
17

Advantages of Formal Specifications:

A Case Study of Replication in Lotus Notes

Marc Bourgois (marc@ecrc.de)

European Computer-Industry Research Center, Munich

Abstract: We show the advantages of formal specifications for distributed systems. We avoid
contrived toy examples. Instead we focus on object replication in Lotus Notes, a popular
groupware product, for which an informal specification already exists.

We base our formal specification on higher-order multiset rewriting. Using this formalism,
we detect an error in the original specification, eliminate redundant and overly restrictive data
structures, and expose the natural parallelism of the replication algorithm.

As a result we end up with a specification of the replication algorithm which is "more
correct", leaner, and more widely usable. Indeed, the scope of the algorithm now includes
parallel implementations, which may conceivably serve as the basis for highly available object
servers on the Internet.

Keywords: formal specifications, multiset rewriting, distributed algorithms, Lotus Notes,
refinement and transformation of specifications.

1. Introduction

We are concerned with formal methods as specification tools. Concretely we contrast
specifications based on higher-order multiset rewrite rules with informal specifications.
Higher-order multiset rewrite rules show their particular strengths in the specification of three
aspects of modem software:

• distribution: Multiset rewriting is highly parallel in nature, thus capturing one of the
most distinctive features of distributed systems: their parallelism [1].

E. Najm et al. (eds.), Formal Methods for Open Object-based Distributed Systems
© IFIP International Federation for Information Processing 1997

232 Part Six Case Studies II

• object-based: The higher-order extension of multiset rewriting provides a
straightforward means of modeling the hierarchical, compositional aspects of object­
based systems.

• openness: Higher-orderness also allows us to explicitly manipulate the rules, and thus
(part of) the specification itself. This provides a means of modularizing, reusing, and
exchanging parts of a specification. Such specifications become open, in the sense of
being amenable, or easily adaptable, or reflective.

For a convincing proof of the relevance of our approach we selected an existing,
commercially important and sizeable piece of software: Lotus Notes. Apart from being the
most widely adopted groupware system, the Lotus Notes architecture and algorithms are well
documented, making it an attractive case study.

In a previous report we have already used higher-order multiset rewriting to specify the
distributed run-time system of a coordination language [3]. We were especially successful in
exposing the programmable, or reflective, components of the run-time system. In this report
we will mainly concentrate on the distribution and object-based aspects of multiset rewrite
specifications.

Overview

The next section discusses the Lotus Notes system, and in particular its object replication
algorithm. In section 3 we give an overview of higher-order multiset rewriting, the formalism
used. Thereafter we develop a formal specification for the algorithm, closely matching the
stepwise informal specification. Section 5 concentrates on the advantages of the formal
specification: correctness, conciseness, and concurrency. We close with a critical discussion
of the lessons learned.

2. Lotus Notes and its Replication Algorithm

Lotus Notes supports groups of people working on shared sets of documents. Documents are
semi-structured objects which intermix graphs, images, pictures and numerical information
with text. Sets of documents form databases.

Rather than locating the databases on a central server, the Notes system opted for a distributed
architecture in which each participant works on local replicas of the shared databases. There
is no master replica of a database. Propagation of database changes occur between pairs of
replicas as a background activity. Conflicts are naively resolved on the basis of timestamps.

The replication algorithm guarantees "ultimate consistency" for applications where changes to
existing documents are relatively infrequent compared to additions of new documents, and
where small propagation delays do not matter. Asynchronous conferencing systems, such as

A case study of replication in Lotus Notes 233

bulletin boards, are typical examples. The phenomenal success of Lotus Notes proves that
many groupware applications can easily do without the strict consistency and transaction
capabilities traditional database management systems excel in.

Concretely, the Lotus Notes replication algorithm is a one-way pull model. It is so named
because the algorithm is executed on the local computer and only pulls newer versions of
documents from a remote computer. The algorithm consists of three steps:

1. Create a list of databases (requiring replication)

2. Create a list of documents (requiring replication)

3. Replicate listed documents

Though originally conceived for database replication among groups of geographically
dispersed and infrequently connected participants, the algorithm has also been used for static
load balancing and automatic backups. The backup strategy exploits the property that if one
remote replica is unavailable, any other replica can be selected; which demonstrates the
robustness of the algorithm.

