'

287

invisible prefix T which stands for local autonomous steps of computation. The meaning of
the other operators is the usual one. The parallel operator is used to combine agents which
are able to perform actions in parallel and to synchronize on complementary actions. The
choice operator is used to represent a non-deterministic alternative choice between two
combined agents. The restriction operator is used to define local actions. The relabeling
operator allows dynamic changes of the name of the messages. The recursion operator is
used for the definition of recursive agents.

We say that x is bound in E if each occurrence of x is within some subexpression
rec x.F; x is also guarded if each occurrence in F is within some subexpression p.F'. We
say that E is closed and guarded if only bound and guarded variables occur in it. Let
Agent, ranged over by P, Q, etc., be the set of closed and guarded terms.

The operational semantics of our language is described by a labeled transition system
(Agent, Label, --->). The labeled relation ---><;;(Agent x Label x Agent) is the smallest
one which satisfies the axioms and rules of Table 2.

3 EXAMPLES

3.1 Dining philosophers

The classical problem of dining philosophers can be represented in our language giving
to the message agents (a) the meaning of objects. The message agents can be used to
represent the forks on the table: a fork can be grabbed or freed by a philosophers like
a message can be sent or withdrawn by an agent of our language. Hence the fork fi is
modeled by the agent (fi)·

Table 3 introduces two different representations for the problem of dining philosophers.
In the first representation (i.e. agent DinPhh) each philosopher Pi grabs the forks in
a fixed order: first he grabs the fork on its right (fork fi) and after he takes the one on

288 Part Seven Object and Process Calculi

Table 3 Dining philosophers specification

DinPhh d!J (fo)I{!I)I .. -IUn-I)IPoiP11· .. IPn-1
DinPhi2 d!J (fo)I{!I)I .. -IUn-1)IPoiP1I ... IPn-1Un-I/ fo, fo/ fn-d

def - ~
P; = rec x.(f;.f;+ni.fi+ni·f;.x)
where +n stands for the sum modulo n

Dispenser d~

DistrDisp d!)

SwButton d!)

ReqButton d!)

Table 4 Drink dispenser specifications

rec x.(switch.r·ec y.(request.dr·ink.y + switch.x) + Tequest.x)

({off)l(ok)ISwButton!ReqButton) \ {on,off,ok}

rec x.(ok.(switch.(on.of!.'Jc.x + off.on.'Jc.x) + 'Jc.x))
rec y.(ok.(request.(on.drink.'Jc.y + off.'Jc.y) + 'Jc.y))

its left (fork J;+ni). In this way the system can give rise to deadlock. In fact, if all the
philosophers grab their first fork at the same time, the system will be no more able to
proceed. In the second representation (i.e. agent DinPhi2) the possibility of deadlock is
removed by changing the forks grabbing order of philosopher Pn-1· It must be observed
that the grabbing order has been changed only by using the relabeling operator without
altering the specification of philosopher Pn-1·

3.2 Drink dispenser

In Table 4 an automatic drink dispenser with two different buttons (switch and request)
is specified. Button switch is used to turn on or off the dispenser. Button request is used
to ask for a drink: if the dispenser is turned on, the drink is returned; instead, if it is
turned off, the button request is not enabled.

Two possible specifications for the dispenser are presented: Dispenser and DistrDisp.
The first specification supposes the existence of one centralized manager for both the but­
tons, while the second consider two separated managers, i.e., SwButton and ReqButton
which manage the buttons switch and request respectively. In the distributed version,
three objects are used in order to allow the communication between the two managers:
{on), {of f) and (ok). The objects (on) and (of f) are used to represent the state of
the dispenser (turned on and turned off respectively), while (ok) is used to prevent the
possibility to have both the manager enabled (a manager is active only if it holds the
object {ok)). The manager of button switch only replaces the message agents (on) or
{off) for {off) or (on), respectively. Instead, the manager of button request must test
if the dispenser is turned on before returning the drink. The state of the dispenser can
be tested by ReqButton simply by reading (without removing) the message on or off:
if message on is read, then the drink is returned, otherwise nothing is done. The two
agents Dispenser and DistrDisp have different operational semantics, but they can be
considered equivalent, because they are able to reply in the same way to every possible
users. This equivalence is formalized in the following section where observational seman-

Towards a calculus for generative communication 289

a.'b.P s.a.P

1~ 1~

QlIP <a>IQIP Ql<a>IP IQIP

~/-
QIQIP QIQIP

Figure 2 Example of semantically equivalent agents.

tics are defined. For example, the bisimulation equivalence that we are going to adapt to
our language, equates the agents Dispenser and DistrDisp.

