
18

A Classification of Methodological Frame­
works for Computerized Information Sys­
tems Support in Organizations
John Krogstie
Andersen Consulting phone: +4722928200, fax: +4722928900,
email: John.Krogstie@ac.com

Arne S¢lvberg
Faculty of Electrical Engineering and Computer Science
The Norwegian Institute of Technology
University of Trondheim, Norway

Abstract

Although many conceptual frameworks for development and maintenance of information sys­
tems in organizations have been proposed, we experience a lack of integrated support of the evo­
lutionary nature, the interconnectedness, and the social processes for developing such systems.
This paper present a classification of methodological frameworks for evaluating important as­
pects of methodologies having this in mind. Contrary to most classification frameworks pre­
sented in literature which look solely upon ditferent ways of supporting development of new
information systems, we have in our framework a broader view, including larger parts of what
we term computerized information systems (CIS) support in organizations.

In the end of the paper, we present the result of classifying a set of approaches to CIS-support
in organizations described in academia and practice. No methodology is found to be sufficient
in all respects, although newer approaches take more aspects into account.

Keywords

Methodology, classification

1 INTRODUCTION

Several frameworks for the classification of methodological frameworks have been developed
through the years e.g. (Blum, 1994; Davis, 1988; Lyytinen, 1987). A weakness of these is in our
view their limited scope, basically looking upon the development of a single application system
in a comparatively stable environment. Organizations are continuously under the pressure of
change from both internal and external forces. Most organizations of some size are supported
by and depend upon a portfolio of application systems who likewise has to be changed, often

S. Brinkkemper et al. (eds.), Method Engineering
© Springer Science+Business Media Dordrecht 1996

A classification of methodnlogical framework 279

in a comparatively stable environment. Organizations are continuously under the pressure of
change from both internal and external forces. Most organizations of some size are supported
by and depend upon a portfolio of application systems who likewise has to be changed, often
rapidly, for the organization to be able to keep up and extend their activities. The portfolio usu­
ally consist of a set of individual, but often highly integrated application systems whose long
term evolution should be looked upon as a whole. Change is the norm, not the exception for
both portfolios and their individual information systems (Alagappan and Kozaczynski, 1991;
Williams et al., 1988). A first step towards facing this is to accept change as a way of life, rather
than as an untowarded and annoying exception.

Internalization
(Sons.maklng)

Externellzatlon
(Action)

Figure 1: Social construction in an organization.

According to (Gjersvik, 1993) organizations are realities socially constructed through the
joint actions of all the social actors in the organization. This process is illustrated in Figure 1.
An organization consists of individuals who see the world in a way specific to them. The local
reality is the way the individual perceives the world that he or she acts in. When the social actors
of an organization act, they externalize their local reality. The most important ways social actors
externalize their local reality, are to speak and to construct languages, artifacts, and institution.
What they do is to construct organizational reality: To make something that other actors have to
relate to in their work. This organizational reality may consist of different things, such as insti­
tutions, language, knowledge, artifact5 and technology. Finally, internalization is the process of
making sense out the organizational reality and making this part of the individual local reality.

We claim that the evolutionary aspect~ of computerized information systems (CIS) support
are insufficiently covered by traditional approaches and tools. In addition, the process of social
construction of the organizational reality is neglected in most development methodologies.

On this background, we will in this paper present a classification of methodological frame­
works that takes also these aspects into account. We will in the end of the paper present the main
results from an evaluation of a host of methodologies using the framework.

2 CLASSIFICATION OF METHODOLOGIES FOR COMPUTERIZED IN­
FORMATION SYSTEMS SUPPORT

When deciding on relevant dimensions for a classification frameworks, we have tried to ask the
questions why, when, what, how, who, where and for how long in the context of CIS support and

280 Method Engineering

• Why do we attack the problem as we do? This is covered by the "Weltanschauung", Le.
underlying philosophical view of the methodology.

• When is the methodology applied? We have termed this aspect coverage in process indi­
cating the main tasks that are covered by the methodology.

• What part of the portfolio is supported by the methodology? We have termed this aspect
coverage in product.

• How do it help achieving the goals of CIS support? Based on the discussion in the intro­
duction, we have concentrated on reuse and representation of product and process in the
methodology with emphasis on conceptual modeling.

• Who is involved and where do changes take place? This is discussed under the area of
stakeholder participation.

• For how long has the methodology been used. We term this aspect maturity: Is the method­
ology mature, being used for a long time in many organizations, with tool-support and
support for evolution of the methodology.

Below, we will define and discuss each area in more detail.