Of course there is more to Lotus Notes than object replication. Other crucial features such as
access control and locking fall outside the scope of this discussion. Partly for reasons of
brevity, but partly also because the available specification is far less complete and
explicit.

3. Higher-Order Multiset Rewriting

We now give a short overview of higher-order multiset rewriting. The language we use is
akin to Higher-Order Gamma, for which a Structural Operational Semantics is given in [6].

The first concept we introduce is the multiset. A multiset is a container for elements, but
unlike the set concept it may contain multiple copies of its elements. The empty set is also a
multiset. The elements of multisets belong to basic types like timestamp, identifiers, strings
or integers.

multiset = 0\ {value1, ••• , value.}.

value= t \id \string\integer J ...

The multiset is the least restrictive type of container: It does not impose an order, or any other
structure, upon its elements.

234 Part Six Case Studies II

We use the Chemical Reaction Metaphor [2] to illustrate the different concepts in this section.
In this analogy a chemical solution (something like a soup of molecules) represents the
multiset, and molecules represent the elements of the multiset.

Rules

Another concept central to multiset rewriting is the rule. A rule consists of two parts: the
rewrite and the condition. The rewrite in tum consists of two further parts: the head, or
reaction, and the body, or action. Empty bodies or conditions are generally omitted for the
sake of conciseness and readability.

rule = (reaction ~ action) +- condition

Let us continue with the metaphor. For a chemical reaction to take place, external factors
such as temperature and pressure must be within specified ranges. Analogous restrictions are
specified by a boolean expression in the condition part of the rewrite rule.

If all molecules in the head of the formula are present in the chemical solution, a reaction can
take place. As a result the reaction molecules will be replaced in the solution by the action
molecules. Triggering a chemical reaction corresponds to matching the patterns of the rewrite
rule against the multiset. Patterns consist of grounded values or simple variables, matching
any value.

reaction = pattern1, ... , pattern"

action = pattern1 , ... , pattern"

A chemical reaction can occur multiple times, potentially simultaneously, if the necessary
molecules are multiply present in the chemical solution. The metaphor thus intuitively
clarifies a crucial property of multiset rewriting: the inherent, massive parallelism.

Programs

The simplest programs are individlial rules. We can construct more complex programs by
using the parallel and sequential program combinators + and o [4]. Note that the sequential
composition operator associates to the left.

progr = rulej (progr1 + progr2) j(progr2 o progr1)

The notion of program composition is crucially dependent on the notion of program
termination: A simple program executes for as long as its rule is applicable. Or, in our
analogy, a chemical reaction continues for as long as sufficient reaction molecules are present
in the solution.

A case study of replication in Lotus Notes 235

A parallel program terminates when each constituent program terminates. A sequential
program terminates when its last (i.e left-most) constituent program terminates.

Configurations

The language, as presented in the previous subsections, has little support for modularity. Two
higher-order extensions solve this problem. The first extension allows us to explicitly
represent multisets within the language. Consequently we can have multiple multisets and we
can include multisets as elements of other multisets.

value: t Jid JstringJinteger J ... Jmultiset Jconfiguration

The second extension allows us to explicitly represent programs within the language.
Consequently we can bind a program to a set of explicitly named multisets. We call the
resulting data structures active configurations.

configuration "' passive J active

passive= (name1 = valuep ... ,name. =value.)

active "'[progr ,passive]

Note: A passive configuration is equivalent to an active configuration with an empty program.

[0,passive]: passive

As we will show with the Lotus Notes case study, the first extension provides for modular
data structures, the second extension provides for modular programs.

In general the expressiveness of a language greatly increases with higher-orderness.
However, the increased complexity of the language itself, due to adding higher-order features,
is very limited. This contrasts with the greatly increased complexity of the systems that can
be described with higher-order languages.