4 OBSERVATIONAL SEMANTICS

We investigate several standard semantic equivalences (bisimulation, failure, and trace)
in order to describe formally a significant class of expected properties of the generative
communication paradigm. For example, the agents in Figure 2, i.e. a.b.P and b.a.P, have
different operational semantics, but they can be considered semantically equivalent be­
cause, as already stated, the insertion order of the messages- in TS is not a determinating
factor. For the sake of simplicity and in order to define finite equational proof systems
for the congruences that we are going to introduce, only finite agents (i.e. recursion free
agents) are considered in this section.

4.1 Bisimulation model

We investigate if the standard semantic equivalence used for CCS, i.e. bisimulation (Mil­
ner, 1989), is abstract enough to identify the agents in Figure 2. In order to treat the T

labeled transition steps as unobservable actions, we consider the standard weak bisimu­
lation.

Definition 41 P ~ Q ~ P = R1 .2...2... Rn ~ St .2...2... Sm = Q
where n, m 2:: 1.

Definition 42 P p Q ~ (P ~ Q) V (P = Q 1\ a= T)

290 Part Seven Object and Process Calculi

Definition 43 A relation n ~ Agent X Agent is a bisimulation if it satisfies the following
condition:

if P n Q then Ya E Label :
(i) if P ~ P' then 3Q' : Q p Q' A P' n Q'
(ii) if Q ~ Q' then 3P': P p P' A P' n Q'

Definition 44 (Bisimulation equivalence ~)
~ = u { n ~Agent X Agent In is a bisimulation}

The bisimulation equivalence identifies, for example, the following agents:
a.b.P ~ b.a.P
a.b.P ~ a.b.P + b.a.P
a.fl..P ~ a.fl..P + fl..a.P

However, the bisimulation equivalence~ is not a congruence. In fact:
a.P ~ (a)IP

but:
(a.P) +(b)¢ ((a)IP) +(b)

As for CCS, the fully abstract semantics w.r.t. the bisimulation model is the observational
equality.

Definition 45 (Observational equality ~)

P ~ Q ~ Ya E Label :
(i) if P ~ P' then 3Q' : Q ~ Q' A P' ~ Q'
(ii) if Q ~ Q' then 3P' : P ~ P' A P' ~ Q'

Proposition 46 (Full abstractness of~ w. r. t. ~)
P ~ Q iff \fC[]: C[P] ~ C[Q]

where C[] ranges over all possible contexts.

In the first part of the proof of the last proposition (Ciancarini, Gorrieri, and Zavattaro,
1995), the observational equality is proved to be a congruence. This allows to investigate
about an equational proof system for ~. Our axiomatization uses an auxiliary prefix
operator.

Definition 47 (Multiple read prefix a*)

a*.P!.. a*.QIP
a*.P 2.. P

In order to extend the syntax of our language introducing the multiple read prefix, the
set Prefix must be redefined: Prefix = {a, g_, a, a* I a E Message} U { T}. This auxiliary
prefix is used in our axiomatization in order to transform the class of message agents in
equivalent prefix forms: it is easy to prove that (a) ~ a*.Q.

In Table 5 an axiomatic characterization for the observational equality is presented.
Axioms (1) and (2) state that the choice composition operator + is commutative and
associative. Axioms (3) and (4) consist of the other standard axioms for the alternative

Towards a calculus for generative communication 291

Table 5 Axioms for observational equality

(1) P+Q Q+P

(2) p + (Q + R) (P+Q)+R

(3) P+!l p

(4) P+P p

(5) a.P T.((a)IP)

(6) (a) a*.!l

(7) PIQ L;;p;.(P;IQ) + Lj qj-(PIQi)+
Lij: ((p;=aAq,=a*)V(p,=a*Aq;=a)) T.(P; IQj)+
Lij: (p;=a*Aq;=~) T.((a* . .QIPi)IQj)+
Lij: (p;=~Aq,=a*) T.(Pil(a*.QIQj))

if P = Li Pi·Pi 11 Q = r;, qj.Qj 11 Pi, qj #a

(8) (p.P) \ L {~·(P\L) if (p = r) V (p =a (or g, a*) II a rf. L)
if p =a (or g, a*) II a E L

