
18

CPN Modelling of an Object Based System:
The ODP Trader

A. Tokmako.ff and J. Billington,
Telecommunications Systems Engineering Centre,
University of South Australia,
Warrendi Road,
The Levels, 5095, Australia
E-Mail:[A.Tokmakoff, J.Billington]@UniSA.Edu.Au

Abstract

Advances in computing power and networking technologies are leading the way to a new
generation of information systems, where heterogeneous computers share resources and
cooperate in a distributed manner. Such systems are inherently complex due to concurrency and
synchronisation of activities operating in parallel, making design and implementation much
more challenging than yesterday's stand-alone personal computers. In order to engineer these
Open Distributed Systems, tools are required to aid in the design and analysis processes. In this
paper, Coloured Petri Nets and the Design/CPN® tool are used to model the ODP Trader which
has been recently standardised by ISO and ITU-T. The Trader is presented in an electronic
commerce environment, where interworking of Traders is demonstrated.

Keywords
Coloured Petri Nets; ODP Trader; Electronic Commerce.

1 INTRODUCTION

The Reference Model for Open Distributed Processing (RM-ODP) (ITU/ISO ODP, 1994) is a
joint effort by the international standards bodies ISO (International Organisation for
Standardisation) and ITU-T (International Telecommunications Union). RM-ODP aims to
provide transparent sharing of resources and services over different architectures, networks and
operating systems (Bietz, Berry, Lister and Raymond, 1993). As an important part of the
RM-ODP standard, the Trading function (ITUIISO Trading, 1995) allows a service consumer
(importer) to be "matched up" with a service provider (exporter) by a trusted third party.

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

246 Part Six Case Studies II

In a distributed system, locating an appropriate server should ideally be performed at run time
in a dynamic manner to allow for the introduction of new service providers. The Trading function
bas many areas of possible application including Load Balancing in a Distributed Operating
System, User-Oriented Resource Location in the World Wide Web (WWW) and as a commercial
service location utility. In order to improve our understanding of Trader, a formal, executable
specification of the Trader has been created using Coloured Petri Nets (CPNs) (Jensen, 1992).
This paper will discuss a model in which two Traders interwork to provide a service in an
electronic commerce environment, providing advanced information services.

2. THE TRADING FUNCTION

The Trader holds service parameters that describe attributes of exported services. These
parameters may be used by the Trader to match a request with a previously exported service.
When a set of offers which fulfil the request is obtained, the Trader may then select the "best"
service based upon selection criteria provided by the initial client request.

The sequence of interactions between the Exporter, Importer and Trader to locate a service are
shown in Figure 1 (ITU/ISO Trading Tutorial, 1995).

~
3.Import Reply,',_' \ !.Service Export 6 2.Jmport Request \

~~!!!Y~~!!!~
S.ser";ic";"aq,!y"'_)

Importer Exporter
Figure 1 Sequence of Interactions between Eltporter, Trader, and Importer.

• 1. Service Export: The Trader receives a service export from the Exporter. This request
includes a description of the service, a location at which the service may be accessed and
properties of the service. This information is stored in a database.

• 2. Import Request: The Trader receives a service import request from a client. This request
includes the type of service required and a list of desired attributes. The Trader checks with
an "Infrastructure Object" called the 'JYpe Repository (not shown in Figure 1) to ensure that
the requested service and properties are legal.

• 3. Import Reply: The Trader searches its database of exported services and returns any
successful matches after applying selection criteria if requested by the Importer.

• 4. Service Invocation: The Importer is now free to interact with the Exporter independently
of the Trader and utilise the service.

• 5. Service Reply: The Exporter replies to the Importer's service request.

Interworking of Traders is where multiple autonomous, possibly heterogeneous Traders
cooperate to provide an increased range of matching services. This is facilitated by the creation
of "Links" which describe the knowledge one Trader has of another and with whom it may
Interwork. Using these Links, a Trader may act on behalf of one of its clients as the client of

CPN modelling of an object based system: the ODP trader 247

another Trader. At this point in time, inteiWorking is an area of considerable interest and research
activity (Vogel, Bearman and Beitz, 1995).

3. UNDERSTANDING TRADER WITH FORMAL METHODS

An important first step is to increase one's understanding of Trader by the development of
models. A formal specification allows there to be an unambiguous statement of Trader's
functionality. We believe that it is important to develop "specification prototypes" which can be
executed to gain insight into Trader's operation.

To do this, we are using Coloured Petri Nets (CPNs) to provide a specification prototype, and
the tool Design/CPNl!!D (Meta, 1992) for creating and managing the prototype and for
performing simulation experiments. The aims here are to increase our understanding of the
dynamics of Trader, while at the same time, evaluating the utility of CPNs as a modelling
language.