Rules and programs revisited

As a consequence of higher-orderness we have to extend the rule syntax. We introduce
additional names for each of the multisets used in the program. Pattern matching is thereby
restricted to the appropriate multisets. Moreover, patterns may contain configurations.

reaction "' pattern1: name1, ... , pattern": name"

action : pattern1: name1 , ... , pattern": name"

pattern=_(value JVar j(pattern1 , ... ,pattern.) J[Var,pattern]

236 Part Six Case Studies II

As another consequence of higher-orderness program composition operators have, strictly
speaking, become redundant. Indeed, it is shown in [6] that the sequential and parallel
composition operators can be implemented in the higher-order language itself.

4. Specifying the Replication Algorithm

In this section we give informal and formal specifications for each of the three steps of the
replication algorithm. As we proceed, we introduce our specification formalism based on
higher-order multiset rewriting. In the next section we give a systematic overview of the
formalism.

At first we concentrate on the replication between two computers. In the final subsection of
this section we extend the specification to include repeated replications with several remote
computers.

First step

The designers of Lotus Notes wrote a compact specification of their replication algorithm in
structured English [5]. The first step is elaborated as:

1. Create a list of databases (requiring replication):

Find the databases common to both local and remote computers, and for each
database, verify that the remote database has been modified since the last
replication with the local computer.

What do we minimally need to model this step? Clearly the local and remote computers must
be represented with their respective databases. Therefore we create two multisets, loc1 and
rem1• Each element of these multisets represents a database: id identifies the database, docs
represents all the documents contained in the database (docs will be further elaborated in the
next step), and t is a timestamp indicating the most recent replica.

loc1 = rem1 = {(id,docs,t)}

Furthermore we have to create a list for the databases shared between both local and remote
computers. This list is also modeled as a multiset, list 1•

The first step of the algorithm can be specified with just one rewrite rule on the contents of the
multisets. Rule step1 filters all databases which are shared between the local and the remote
computer. We take a database (J.,,D1,TJ from the local computer loc1 and a database (1.,D.,T,)
from the remote computer rem1. If both databases have the same identifier (11 = 1,), then we

A case study of replication in Lotus Notes 237

have found a shared database. If additionally the replica of the database on the remote
computer has been modified since the most recent modification of the local replica (T, > T1),

then we put all information pertaining to this database in the intermediate multiset list1 for
further processing by the next steps. Last but not least, the one-way pull requirement, which
states that the remote replica remains unchanged, forces us to restore rem 1 by reinserting
(I,,D,,TJ.

step,=

(I,, D" I;): Zoe" (I,, D,, I;): rem1 ~

(!,, D1, I;, D,, T;):list"(l,, D,, I;):ren; +­
!1 = I, 1\ I; > T;

When rule step1 is no longer applicable, we are sure that list1 contains all shared databases for
which the remote replicate is newer. Furthermore we know that loc1 continues to hold all of
the databases which are either not available on the remote computer or for which the remote
replicas are outdated. Finally we can be sure that the remote replica has not been modified.

Note: It is common practice to eliminate explicit tests for equality of two variables by
substituting a single variable for both (equal) variables. Replacing~ and I, by I thus allows us
to eliminate the ~ = I, condition in step1• Note however that such transformations are nothing
but syntactic sugar.

step1 =

(I ,D" 7;):loci'(! ,D,, I;):rem1 ~

(l,D1,I;,D,,T,):list1 ,(I,D,,T,):rem, +­

T,>I;

Second step

In the first step of the replication algorithm we checked for shared databases between the local
and remote computers. In the second step we check for shared documents within a shared
database. The shared database is identified by id. The local and remote replicas are modeled
by the loc2 and rem2 multisets; prev and pres specify their respective, most recent replication
times.

The structure of documents is analogous to the structure of databases. Both have an identifier
and a timestamp indicating the most recent modification. Databases are decomposed into
documents. We do not detail the deeper structure of documents. All we need is the ability to
copy the content cant of any type of document, be it text or images or audio or whatever.