(9) (P+Q)\L (P\L)+(Q\L)

(10) !l\L !l

(11) (p.P)[j] { (f(a))*.(P[f]) if p =a*
f(p).(P[f]) if p = T V p = a (or g)

(12) (P + Q)[f] (P[f]) + (Q[f])

(13) !l[f] !l

(14) p.r.P p.P

(15) P+T.P T.P

(16) p.(P + r.Q) p.(P + T.Q) + p.Q

choice operator. Axiom (5) is used to describe the out prefix operator in terms of other
prefixes. Axiom (6) corresponds to the property of the multiple read prefix introduced
above. Axiom (7) is the adaptation of the well known expansion theorem to our formalism.
Axioms from (8) to (13) are the usual axioms for the restriction and relabeling operators.
Finally, axioms from (14) to (16) are the standard T laws for bisimulation.

In the remainder of the paper A r P = Q means that P is proved equal to Q via
standard equational reasoning with the set of axioms A.

Proposition 48 (Soundness and completeness of A)
P "' Q iff A r- P = Q

292 Part Seven Object and Process Calculi

Table 6 Axioms for failure equivalence

(17) p + T.Q T.(P + Q) + T.Q

(18) p.P + p.Q p.(T.P + T.Q)

(19) T.(p.P + Q) + T.(p.R + S) T.(p.P + p.R + Q) + T.(p.P + p.R + S)

The following example, which was inspired by (De Boer and Palamidessi, 1990), describes
a further property of the generative communication mechanism that the bisimulation
semantic does not capture.

Example 49 Agent PI = a.(b.P + c.P) should be considered equivalent to p2 = a.b.P +
a.c.P. In fact, the choice between out operations does not depend on the environment:
it is a local choice which is not influenced by external agents. In this way, the agent P1 ,

similarly to P2 , inserts in TS the message a and another one between b and c wherever
the choice between b and c is completely internal. Bisimulation semantics is not abstract
enough, in fact P1 ';jJ P2 • Thus, we are forced to look for a more suitable equivalence.

4.2 Failure model

The failure semantic model consists in observing all the pairs [s, X] obtained by associating
to every trace s (where s E Obs*), a set X of actions which cannot be performed after
the execution of s.

Definition 410 P ~ Q ~
•Q=P 1\ s=c or

• P --2..,. P' 4 Q 1\ s = 1s' or
•P~P'~Q

where c represents the empty string.

Definition 411 (Failure set)
F[P] = {[s,X]isEObs*,X~Label, P~P',P'+,VaEX:P'+}

where P + means that there is no P' such that P ~ P'.

Definition 412 (Failure equivalence ~F)

P ~F Q ~ F[P] = F[Q]

The failure equivalence is not a congruence. In fact:
T.Q~FQ

but:
a.Q + T.Q >/JF a.Q + Q

We introduce an equivalence which is proved (Ciancarini, Gorrieri, and Zavattaro, 1995)
to be the fully abstract semantics w.r.t. the failure equivalence.

Towards a calculus for generative communication

Definition 413 (Failure congruence ~F)

P ~F Q ~ (P ';:jF Q) 1\ (P + iff Q +)
Proposition 414 (Full abstractness of~F w.r.t. ';:jF)

P ~F Q iff VC(]: C(P] ';:jF C(Q]

293

All the agents identified by the observational equality are equated by the failure con­
gruence too (i.e. ~~~F). In other words the failure semantics is more abstract than
bisimulation. The inverse relation is not true: the agents introduced in Example 49, which
are not identified by bisimulation, are failure congruent:

a.(b.P + c.P) ~F a.b.P + a.c.P
Proposition 414 also states that ~F is a congruence. As for the observational equality,
this allows to investigate about an axiomatic characterization for ~F- The one that we
propose is the adaptation to a standard equational proof system of the axiomatization for
failure ·equivalence on synchronization trees (Brookes, 1983). The property ~~~Fallows
to state that the set of axioms A introduced for the observational equality is sound for
the failure congruence too. In Table 6 the characteristic axioms concerning the failure
equivalence are introduced. The sound and complete axiomatization is defined as follows:

B = A\ {(14), (15), (16)} u {(17), (18), (19)}
It must be observed that the r laws (14), (15), and (16) are not required even if they are
sound for the failure congruence too.