A number of analysis methods have been automated for CPNs, including reachability analysis
and invariants analysis. Reachability analysis can be performed by the creation of an Occurrence
Graph. This graph contains one node for each reachable state, and an arc for each possible change
of state. This method effectively performs an exhaustive simulation run from a given initial
condition and covers all possible states the model may reach. It is not surprising therefore, that
it suffers from computational limitations, where a model may include too many states for the tool
to accommodate. Design/CPN provides an Occurrence Graph Analyser (OGA) which may be
used to transverse the state space and detect properties such as Deadlock and reaching undesirable
states. In addition, TORAS (Tool for Reachability Analysis of Systems) (Wheeler, Valmari and
Billington, 1990), developed by Unico Computer Systems under a contract with TelstraResearch
Laboratories, promises to be a superior tool for analysis of concurrent systems as it supports
advanced techniques for reducing the state space (Valmari, 1989).

Place Invariants analysis is a method which attempts to find equations that are satisfied by all
reachable markings. It does not suffer from the state space explosion problem associated with
OGA analysis since it uses algebraic symbolic calculations rather than a brute force method. We
can use invariants analysis to prove properties of the model including assertions such as the set
of tokens of a given colour remain constant (i.e. neither produced nor consumed by the CPN).
A tool for invariants analysis (Design/CPN Place Invariants Tool) is not yet widely available as
it is currently at research prototype stage (J0rgensen, Mortensen and Sousa, 1994).

Having used these analysis methods to verify the Trader, it may be possible to use
implementation tools such as PROMPT (Billington, Wheeler and Wilbur-Ham 1988), to
transform a CPN model into executable code. When using CPNs as a modelling tool, we may
illustrate the flow of control and data flow by observing the flow of tokens through the net on
execution.

4. COLOURED PETRI NETS

CPNs were developed in the early 1980's by Kurt Jensen at Aarhus University in Denmark
(Jensen, 1992). CPN models have a graphical form, and a well-defined semantics which allows
for formal analysis. They have been applied to a variety of applications including Description

248 Part Six Case Studies 11

of Services in Intelligent Networlcs (Dibold, 1992), Specification and Verification of Protocols
(Billington, Wheeler and Wilbur-Ham, 1988), Modelling Organisation Workflows (Mortensen
and Pinci, 1994) and Design and Validation of Hardware at the Register level (Jensen, 1992).
Graphical simulations may be executed where the modeller sees tokens moving throughout the
system as the transitions fire. As the tokens are arbitrarily complex data values, the simulation
allows data flows to be modelled. CPNs are high level Petri Nets which provide for modelling
with hierarchical structure and representation of complex data types. Figure 2 provides a simple
example of a CPN. A CPN is composed of the following:
• Colours: Analogous to a "type" in a Programming Language.
• Places: Represented by ellipses, which are typed (thus being of a certain colour).
• Transitions: Represented by rectangles.
• Arcs: Represented by arrows, which define relationships between places and transitions.
• Tokens: Data values contained in places (consistent with the place's colour).
• Inscriptions: Arcs and transitions may be inscribed with expressions containing constants,

variables and functions. In the computer support tool, Design/CPN, these are written in
Standard ML, a functional programming language.

• A set of declarations, defining Colours and functions and declaring variables and constants.

The association of tokens with places in the CPN is known as the marking (or global state)
of the CPN. The marking of a CPN is changed by the occurrence of transitions. A transition may
occur if:
• there are appropriate tokens residing in its input places (determined by the the arcs and

inscriptions connecting places to the transition) and,
• the transition inscription (guard) is true.

We will introduce these concepts with the help of Figure 2 which shows three places and one
transition. A single colours i z e has been defined in a Declaration Node. size is a set of three
values: big,medium, small. The two variables which have been declared (a and b), are
restricted to values which are given by their colour (size) . All the places in this example are
of colours i ze, which limits the tokens they may contain to that colour. The presence of tokens
at a place is indicated by a bold circle which contains the number of tokens located there. The
text above places indicates the multi-Bet of tokens which are present. For the top place, 1' big
indicates that there is one token with value big in the place. If desired, this information may
be hidden allowing the model to remain uncluttered.

Declaration Node

color size = with biq I medium small; (I] var a, b : size;
s~ L---~------------------------~

Figure 2 A simple CPN Transition with two input places and one output place.

There are a number of inscriptions in this CPN. Both of the input arcs to transition "Go" have
variables for inscriptions, and the output arc has a more complex inscription which involves a
conditional test.