238 Part Six Case Studies II

In practice Lotus Notes implementations will decompose the contents of a document
recursively and provide specialized copying algorithms for different document types.
However, the replication algorithm abstracts away these further levels.

docs = loc2 = rem, = list 2 = { (id, cant, t))
prev = pres = t

The informal specification of the second step of the replication algorithm consists of two
substeps, one for the remote replica of the database and one for the local replica.

2. Create a list of documents (requiring replication):

a. Open the remote database and create a list of all the documents that have been
modified since the last replication. For each document include its document
identifier and its last modification time.

b. Open the local database and create a list of all the documents.

In the first substep we have to filter out those documents of the remote replica of the database
that are more recent thanprev, the last modification time of the local replica. All documents
that fulfill this condition are collected into the new multiset list2. Unfortunately those
documents are at the same time removed from rem2• Several solutions are conceivable, most
of them requiring an additional intermediate multiset and one or more rules for restoring rem2

to its original state. We will present a compact solution in section 5.

step2• = (I,C,,'F,.):rem2 ,T:prev ~ (I,C,,T,.):list2 ,T:prev ~ T,. > T

For the second substep we do not even need a rewrite rule because the loc2 multiset already
contains all the documents of the local database. In other words step2b is empty. As a result
the specification of the entire second step, which consists of the sequential execution of
substep step2b after substep step2., is reduced to the first substep only.

step2 = (step2h o step2.) = step2•

Third step

The informal specification of the third step does the actual copying of the newer document
versions from the remote to the local replica. It compares the timestamps of both versions and
contains a substep for each of the possible cases.

3. Replicate listed documents:

For each entry in the local list, find the corresponding entry in the remote list.

A case study of replication in Lotus Notes 239

a. If the document in the remote database is a newer version than the version
in the local database then copy the document to the local database.

b. If the document in the remote database is marked as deleted then delete the
document in the local database.

c.lfthe document in the remote database is older than the version in the local
database or the document is not in the remote database then do nothing since
the remote computer will copy the document from the local database.}

d. For the remaining documents in the remote database list, copy them to the
local database since these are new documents.

Whether the remote version is newer or older than the local version depends on the
comparison of their respective timestamps T, and T1• In step3• we overwrite the local version
in loc2, whereas in the complementary case of step3c we maintain the local version.

step3• = (I,_,'I;):loc2 ,(I,C,,T,.):list2 ~ (I,C,,T,):loc2 ~ T,. > 7;

step3c = (I,C1,'I;):loc2 ,(I,_,T,.):list2 ~ (I,Cp'J;):loc2 ~ T,. < 7;

Note: The underscores in the element patterns of the rewrite rules indicate don't cares. Don't
cares substitute variables whose actual values are irrelevant in the remainder of the rule.
Again, this is mere syntactic sugar.

In the case corresponding to substep step3b, we mark a document as deleted by giving its
timestamp the reserved value del. Note that the body of step3b is empty.

step3b = {I,C1,7;}:loc2 ,{I,_,T,.}:list2 ~ T,. =del

Finally, the last case is a catch-all: it applies to all remaining elements of list2• When step3d is
no longer applicable, list2 will be empty. Note that the condition part of the rewrite rule step3d

is empty.

We obtain the complete program for step3 by sequential composition of all four substeps (The
brackets, which do not influence execution order, underline the special nature of the last
substep).

240 Part Six Case Studies II

Complete algorithm

The hierarchical object structure, with databases on top and documents below, dictates the
structure of the replication algorithm. step1 operates at the top level, whereas step2 and step3

are situated below. The concept of configuration helps us in modeling this hierarchy.

Taken together, the three multisets (loch remh and list1) structure of the top level of our
specification. The actual logic, or control, of the specification is captured by a program progr1.

As we descend one level in the object hierarchy we also descend one level in the specification.
The leve/2 configuration summarizes the multisets and rules relevant for the lower level (A
numerical subscript indicates the level of the specification to which a specific
multiset belongs).