Proposition 415 (Soundness and completeness of B)
p ~F Q iff B 1- p = Q

4.3 Trace model

Definition 416 (Trace set)
T[P] = {s E Obs* I 3P': P d} P'}

Definition 417 (Trace equivalence ';:jT)
P ';:jT Q ~ T[P] = T[Q]

It is easy to see that the trace semantics is more abstract than the failure, i.e., ';:jF~';:jT·
In fact, the trace set can be also defined in the following way:

T[P] = { s E Obs* I 3X ~ Label: (s, X) E F[P]}
As for CCS, the trace semantics is too abstract because it does not distinguish deadlock.
In fact, the trace equivalent agents:

a.(b.Q. + c.Q.) ';:jT a.b.JJ. + a.c.Q.
show a different deadlock behavior, e.g., when composed in parallel with the process a.b.Q..

5 CONCLUSION AND RELATED WORK

In this paper we have introduced a process algebraic framework which can be used to rea­
son formally about generative communication. Our language extends CCS by introducing

294 Part Seven Object and Process Calculi

the message agents (a), the read prefix g_ and the out prefix a (which is used instead of
the standard prefix a). It can be thought that these extensions are only syntactic sugar,
as (a), a and g_ could in principle be mapped to standard CCS by a translation like the
following (suggested by an anonymous referee):

[(a)B a . .!l.
[a.PB = T.([(a)BIP)
[g_.P] = a.[a.PB

This mapping models the reading of a message by means of the withdrawal and the con­
sequent emission of such a message. This approach is not acceptable because there is
an instant (between the withdrawal and the emission of the message) in which the state
is not consistent; a process willing to read the message may not find it! Such as wrong
situation cannot happen in our approach, where the reading of a message cannot prevent
other agents to read it. This problem is solved by the following more accurate mapping
which uses, however, one extra set of prefixes:

[(a) B rec x.(Ui.x + a . .O.)
[a.PB = T.([(a)BIP)
[g_.P] = a'.P

But some problems remain. The manager rec x.(Ui.x + a . .O.) of the message a is not able
to give its contents to an arbitrary quantity of reading processes all at the same time, but
it defines an order on them. Also in our language parallel processes which read the same
message are not able to perform their operations simultaneously, but this is implicitly
related to the fact that we have defined an interleaving semantics (i.e. a semantics in
which parallel independent operations can be executed in every possible order but not
simultaneously). In the case of non interleaving semantics the above mapping on CCS
will be not appropriate, as it introduces unnecessary sequentializations on readers. Our
language can be given a step semantics (Nielsen and Thiagarajan, 1984) only by adding
the following rules:

if s = m = n

P~P'

p J!:1 P'

ViE{l. .. n}:a;=:!!:

(a) {ja,,_~~.::;/'n(} (a)

Q {j~l,~m(} Q' 3J {1 } 1-1 {1 } t -(3 : ... s <---> .•. s s . . a; = f(i)

where {I at, a2, ... , anrr is used to represent the multiset which contains the elements
a 1 , a 2 , •.• , an. The semantics that is obtained by adding the above rules allows two read-

ing processes to access the same message simultaneously, i.e., (a)lg_.Pig_.Q J!j. (a)IPIQ.

We now analyze the originality of our framework with respect to other approaches to
the formal analysis of the semantics of generative communication.

In (Ciancarini, Jensen, and Yankelevich, 1995) several frameworks such as CCS, Petri
Nets and Chemical Abstract Machine (Berry and Boudol, 1992) are used as semantic
domains for the coordination language Linda. That paper studies different possible im­
plementations of generative communication in other computational models, but semantic
equivalences (and their axiomatizations) are not presented.

Towards a calculus for generative communication 295

In (De Nicola and Pugliese, 1995) observational equivalences based on testing (De Nicola
and Hennessy, 1984) are applied to a language obtained by embedding the Linda prim­
itives in a simple sequential host language. That is why that language is more complex
than ours and axiomatic characterizations of the equivalences are not presented. Moreover,
we are convinced that the properties of the generative communication mechanism are or­
thogonal to the features of the sequential host language: for instance, the most important
property focused in (De Nicola and Pugliese, 1995), i.e. program out(N,5); out(M,9)
is observationally undistinguishable from out (M, 9) ; out (N, 5), is easily proved in our
simpler framework by means of the general law a.b.Q. ':::f.F b.a.Q..