When Design!CPN assigns a value to a variable, it is known as "binding". For a particular
binding to variables, if all the input places connected to a transition by arcs have tokens of the

CPN modelling of an object based system: the ODP trader 249

required number and colour (as defined by the arc inscriptions), then the transition is said to be
enabled. More than one transition may be enabled at once. A transition that is enabled may fire.
When a transition fires, tokens are removed from the input places and added to output places, as
indicated by the arc inscriptions. In Figure 2, we can see that transition Go is enabled when a
is bound to the value biq and b is bound to small. On firing, both of the tokens in the input
places are consumed, and a token with value medi urn is placed into the output place.

Design/CPN supports hierarchical modelling. This means that a model may be spread out over
a number of ''pages", where each page models different aspects of the system allowing
modularity. A page which is ''used" by another is known as a sub--page of the super-i)age. The
CPN on the sub--page is known as a sub-net. The main construct for this is a substitution
transition.

5. OBJECTS AND PETRI NETS

A great deal of work has been done on the topic of Petri Nets and objects, and a survey of these
techniques is given in Bastide (1995). There are two main approaches to combining the concepts
of Object-Orientation and Petri Nets.

The first method, known as "Objects inside Petri Nets" is where tokens are considered to be
objects and each token is an instance of the object class. In order to perform functions (or
methods) on objects, transitions fire where inscriptions on outward arcs may be evaluated using
object method operations. Figure 3 (Bastide, 1995) illustrates this concept, where objects of
different colour (residing in Places A and B) are bound to variables x andy. When transition Tl
occurs, the outgoing arcs are evaluated, with the result of a method invocation on object x (using
parameter y) being placed into C which is of colour Colourl. Output arcs indicate the flow
of objects throughout the system. This philosophy allows objects (tokens) to be created and
destroyed dynamically which occurs in real dynamic object-based systems.

Figure 3 The "Objects inside Petri Nets" concept.

Thus, CPNs may be considered to be object based, where tokens are objects with their internal
data structure defined by their colour. Transitions associated with a place provide the methods
which may operate on the data within the object (token). The net structure determines the
ordering of these methods, hence defining the system's functionality. CPNs provide for
concurrency and synchronisation and thus, are a concurrent object-based modelling language.

250 Part Six Case Studies II

The second method, known as "Petri Nets inside Objects" is where a Petri net is used to model
the internal workings of an object, and the inter-<Jbject communication of an Object-Based
system. In this modelling methodology, a token is used to hold data (depending upon its colour)
and the marking of a net represents the internal state of an object Using this methodology, it is
not possible to dynamically create objects, as they are part of the CPN structure. A clearly defmed
interface may be created which indicates the "methods" which an object may perform and data
hiding is easily represented. It is this methodology which has been used to model the ODP Trader
using Design!CPN.

6. MODELLING TRADER'S DYNAMICS

Firstly, the hierarchy of, and interaction between pages in the model will be discussed. A detailed
explanation of some of the pages (due to a lack of space) will follow and an explanation of the
colours (data types) which have been used in the model will be included where appropriate. This
paper only covers the Import operation, the most complex of the four functions {Import, Export,
Withdraw, ModifY) which a Trader can perform.

A. The Model Hierarchy

Design!CPN provides us with the opportunity to create a hierarchy of nets which as a whole,
model the Trader. These nets may represent objects which exist in the Trading Environment, or
may be used to hide complexity within the model. Figure 4 shows the Hierarchy page of the
model (Hierarchy#lOOl), where pages are represented by a node containing a page name and
number.

,·-·-·-·-·-·-. • Hlerarchy#tOOt 1 '·---·-·-·-·-·
(Declarat12)

(Trader CPN Model Hlemrchy Page)

Figure 4. The Hierarchy page of the Trader Model.

CPN modelling of an object based system: the ODP trader 251

Relationships between pages are indicated by a directed acyclic graph. This page indicates a
"uses" relationship between pages and is created by Design/CPN upon request (page names are
truncated to 8 letters). The function of the pages is given below.
• Declarat#2 is a page which contains the Global Declaration Node, where all colour sets

(types) and variables are declared and SML function code for the model is located.
• Trad....Env#l is the top-most page of the model which defines a topology for communication

between objects in the Trading Environment. It is also the "Prime" Page which specifies
which pages of the CPN should be simulated.

• TSI#8 represents a Trading Service Interface (TSI) within the Trading Environment. It may
be instantiated multiple times to model an environment where Traders interwork.