The link between the two levels is made by hierarchical inclusion of configurations, as
illustrated by the adapted rule for step1•

step1 =
(1, Dp 1;):loc1 ,(1, D,, T,.):rem1 ---*

(progr2 ,1, D1 ;7; ,D,,T,. ,0]:list1 ,(I,D,,T,.):rem1 ~

T,.>"I;

The program for the lower level, progrh is a straightforward sequential composition of step2

andstep3•

progr2 = (step3 o step2)

The program at the top level, progr2, consists of step1 followed by a rule which recovers
embedded configurations from the lower level when they turn passive. There is no
corresponding task in the informal description, mainly because the informal description is
incomplete: It does not explicitly indicate that the second and third step of the algorithm
should be repeated/or each database selected by the first step.

progrl = (step4 osfepl)

step4 = (1,Dp_,_,T,.,0):list1 ---* (1,D1 ,T,.):loc1

A case study of replication in Lotus Notes 241

Note on modification times

In a setting where a local computer replicates with more than one remote computer, replicas of
databases (or versions of documents) cannot be uniquely identified by a single timestamp.
The Notes system relies on replication tables which contain one timestamp for each remote
computer. The effect of this complication on the replication algorithm is minimal: When a
timestamp is required, it is selected from a multiset that models the replication table (using an
identifier for the remote computer).

In practice versions of Notes documents are identified by a timestamp and an additional
version number. The version number is needed to resolve the conflicts that may occur when
the clocks of several distributed computers are not sufficiently synchronized. The
specification of such complex identifiers remains outside the scope of this report because they
have no further effect on the general structure of the replication algorithm.

5. Formal vs. Informal Specifications

In section 4 we went to great lengths to show that the replication algorithm can be specified
with rewrite rules. What has been lacking is a clear motivation for why we prefer the formal
specification over the informal description in structured English.

In this section we discuss the benefits of being formal: we highlight an error in the informal
specification, eliminate redundant data structures, and expose the natural parallelism of the
replication algorithm.

Detecting errors

Consider the third step of the algorithm. What happens when the remote and the local replica
of the database both hold the same version of a document? Clearly the remote version is not
older (step3.), nor is it newer (step30), nor deleted (step3b)· So the catch-all (step3d) would
apply, meaning that the document is treated as new, and thus copied to the local replica. But
the document is not new, it was already present locally. Consequently, after one replication
the local replica holds two copies of the same document; after n replications, it holds n+ 1
copies!

When we develop a formal specification for the case structure of the third step, the omission
of the "same version" case is immediately apparent. It suffices to amend the condition part of
the step30 rule to obtain a correct specification.

242 Part Six Case Studies II

Such, admittedly small, errors are easily overlooked when writing natural language
specifications. Terms like "older" and "newer" are too vague. In contrast mathematical
formulations such as "greater then" and "greater or equal then" are unambiguous.

Another obscurity in the informal specification, namely the lack of an explicit "for each" loop
around the second and third steps, has already been resolved at the end of section 4.

Eliminating redundant lists

At each level of the informal specification lists are introduced for holding intermediate data
sets. There is however no indication in the remainder of the specification why a list structure
would be more appropriate than any other container type. The intermediate data sets are not
ordered, nor is there any other relation between their elements justifying the linearity a list
structure imposes. For the purposes of a high-level specification the least restrictive container
type, the multiset, is undoubtedly more suitable. We nevertheless continue to call the
intermediate multisets lists, in order to illustrate the correspondence with the informal
specification.

Given a little experience in analyzing rule-based programs, it becomes quickly apparent that
the entire intermediate multisets, not just their list structures, are redundant. The elements we
put in list1 in rule step1 might as well be put directly in loc1•

step1 =(I, D1, T,):locP(I,D,, T,):rem1 ~

[(step3 + step2),I,D1,T,,D,,T,]:toc1 ,(I,D,,T,):rem1 ~ T, > T,

step4 = (I,D,_,_,T,,0):loc1 ~ (I,D, T,):loc1

Additionally we can eliminate list2• Instead of collecting the filtered elements of rem2 in list2,

we annotate those elements of rem2 with the reserved value flit. At the same time this
annotation helps us in recovering the original content of rem2• Rules step3b and step3c undergo
similar adaptations.

step3• = (I,_,T,):loc2 ,(filt,I,C,,T,):remz ~

(I,C,,T,):loc2 ,(I,C,,T,):remz ~ T, > T,

step3d = (filt,I,C,,T,):rem2 ~ (I,C,,T,):loc2 ,(filt,I,C,,T,):rem2

Exposing natural parallelism

The lists are just one instance of the sequential bias of the original, informal specification of
the replication algorithm. The overall structure of the informal specification, with
sequentially numbered steps, is another instance of that bias.