Our formalism can be also compared with other frameworks for asynchronous commu­
nication. In fact, standard asynchronous communication can be obtained by eliminating
the read prefix f! from our language. Moreover, even if generative communication uses
only one single data structure as a communication medium, it is not difficult to model
several channels in our formalism. It is enough to add the information related to the
channel in which the message is inserted to the messages' identification name (e.g. (t, a)
represents a message a sent along channel t).

In (De Boer, Klop, Palamidessi, and Rutten, 1991) a compositional semantic model,
based on sequences of pairs of states, is defined for a general asynchronous language. In
that framework, refusal information is not required in order to describe deadlock because a
trace-like model is sufficient. That is why the authors said that failure semantics "fails" in
the asynchronous case. This apparent inconsistency with our approach is essentially due to
a basic technical difference between the two frameworks: the state of the communication
medium is included in our agents (each single sent message a is denoted by (a)), whereas
in their approach it is considered external to the terms of the language.

More recently (De Boer, Klop, and Palamidessi, 1992) an "encapsulation operator" is
introduced to model asynchronous communication in ACP. The "encapsulation operator"
is used as a store for the messages which have been sent along a certain channel. A first
basic difference with our approach is that the order of transmission of the messages is a
determinating factor. If the channel is a queue, the authors suggest that this distinction
is useful when messages are sent along the same channel, as in a queue the sending
order influences the reading order. However, in their approach the distinction is kept
also when the sending order should influence in no way the reading order, e.g., when
the messages are sent along different channels. In fact, tja.sjb.P (corresponding to the
term (t,a).(s,b).P of our language) is not equivalent to sjb.tja.P (corresponding to
(;:b).(t,a).P). This is due to the fact that only in our framework the execution of an
out operation is not visible until the sent message is read. Moreover, standard failure
equivalence does not correctly describes deadlock in that formalism. In fact, the agent tj
a.sjb.P+tja.sjc.P (corresponding to (t, a).(;:b).P+ (t, a).(~).P) and tja.(sjb.P+sjc.P)
(corresponding to (t,";;). ((;,b). P + (~). P)) are not standard failure equivalent even if they
can be considered observationally undistinguishable (see Example 49). In order to solve
this problem special-purpose refusal sets are defined: the sending ("intended output")
operations are not introduced in the set X of each failure [s, X]. In our opinion, a formalism
in which the standard equivalences correctly describes the properties of asynchronous
communication is more suitable w.r.t. other frameworks in which the equivalences must
be adapted in order to capture the intended meaning.

296 Part Seven Object and Process Calculi

In two papers (Honda and Tokoro, 1991) and (Baudo!, 1992), asynchronous commu­
nication is embedded in the ?r-calculus (Milner, Parrow, and Walker, 1992) using a rep­
resentation of the sent messages very similar to ours, but an explicit prefix for the out
operation is not defined. In fact, the process P which sends the message a and becomes
P', is directly represented by means of the parallel composition of the agent represent­
ing the message a and P'. In our calculus, this means that a.P' should be considered
structurally equivalent to (a)\P'. In our opinion this structural equivalence gives rise to
some problems when the choice composition + is considered (the above are choice-free
languages). In fact, the agents P = a . .Q + b . .Q and Q =(a)+ (b) (which should be consid­
ered structurally equivalent) are used in our framework to represent different situations.
In the first case, the agent P sends either the message a or the message b and the choice
is internal to P. In the second case, the messages have been already sent, but only one of
them can be read and the choice is left to the reading process.

A framework more similar to ours is proposed in (Cleaveland and Yankelevich, 1994)
where a CCS with value passing and asynchronous communication is presented. Even in
that paper the out operations are executed by means of local (i.e. r labeled) transitions.
But, differently from our language, the message remains related to the process from which
it has been sent. In fact, in our framework a sent message is simply composed in parallel
with the sending process (i.e. a.P __.!_.., (a) \P), while in their approach a message is com­
posed with its sending process by means of the auxiliary operator <l in the following way:
a.P __.!_.., (a) <l P. Moreover, the messages can not be read by the processes from which
they have been sent. For these reasons, this approach is not suitable to model generative
communication, where a message is equally accessible to all processes (also the process
which sent it) and it is bound to none (neither its generating process). Furthermore,
no semantic equivalences are defined on their formalism in order to identify terms with
different operational behavior which can be considered semantically equivalent.