2.1 ''Weltanschauung'':

FRISCO (FRISCO, 1995) differentiate between three different views:

• Objectivistic: "Reality" exists independently of any observer and merely needs to be mapped
to an adequate description. For the objectivist, the relationship between reality and models
thereof is trivial or obvious.

• Constructivistic: "Reality" exists independently of any observer, but what each person
possess is a restricted mental model only. For the constructivist, the relationship between
"reality" and models of this reality are subject to negotiations among the community of
observers and may be adapted from time to time.

• Mentalistic: To talk about "reality" as such does not make sense because we can only form
mental constructions of our perceptions. For the mentalist, what people usually call "re­
ality" as well as its relationship to any model of it is totally dependent on the observer.

The methodologies that is found in literature can be characterized as being objectivistic or con­
structivistic. The "Weltanschauung" of a methodology is often not explicitly stated, but often
appears only indirectly. Since different underlying philosophies may lead to radically differ­
ent approaches, it is important to establish this. The distinction into objectivistic and construc­
tivistic is parallel to the distinction between objectivistic and subjectivistic in the overview of
Hirschheim and Klein (Hirschheim and Klein, 1989). Hirschheim and Klein also distinguish
along the order-conflict dimension. In this dimension, the order or integration view emphasizes
a social world characterized by order, stability, integration, consensus, and functional coordina­
tion. The conflict or coercion view stresses change, conflict, disintegration, and coercion. These
two dimensions were originally identified by Burrel and Morgan (Burrel and Morgan, 1979) in
the context of organizational and social research.

Based on the discussion in the introduction, it should come as no surprise that we find it
beneficial to adapt a constructivistic world-view. Both the order and the conflict view combined
with constructivism acknowledges a situation of continuous change.

A classification of methodological framework 281

2.2 Coverage in process

Do the methodology address:
• Planning of CIS-support
• Development of application systems
• Use and operation of application systems
• Maintenance of application systems

One or more of the above areas can be covered, more or less completely and in varying degrees
of detail. More detailed specifications of dimensions of development methodologies are given
by Blum (Blum, 1994), Davis (Davis, 1988) and Lyytinen (Lyytinen, 1987). Whereas Davis
classifies a methodology according to the way it is able to address varying user-needs over time,
Blum classifies development methodologies in two dimensions; if they are product or problem­
oriented, and if they are conceptual or formal. We will only look upon the use of conceptual
models and if these models are formal or not below. The product vs problem-oriented dimen­
sion as discussed by Blum is in our view a distinction on the part of development that is covered.
Generally, every more detailed effort can be looked upon as a modeling task, where we differ­
entiate based on the domain of modeling (Krogstie, 1995).

• The existing IS as it is perceived.
• The future IS as it is perceived.
• The future CIS as it is perceived.
• The (future) CIS in itself.

This correspond to what (Davis, 1995) term understand problem, specify external behavior, de­
sign system, and implement system respectively.

Lyytinen includes aspect covered by "Weltanschauung" and representation of product and
process, in addition to linking technical, linguistic, and organizational aspects in a development
methodology.

We claim that a comprehensive methodology should cover both planning, development, use,
and maintenance in an integrated manner. The emphasis will be put on development and main­
tenance, but also the usage aspect is important, enabling the different end-users to make sense
of the existing applications system in the organization, to both be able to use them more effi­
ciently, and to be able to come up with constructive change-request and ideas for more revolu­
tionary changes in the CIS support of the organization when the environment of the organization
is changing. Planning aspects are important to be able to link the CIS-support of the organiza­
tion up to strategic planning efforts in the organization, both to be able to implement the strategic
plan, and to exploit information technology to the fullest in continuous development of the or­
ganization.

We claim that it is beneficial to not differentiate between development and maintenance in
most cases, having a released based approach to CIS-support. This is partly based on figures
appearing in our survey-investigation and in accompanying work presented in (Krogstie, 1995).

Maintenance has traditionally been looked upon as a more boring and less challenging task
than development (Glass, 1992). Even if there are indications that this view might be changing
e.g. (Layzell and Macauley, 1994) this still appears to be the prominent view among practition­
ers. According to our discussion in the introduction, it is both natural and desirable for CISs to
change. As shown both in our own and other surveys, approximately half of the work which is
normally termed maintenance is in fact further development of the information systems portfo-

282 Method Engineering

lio, and should be given credit as such. On the other side, almost half of the new systems being
developed are replacement systems, not extending what the users can do with the portfolio of
systems. Thus seen from the end-users point of view, a better assessment of information system
support efficiency seems to be found by blurring the old temporal distinction between mainte­
nance and development. This is difficult to achieve when having a large mental and organiza­
tional gap between development and maintenance, even though the actual tasks being done have
many similarities.