• TSI_j)#ll and TSI_C#12 represent Trading Service Interfaces (Server and Client mode
respectively) which are objects instantiated by the Trader to provide well-defined interfaces
to the Trading Community. TSI_S#ll operates in Server mode, where it accepts incoming
requests and invokes appropriate operations on the Trader itself. TSI_C#12 operates in Client
mode, where it initiates requests and receives replies on the Trader's behalf.

• Import_0#3 and Export_O#lO model the operations which the Trader performs when
servicing an Import and Export Request respectively. These pages are sub-pages ofTSI#8.

• Exporter#4 represents the Exporting Object. The model assumes that valid Export Offers
have been submitted by this Object and have been stored in the Offer Space Object. This is
easily achieved in Design/CPN by creating tokens at the appropriate place using initial
markings.

• lrnporter#5 represents the Importing Object. This page models an importing object which
submits an Import request to a Trader. In practice, this object may be a computational object
in a Distributed System, or even a WWW browser.

• Search#6 represents the Search Policy Object. This Object is used to determine the Search
Scope when an Import Request is being processed. Information held by this object indicates
whether a Trader should search the local database, forward the Import Request to linked
Traders, or both. It holds initial search policies for both Traders in the Trading Environment.

• Offer_Sp#7 represents the Offer Space Object which is used by the Trader to manage the
offers which are submitted to the Trader by Exporting Objects. It is a Generic Service Object
which may be used by any Trader to store Offers.

• Link#9 represents the Link Space Object which manages the Trading Links. It maintains a
record for each Trader in the Trading Environment. The record indicates which other traders
may be contacted for joint trader interworking.

The Search#6, Offer.J)p#7 and Link#9 pages all represent objects which are yet to be specified
by the ODP Standardisation process. Thus, in this model, these objects have been modelled using
a "common sense" approach. That is, they are modelled to provide limited functionality to the
Traders to enable them to perform the Trading Function. This allows us to test the Trading
Environment Model by performing simulation runs using the Design/CPN Simulator.

B. Trader Environment Top Level Page
The top level page of the model is Trad....Env#l (Figure 5). It can be seen that are 7 instances of
Computational Objects in the distributed system, each of which has been modelled at a lower

252 Part Six Case Studies II

level on a separate page. These sub-pages are linked to Tracl..Env#l through the use of a shared
place which models the Communication Medium used by objects for message passing. It is
assumed that there is a Communication Protocol stack in place which provides a service in which:
• messages are neither lost, nor duplicated,
• ordering of messages is unimportant (overtaking is allowed),
• there is no mutilation (corruption) of messages.

Each object in the system is modelled by a substitution transition which encapsulates the object
and places it in the context of the environment in which it resides. Substitution transitions are
indicated by the presence of a HS within a box located in each transition on the page. The objects
communicate through input/output ports which have a mapping from the high-level Trader
Environment page to the corresponding sub-page which represents the object. Thus, the place
"CollllllS.....Medium" has a place in each substitution transition sub-page which has exactly the
same marking.

ODP TradiDg Environment

Figure 5 The Top Level page (Trad_Env#l).
Objects in the system have unique identifiers required by the communications sub-Bystem to

allow inter-object communications. These identifiers are defined by colour Id which is similar
to an enumerated type found in most programming languages.

color Id = with importer
exporter
TSI...S
TSI...C
search
J.ink,_space
offer_space
t:t_tsi._c
t:t_tsi._s
t2_tsi._c
t2_tsi._s

I (* Generic Importing Object *)
I (• Generic Exportinq Object •)
f (* Generic Tradinq Service Interface Server *)
1 {* Generic Tradinq service Interface Client *)

1 {* search Space Object •>
I (* Link. space Object *)
I (• Offer Space Object •)
1 (* Trader 1 Tradinq Service :rntarface Client Rol.e *)
1 (* Trader 2 Tradinq Service :Interface Client Role •)
1 (* Trader 2 Tradinq service Interface Client Role *)
(* Trader 2 'l'radinq Service :Interface Client Role *)

An important colour in the model is Message which defines the structure of the messages passed
between objects in the system. It is defined as a tuple of two colours:

CPN modelling of an object based system: the ODP trader

color Addresses = product Id*Id;
color Data = product Operation*OpJ)ata;
color Messaqe = product Addresses*Data;

253

Addresses is a pair of sender and receiver identifiers for the message, and Data is a pair
containing an Operation to be performed and Operation Data, which are parameters for the
operation.
The colour Operation defines all valid operations which objects may perform including:

color Operation = with qet_offers {** Offer Space Operation **)

import (** Import operations **)
query_offer_qraph I
export I (** Export Operation "*}

unify_policy I {** Policy Operation **)
qet_links I (** Link Space Operation **}

error I (** General Purpose operation **)

respond I
acknowledge:

In addition to Operation, subsets of Operation are defined. These subsets correspond with
specific sets of operations which are associated with an interface. Having declared the sub-set,
the in' (subset_id) operator may be used as a boolean test for an element's membership
within the subset. Import_Ops is defined as a subset of Operations by the following
declaration.

color Import_Ops = subset Operation with
[import, query_offer_qraph] declare in;

All Operations may have an associated Op_Da ta which contains Operation parameters.
Op_Da ta is defined as a Union of different colours representing data required for different
Operations.

colour Op_Data =union err:Error + imp:Serv_Type + ackzAcknowledqe + none;Null+
off:Serv_Off + s__pol:S_Policy + link.._l;Link.._List + off_bOffer_List;

Thus, any place with colour Op_Da ta may store a token which is a member of the union. We
need only to specify the union identifier of the colour (such as link_l for data of colour
Link_Lis t), when we remove tokens from this place. This indicates the colour of the data and
is used extensively throughout the model.

The colours which model Service Offers are based upon the Trader Standard. As before, high
level colours are made up of products of lower level colours. A service type is defined by a tuple
consisting of an Interface JYpe (Int_Type) (which defines what the service is), and a list of
Service Properties (S erv _Prop) (which is a list of attributes associated with the service). From
this, a Service Offer includes a reference to where the service may be obtained (Serv_In t_Id).
An Offer_List is simply a list of Service Offers. It is used in the model for storing the exported
offers and for creating a list of retrieved offers which will undergo a selection process to obtain
the "best".

colour Serv_Type = product Int_Type*Serv_Prop;
colour Serv_Off = product Serv_Type*Serv_Int_Id;
colour Offer_List = list Serv_Off;
colour Offer_store = product Id*Offer_List;

As a demonstration of the Trader's application to the provision of advanced information
services in an electronic commerce environment, the colour definitions of the Services focus on
some typical services which a "net hacker'' might require.

(** Service Interface Types **}
color Int_Type = pizza I software 1 usect_car;
(** Service Properties **)
color Properties = the_lot I veqetarian I simcity I spreadsheet I six._cylinder I sports;

254 Part Six Case Studies II

color serv_Prop • list Properties:
(** Service Providers **)

color serv_.Int_I:d = with pizza_.haven I pedroa_pizza 1 aoftware_supermarket
virQin I bobJD,oran I champion:

A service exporter could submit a s erv _Off token with structure:
((usect_oar, [&ilL.cylinder, sports]) ,bob..Jnoran)

The shared place Comms_Jiedium is of colour Message which indicates that only message
tokens may exist in the place. Each of the substitution transitions has an associated sub-net whose
input/output port is connected to a transition with a guard. This guard checks the addressee
(receiver) of the message and evaluates to true only if the message was addressed to that object
Only transitions with a guard which evaluates to true will be enabled, thus consuming the
message when fired.

C. Trading Service Interface

The page TSI#8 (Figure 6) represents a Trading Service Interface, which is the interface between
the Trader and other objects in the Trading Environment. It accepts messages and depending
upon whether they are for the server (TSLS#ll) or client (TSLC#l2) mode, directs them to the
appropriate substitution transition. Both of these modes are encapsulated in a page to reduce the
"clutter'' of this page. A TSI inherits the functionality ofboth the Import and Export operations
as seen by the fact that both the Import.0#3 and ExporLO#l 0 pages are sub-pages of TSI#8.

Figure 6 The Trading Service Interface (Trader#S).

A Trader acts as a Server when it allows exporters to place service offers in its offer space
(Export operation), and when it accepts import requests from an importer (Import Operation).
When the Trader is required to propagate an import request, it does so using the client mode of
the TSI. The preceding import request is issued to all linked Traders, and the results are passed
back to the Import Operation.

CPN modelling of an object based system: the ODP trader 255

In order to allow unique instances of the TSI, two places are required to hold tokens with unique
instance identifiers (Server_In t_ID and Cl ien t_In t_ID). These places are used in order
to identify messages addressed to a specific instance of the TSI in either server or client mode.
Design!CPN allows multiple instances of a page and thus, for each instance, the initial marking
must be altered to contain a unique identifier.

Figure 6 shows Server_In t_ID having a marking of 1' t2_ts i_s which means "Trader
2, Trading Service Interface, Server mode". Since the only value which the variable r_s may
be bound to is t2_ts i_s, any message which arrives in the Corrons_Medi um place must have
a Receiver field r_s containing the same value in order for the "Message for Service Interface"
transition to become enabled. This is an example of where pattern matching has been used to
select a specific type of message.