Acknowledgements

This research was partially supported by EC BRAn. 9102 COORDINATION. We thank
Catuscia Palamidessi for her helpful suggestions on a preliminary version of the paper
and the anonymous referees for their accurate and stimulating comments.

REFERENCES

Bergstra, J.A. and Klop, J.W. (1986) Process algebra: specification and verification in
bisimulation semantics. CWI Monographs. North-Holland.

Berry, G. and Boudol, G. (1992) The chemical abstract machine. Theoretical Computer
Science, 96:217-248.

Brogi, A. and Ciancarini, P. (1991) The concurrent language Shared Prolog. ACM Trans­
actions on Programming Languages and Systems, 13(1):99-123.

Boudol, G. (1992) Asynchrony and the 7r calculus. Technical Report 1702, INRIA Sophia­
Antipolis, France.

Brookes, S.D. (1983) On the relationship of CCS and CSP, in ICALP'83, volume 154 of
LNCS, pages 83-96. Springer Verlag.

Towards a calculus for generative communication 297

Carriero, N. and Gelernter, D. (1986) The S/Net's Linda kernel. ACM Transactions on
Computer Systems, pages 110-129.

Carriero, N., Gelernter, D. and Zuck,L. (1995) Bauhaus Linda, in Object-Based Models
and Languages for Concurrent Systems, volume 924 of LNCS, pages 66-76. Springer
Verlag.

Ciancarini, P., Gorrieri, R. and Zavattaro, G. (1995) Generative Communication in Pro­
cess Algebra. Technical Report 95-16, University of Bologna, Italy.

Ciancarini, P., Jensen, K.K. and Yankelevich, D. (1995) On the Operational Semantics
of a Coordination Language, in Object-Based Models and Languages for Concurrent
Systems, volume 924 of LNCS, pages 77-106. Springer Verlag.

Cleaveland, R. and Yankelevich, D. {1994) An Operational Framework for Value-Passing
Processes, in POPL'94.

De Boer, F.S., Klop, J.W. and Palamidessi, C. (1992) Asynchronous communication in
process algebra, in LICS'92, pages 137-159. IEEE Computer Society Press.

De Boer, F.S., Kok, J.N., Palamidessi, C. and Rutten, J.J.M.M. {1991) The Failure of
Failures in a Paradigm for Asynchronous Communication, in Concur'91, volume 527 of
LNCS, pages 111-126. Springer Verlag.

De Boer, F.S. and Palamidessi, C. (1990) On the Asynchronous Nature of Communica­
tion in Concurrent Logic Languages: a Fully Abstract Model based on Sequences, in
Concur'90, volume 458 of LNCS, pages 99-114. Springer Verlag.

De Nicola, R. and Hennessy, M.C.B. (1984) Testing Equivalences for Processes. Theoretical
Computer Science, 34:83-133.

De Nicola, R. and Pugliese, R. (1995) An Observational Semantics for Linda, in
STRICT'95, series Workshop in Computing, pages 129-143. Springer Verlag.

Gelernter, D. {1985) Generatiye communication in Linda. A CM Transactions on Program­
ming Languages and Systems, 7(1):80-112.

Gelernter, D. and Carriero, N. (1992) Coordination Languages and their Significance.
Communications of the ACM, 35(2):97-107.

Hoare, C.A.R. (1978) Communicating Sequential Processes. Communications ofthe ACM,
21:666-677.

Honda, K. and Tokoro,M. (1991) An Object Calculus for Asynchronous Communication,
in ECOOP'91, volume 512 of LNCS, pages 133-147. Springer Verlag.

Milner, R. (1989) Communication and Concurrency. Prentice-Hall.
Milner, R., Parrow, J. and Walker, D. (1992) A Calculus of Mobile Processes. Information

and Computation, 100(1):1-77.
Nielsen, M. and Thiagarajan, P.S. (1984) Degrees of non-determinism and concurrency: a

Petri net view, in 5th Conference on Foundation of Software Technology and Thoeretical
Computer Science, volume 181 of LNCS, pages 89-118. Springer Verlag.