Swanson in (Swanson and Beath, 1989) recognizes the similarities of the tasks of develop­
ment and maintenance, but still argues for keeping the old distinction based on the following
perceived differences:

• As also noted in (Glass, 1992), a large proportion of traditional maintenance work is to
perform un-design of existing systems, finding out what the system does. We will argue
that with modem development approaches where as much as possible of the work should
take place on a specification and design level, the difference will be smaller. Supporting
this is the results of a survey reported on in (Dekleva, 1992b) which gave no conclusive
evidence that organizations using modem development methods used less time on main­
tenance activities. On the other hand, time spent on emergency error corrections as well
as the number of system failures decrease significantly with the use of modem develop­
ment methods. Systems developed with modem methodologies seemed to facilitate mak­
ing greater changes in functionality as the systems aged, and the request from users seemed
more reasonable, based on a more complete understanding of the system. We also note that
because of the large amount of replacement work of often poorly documented application
systems, code understanding problems are often just as important when developing "new"
systems as when maintaining old systems today. Code and design understanding will also
often be an issue when reusing the products from other projects, and during traditional de­
velopment, when due to changing work load, developers have to work on other peoples
code for instance during system-test.

• It is generally believed that "Maintenance of systems is characterized by problems of un­
predictable urgency and significant consequent fire-fighting. In difference to new systems
development, which is buffered from the day to day ta5ks of the users, the systems in pro­
duction is much more visible" (Swanson and Beath, 1989). First of all, also development
projects with tight schedules has its share of fire-fighting. Traditionally, it has been found
that approximately 20% of the maintenance work is corrective maintenance (Lientz and
Swanson, 1980), and our result of 26% seems to build up on the importance of this. On the
other hand, if we look upon the percentage of work that is performed to do immediately
necessary corrective maintenance on the application level, we found in our own investiga­
tion (Krogstie and SS1Ilvberg, 1994) a percentage of 6%, the similar figure in LientziSwanson
being 12%. The total amount on corrective maintenance on the individual systems in our
investigations was 15%. (JS1Irgensen, 1994) indicate that the assessed corrective percentage
of the work used on maintenance often might be exaggerated since these kind of problems
are more visible for management. They found in their investigation of individual main­
tenance tasks that even if 38% of the changes were cOlTective, this took only up 9% of
the time used for maintenance. Management assessed the percentage of corrective main­
tenance to be 19%. Those managers who based their answers on good data had a result of
9% corrective maintenance. Also in our investigation, we found a similar tendency, on the

A classification of methodiJlo gical framework 283

data of the maintenance task of the individual systems, those reporting to have good data,
reported that only 8% ofthe work effort was corrective maintenance, 4% being emergency
fixes. The same effect on over-assessing the amount of corrective maintenance has been
reported earlier in (Arnold and Parker, 1982).
The problem of many small maintenance tasks done more or less continuously seems to be
increased by how maintenance is often done, in an event-driven manner. In the Jl'lrgensen
investigation (Jl'lrgensen and Maus, 1993), where 38% of the tasks were of an corrective
nature, as much as 2/3 of the tasks where classified to have high importance by the main­
tainers themselves. The problem of changing priorities as described by Dekleva (Dekleva,
1992a) is closely related to this.
Even if the problem of emergency fixes seems to be smallerthan earlier perceived, a method­
ology uniting development and maintenance must take into account that one has to be able
to perform rapid changes to software artifacts.

2.3 Coverage in product

Is the method concerned with the development, use, and maintenance of
• One single application system.
• A family of application systems.
• The whole portfolio of application systems in an organization.

Also finer classifications can be perceived, i.e. methodologies that are specifically geared to­
wards the use of specific technology, or to solve problems within specific domains, but we re­
gard this as extensions of a general methodology rather than as independent methodologies. We
will argue that it is beneficial for a complete methodology to be able to consider the whole port­
folio in an integrated manner and not only the single application system. For the end-users, it is
not important which application system that is changed. What is important is that their perceived
needs are supported by the complete portfolio. This do obviously not mean that one always need
to consider the whole portfolio when enhancing the CIS-support of the organization.

Application systems are not developed in a vacuum. They are related to old systems, by in­
heriting data and functionality, and they are integrated to other systems by data, control, presen­
tation philosophy, and process (Thomas and Nejmeh, 1992). As reported in our investigation,
the most important reason for replacements apart from systems being unmaintainable, was in­
tegration of application systems. Often when doing this kind of integration, it can be useful to
collect the functionality of several existing application systems into a new application system,
something which is not well supported when having strict borders for what is regarded as inside
and outside of an application system.