In order to access information which is "hidden" inside tokens, some "Projection Functions"
have been written. They allow the model to move data around as high order colours, whilst still
allowing access to data within the token. Four basic functions (s (mess) , R (mess) ,
Op (mess) , Op_.Da t (mess l) are defined to access the most commonly used data in a
Message token, all of which follow a basic pattern. The input parameter to the functions is a
message. For function S, the variable s is returned as the sender of the parameter message.

fun S({(s,r),datJData)zMessaqe):Id = s;
fun R(((s,r) ,dat:Data) :Messaqe) :Id = r;
fun Op((addraAddresses, (opn,op_d)) :Messaqe) :Operation = opn;
fun Op_J) ((addr:Addresses, (opn, op_d)} :Messaqe) :Operation = op_d;

The R(mess) function call returns the Id of the receiver of the Message and is used in the
inscription on the arc from the transition "Server Interface" to the Corrons_Medi um I/0 port.

D. Server Interface
Page TSI....S# 11 models the Server Interface, where messages from clients are sorted according
to operation type through the use of the Op (mess l function call (Figure 7). Initially, the token
in place Interface_.Mode is set to idle. Whenamessageisreceived, ifmisbound to idle,
the message is checked to see if Op (mess) is in the set of either Import_Ops or
Export_Ops. Depending upon this test, the token in Interface_.Mode is modified to
reflect the new Operation in process. While the state variable is not idle, messages are
forwarded to the appropriate operation until Op (Mess) =respond which indicates the end of
an Operation and the return to the idle state.

E. Import Operation Page
The Import operation is modelled on the Import_0#3 page (Figure 8) and is the most significant
page of the Trader model. It models the processes which are performed when the Trader services
an Import Request. The Trader Standard (ITU/ISO Trading, 1995) specifies the steps which are
to occur to perform an Import Operation in the Computational Specification of the Trader. The
CPN model uses the places "Incoming Mess" and "Outgoing Mess" as input and output ports
respectively. All input and output occurs through these places. When a message arrives from
an external object, the guards on the transitions connected to "Incoming Mess" allow only
messages from the appropriate object to proceed.
From left to right, the vertical streams of token flow have the following functionality:

• The initial Import Request is checked to see if the parameters are correct. This has been
modelled through the use of non-determinism. A boolean variable result of colour Test

256 Part Six Case Studies II

(which may take only two values (FAIL or PASS)) is bound to one of its values arbitrarily.
The effect is that the transition will pass or fail the test non-deterministically, eliminating the

need to write a function to perform the test. At this level of abstraction in modelling the

Trader, we are interested only in the behaviour under certain conditions, not the

implementation to determine whether parameters are correct or not. Given that the message
passes both the Parameter and Security checks, a message is sent to the Search Policy Object

(located on page Search#6), requesting it to send the current search policy.

Figure 7 The Server Interface page (TSI_S#ll).

The value of the token in Interface_Mode determines the path of incoming messages,
either to the import or export operations. When the selected operation has completed, it sends
a message to the requesting object where Op (mess} =respond, indicating that the request has
been serviced. This message indicates the end of a service transaction, and the token in
In terf ace_Mode is reset to idle. The In terface_Mode place limits the TSI to service
an import or export operation, but never both at the same time.

• The Search Policy Object replies with the Search Policy which is used to determine whether

a local search, a link search or both should be performed. A function call to

Link_Local (S_Policy, Mess} determines iflocal and/or link searches are required.

If a local search is required, a message is sent to the Offer Space object (Offer_8p#7),

requesting it to ge t_o f fer s matching the initial Import Request (using the stored mess).
If a link search is required, then a message is sent to the Link Space object (Link#9) with a

request for it to get_links.

• When the Link Space object replies, the links are obtained and used to send off multiple

requests (one to each linked trader) for an Import based upon the initial request. In addition,

a counting token, maintaining the number of links being searched in place

Nwnber_of_Links, is updated from its initialised value of zero.

tr
•.

.t
t•

rU
L

J\

tt
'l

'l
l

··
•t

-•
J
J

,
t•

n
:G

r.
 (

u
r
~•
~r
i:
'O
t.
..
,P
t)

l~
" ..

 •l
t•

P
&

JL
 I

'
C

(U
I

8
,
1

(
-
e
)
l

,
t
•
ni

r-,
(•
r
~

(
~.
ft
,:
;:
~~

Fi
gu

re
 8

 T
he

 Im
po

rt
O

pe
ra

tio
n

pa
ge

 (l
m

po
rt_

O
p#

3)
.

lf
l'
•
l
.
,
.
,
_

.
.
,
.

tr
-P

o-
cf

,
o

ff
 l

t .
.
 le

e
tt

o

l)

)
)

I
-

-

258 Part Six Case Studies Il

• When the linked traders reply, offers are added to an initially empty list. The
Number_of.J.,inks counting token is used to indicate how many linked trader responses
are still outstanding. Transition "Apply Selection Constraints" will not be enabled until the
local offer space has been searched, and the counting token has reached zero. Thus, it will
wait until all responses have been received and upon firing, apply selection constraints to the
list of matching offers and return the "best" offer(s) to the importer.