A case study of replication in Lotus Notes 243

It is not our intention to blame the authors of the original specification for its artificial
sequentiality, because their target architecture really was a distributed set of sequential
computers. Nevertheless a specification style which does not impose unnecessary
sequentiality is preferable because it opens up the algorithm to a wider range of applications,
especially those that are not apparent from the outset.

Most of the sequentiality imposed by the informal specification can be relaxed. At the top
level there is no reason why progr2, which copies documents between two replicas of the
same database, could not run in parallel with progrl> which looks for databases with diverging
document versions. In fact the use of embedded configurations already captures the
parallelism between progr1 and progr2• As it turns out, it would be far more difficult to
specify a sequential behavior. At the risk of repeating ourselves, this is a perfect illustration
of the parallel bias characterizing multiset rewrite specifications.

In addition, at the lower level, within progr2, we can pipeline step2 and step3• Consequently
documents belonging to different databases can be copied in parallel.

progr2 "' (step3 + step2) ~ (step3 o step2)

A final refinement allows for parallelism between the substeps of step3• The execution order
of the first three cases is clearly irrelevant. Not so for the catch-all however: step3d must be
executed after the others. So a little sequentiality is unavoidable.

6. Discussion

Concretely, the example of replication in Lotus Notes has shown how multiset rewrite
specifications expose the inherent parallelism of distributed systems. Parallel
implementations, conforming to our formal specifications, might conceivably serve as the
basis for highly available object servers. We anticipate a golden future for similar algorithms
on the Internet where the business case for replicated servers is getting stronger by the day,
not in the least due to the explosive use of facilities like the World-Wide Web. In fact, Irene
Greif of Lotus Development already suggested as much in her invited talk at CSCW94.

Moreover we have illustrated how the higher-order features of multiset rewrite specifications
model hierarchical object composition and promote modularization. Already for the relatively
simple replication algorithm we reap these benefits: without modularization many of the
transformations presented in this report would have remained undetected. Imagine what
multiset rewriting specifications might bring for more complex cases, such as transaction­
based systems.

244 Part Six Case Studies II

What is missing from this report is a comparison of higher-order multiset rewriting with other
specification techniques. Whereas multiset rewriting is particularly successful at capturing
the structural aspects and the inherent parallelism of distributed systems, it is still unclear
whether such specifications can be used for proving properties of such systems. This is
definitely a topic deserving further research.

Acknowledgements

Section 2liberally borrows parts of the description of Lotus Notes from [5]. Section 3 relies
on results from [6].

Detailed comments made by Chris Hankin and David Sands where very helpful for our
research on multiset rewrite systems as specification tools. Many thanks also go to Kees
Schuerman and Bent Thomsen for proof reading an earlier version of this report.

The work reported here is partly sponsored by Esprit Basic Research Action 9102:
Coordination.

Bibliography

[1] J-P. Banatre and D. Le Metayer. Programming by multiset transformation.
Communications of the ACM, (1), 1993.

[2] G. Berry and G. Boudol. The chemical abstract machine.
Theoretical Computer Science, 1992.

[3] M. Bourgois. Specifying a distributed and reflective implementation ofLO in higher­
order gamma. In Proceedings of the Geneva Coordination Workshop.
To be published. IC Press, 1995.

[4] C. Hankin, D. Le Metayer, and D. Sands. A calculus of gamma programs.
In Languages and Compilers for Parallel Computing, 5th International Workshop
(LNCS 757), Springer Verlag, 1992.

[5] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif. Replicated document
management in a group communication system. In CSCW'88, Portland, Oregon.

[6] D. Le Metayer. Higher-order multiset programming. In DIMACS workshop
on specification of parallel algorithms. American Mathematical Society, 1994.