In addition to the functions mentioned in section C, the model includes functions which operate
in a recursive manner on lists of tokens. They are:

Send_Mess(Link_List, Id, Mess)
Match_Off(Serv_Type, Offer_Store)

Send...)-1ess (l sends an import request to all of the linked Traders given in the Link_List,
from the object specified by Id (used on page Import_0#3). Match_OffO searches the
Offer_Store and attempts to find a match to the Serv _Type token which contains the match criteri­
on (used on the Offer_8p#7 page).

6. COMMENTS ON THE MODEL

6.1 Analysis
There are three methods which may be used in the analysis of a CPN- Simulation, Occurrence
Graph Analysis and Invariants Analysis.

• Simulation is effective in debugging a model as the modeller has direct graphical feedback
from the simulator and can monitor the passage of tokens as they flow throughout the model.
It is limited, however, in that it is slow and requires direct human supervision to obtain results.
Automatic Simulation Mode disables graphical feedback and terminates the simulation run
after a user defined number of steps have occurred. Prior to simulation, Design/CPN
performs a syntax check which ensures that arc and transition inscriptions are valid, and that
places have an associated colour set.

• Occurrence Graph Analysis can be used to detect deadlocks, live locks or forbidden states in
the model. This is a particularly useful method in order to prove that a system will not "lock
up". Its drawback is that it may require large amounts of computational resources for complex
systems, and only gives results for a particular initial marking.

• Invariants analysis is more computing resource efficient (compared with the OGA memory
requirements) and can be used to prove certain assertions about the system It requires the
modeller to determine which checks are necessary and to write appropriate queries for the tool
to use which is itself in a prototype stage.

At this point, extensive debugging of the design has been performed through the use of the
Design/CPN Simulator. In order to improve the performance ofF orrnal Analysis using the OGA
tool, the model should be modified to reduce the possible state space. This may be performed
by removing intermediate places and through reduction of the number of colours which are used
(sample data). In general, this results in reduced "readability" which is the trade--off. This model
is intended for use in Simulation runs to gain a feel for Trader operation. The modified model
will be derived from the simulation model, but will be used for verification of model properties.

CPN modelling of an object based system: the ODP trader 259

It is intended to ''port" the model into TORAS which has advanced analysis techniques
including stubborn sets which promises to be very effective in reducing the state space of the
model. The Trading system which has been modelled is a concurrent system where objects are
loosely coupled. That is, there are sections which may operate with very little interaction between
transitions. This is particularly conducive to analysis using the stubborn set method. Stubborn
sets are sets of transitions that are not affected by external transitions in a given state [14]. This
concept is used to select representative transition sequences and discard the rest Most properties
of the CPN are guaranteed to be preserved although not all.

6.2 Benefits
The model allows for true concurrency of operation. This is evident in the structure of the CPN
model, where objects operate autonomously and in parallel. When an Import Request is
processed, the local and link searches operate concurrently; that is, two messages are sent to
different objects which process them concurrently. This is particularly attractive as it models the
distributed nature of linked traders.

The CPN method allows an integration of data and control flow in one model. This is
advantageous as it provides a more "complete" picture of the system being modelled. In addition,
the model is executable which provides increased confidence in the model, through simulation
runs. Although these runs provide only a limited traversal of the model's state space, use of tools
such as TORAS allow exhaustive state space verification methods to be applied.

The model is both graphical and textual, allowing formalisation of data definitions in addition
to a graphical description of the system relationships. The combination of these features
improves comprehension of the model which is important when the model is used as a
design/implementation tool.

6.3 Limitations
At present, the model does not include any Management functions which are implemented by the
Trader Management Interface, nor a detailed offer space graph which allows offers to be
partitioned. This may included through modification of the Offer Space Object (Offer storage
algorithm). Policy information (import, export, trader) is limited to search policy information
and is not updated to reflect Traders which have already been searched. This is a matter of
including a list of visited traders in the search policy of a request.

7. CURRENT WORK

The model will be extended to include pages to represent all Trader functions (Import, Export,
Withdraw, Modify), thus providing a complete formal, executable, specification of the Trader.
Interfaces betWeen Trader and external objects will be included, allowing multiple channels of
communication between Trader instances and client objects. This will eliminate the need for the
TSI's to manage messages from external objects during the servicing of requests.

Support for concurrent servicing of requests will be included by creating multiple TSI's and
asaigning internal transaction identifiers when processing import/export requests. This will
allow the Trader to offer multiple TSI's and process multiple requests as they arrive. Formal
analysis of the Trader using the OGA will be performed, with the aim of finding deadlocks and/or
unwanted states.

260 Part Six Case Studies II

8. CONCLUSIONS

We believe that the Trader has an important role to play when electronic commerce becomes
widespread which is foreseeable in the near future. In order to verify the correctness of the
emerging standard, a model has been created which is formally verifiable and executable through
simulation runs. This allows us greater understanding of the system, and increases our
confidence in an implementation. CPNs are an appropriate choice for the modelling of Trader
as they have a graphical representation, are excellent for modelling concurrency, and have a
formal semantics which allows us to prove properties of the model. Our research will verify the
Trader and subsequently apply the Trader to an electronic commerce environment where an
obvious need exists.

REFERENCES
Bastide, R. (1995) "Approaches in unifYing Petri nets and the Objeci-Oriented Approach",

Available at: http://www.dsi.unimiJt/Usen/Labs/PetriLab/ws95/abstractlbastide.html

Bietz, A., Berry, A., Lister, A. and Raymond, K.A. (1993) "Introduction to Open Distributed Processing", Pro­
ceedings of the ACS Queensland Branch Conference- Overcoming Isolation: The Hwnan-Computer Connec­
tion, Townsville, Australia, pp. 27-34.

Billington, J., Wheeler, G. R. and Wilbur-Ham, M. C. (1988) "PROTEAN: A High-level Petri Net too/for the
Speciftcation and Verification of Communication Protocols ",IEEE Transactions on Software Engineering, Vol
14,No. 3.

Billington, J. (1991) "FORSEEing Quality Telecommunications Software", Proceedings of the First Australian
Conference on Thleconununications Software, (ACTS) April1991.

Dibold, H. (1992) "Hierarchical Coloured Petri Nets for the Description of Services in an Intelligent Network",
International Zurich Seminar on Digital Conununications : IN and their Applications, 1992.

ITUIISO ODP (1994) "Reforence Model of Open Distributed Processing- Part I: Overview and Guide to Use",
Draft International Standard 10746-1 , Draft ITU-T Reconunendation X.901,1994.

ITU/ISO Trading Tutorial (1995) "Reforence Model of Open Distributed Processing- Trading Function Annex
A: 'IUtorial of the Trading Function".
Available at: http://www.dstc.edu.au/AU/research_news/odp/trader/tr_tutorial.html

ITUIISO Trading (1995) "Reforence Model of Open Distributed Processing- Trading Function", ISOIIEC DIS
132351 Draft Reconunendation. X.950, June 1995.
Also available from: http://www.dstc.edu.au/AU/research_news/odp/trader/standards.html

Jensen, K. (1992) "Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume I : Basic
Concepts", EATCS Monographs on Theoretical Computer Science, Springer-Verlag.

Jlll'gensen, J.B., Mortensen, K. H. and Sousa, A. V. (1994) "Modelling and Analysis of Distribution In BETA Using
Coloured Petri Nets", Thchnical Report, Computer Science Department, Aarhus University.

Meta Software Corporation (1992) Design/CPN User's Manual. Cambridge, Mass, U.S.A.

Mortensen, K. H. and Pinci V. (1994) "Modelling the Wor/iflow of a Nuclear Waste Management Program", Ap­
plication and Theory of Petri Nets 1994, LNCS 815, R. Valette (Ed), Springer-Verlag, pp. 376-395.

Valmari, A. (1989) "Stubborn sets for reduced state space generation". Advances in Petri Nets 1990, LNCS 483,
Springer-Verlag 1990 pp. 491-515, originally appeared in Proceedings of lOth Ioternational Conference on Ap­
plication and Theory ofPetri Nets, Bonn, Vol II, pp. 1-22.

Vogel, A., Bearman, M. and Beitz, A. (1995) "Enabling Interworking of Traders". Open Distributed Processing:
Experiences with distributed environments, K. Raymond, L. Armstrong (Eds), Chapman and Hall,185-196.
Also available at: http://www.dstc.edu.au/AU/staff/andreas-vogeVpapen/icodp95.ps

Wheeler, G., Valmari, A. and Billington, J. (1990) "Baby TORAS Eats Philosophers but thinks about Solitaire",
Proceedings of the Australian Software Engineering Conference (ASWEC) 1990.