As noted in (Swanson and Beath, 1989) the CISs of an organization tend to congregate and
develop as families. By original design or not, they come to rely upon each otherfortheir data. In
SwansonlBeath 56% of the systems where connected to other systems through data integration.
In our survey, we found that 73% of the main information systems in the organizations surveyed
were dependent on data produced by other systems. In 40% of the responses to this question all
the main system which the organization depended upon on a daily basis were dependant on data
produced by other systems.

Over time, newer application systems originate in niches provided by older ones, and iden­
tifiable families of systems come to exist. Relationships among families are further established.

284 Method Engineering

In the long run, an organization is served more by its CISs as a whole than it is by the application
systems taken individually.

2.4 Reuse of product and process

Reusing experience is a key ingredient to progress in any discipline. Without reuse everything
must be re-learned and recreated; progress in an economical fashion is unlikely. The need to
utilize extensive reuse is based on the need for evolutionary and rapid changes in the CIS of an
organization as discussed in the introduction.

An comprehensive overview of dimensions of reuse is given y (Prieto-Diaz, 1993):

• By substance: The essence of what is reused:
- Idea reuse involves reusing formal notions, such as a general solution to a class of

problems.
- Artifacts reuse: Examples of artifacts are code, conceptual models, design, specifi­

cations, objects, text, architectures, and test data.
- Procedures reuse: Formalizing and encapsulating software development procedure.

Procedures reuse also means reusing skills and know-how, i.e. having a development
and maintenance methodology can be looked upon as reuse in this sense.

• By scope: The form and extent of reuse:
- Vertical reuse is reuse within the same application area.
- Horizontal reuse is reuse across application areas.

• By mode: How reuse is conducted:
- Planned reuse: The systematic and formal practice of reuse. Guidelines and proce­

dures for reuse have been defined, and metrics are being collected to assess reuse
performance.

- Ad-hoc reuse: An informal practice, in which components are selected from general
libraries.

• By technique: How reuse is implemented:
- Compositional reuse is the use of existing artifacts as building blocks for new sys­

tems.
- Generative reuse is reuse at the specification level by means of design and code­

generators.
• By intention: Defines how elements will be reused:

- As-is or black-box reuse is reuse without modifications.
- Modified or white-box reuse involves modifications of what is reused.

It is usual to differentiate between methodologies being for reuse and those being with reuse (Karls­
son (ed.), 1995; Wilkie, 1993). Another distinction is between reuse-in-the-large and reuse-in
the-small, where reuse in the large refers to the use of packaged solutions and frameworks. We
will restrict the use of the term in the evaluations to include the planned reuse of artifacts, i.e.
not including that using a methodology is an example of reusing procedures.

2.5 Representation of product and process

Knowledge about the process and the product of CIS development and maintenance can be rep­
resented using different kinds of languages. These languages can be informal, semi-formal, or

A classification of methodological framework 285

fonnal, having a logical and/or a executional semantics. These tenns are defined as follows:

Language: A set of symbols, the graphemes of the language being the smallest units in the
writing system capable of causing a contrast in meaning, a set of words being a set of re­
lated symbols constituting the vocabulary of the language, rules to fonn sentences being
a set of related words (syntax), and some inter-subjectively agreed definitions of what the
different sentences mean (semantics).

A formalism is a fonnallanguage, i.e. a language with a precisely defined vocabulary,
syntax, and semantics. If the semantics is based on mathematical logic, we use the tenn
logical formalism. If it is possible to execute a set of sentences in the language on a com­
puter, the language is said to have an operational semantics.

A semi-formal language is a language with a precisely defined vocabulary and syntax,
but without a precisely defined semantics.

We will in this paper concentrate on conceptual modeling languages. As will be illustrated,
conceptual modeling is believed to be an important technique for CIS support in organizations
when combining development and maintenance having support for not only a single application
systems, but the whole application system portfolio, being based around social construction the­
ory and reuse. When discussing the benefit~ of using conceptual modeling below, we should
have in mind that we are primarily talking about partly graphical languages which are semi­
fonnal or fonnal, have a limited vocabulary, and which can be used in many areas on varying
levels offonnality and completeness.

• A conceptual model has the possibility of being a problem-oriented description of the re­
quirements for CIS support, without being restrained too early by technical constraints. In
this way we believe one can more easily support a process of social construction of infor­
mation systems. A problem-oriented approach has been asked for by many researchers (Borgida
et al., 1985; Bubenko jr., 1983; Hagelstein, 1988; van Assche et al., 1988) and conceptual
modeling is looked upon as one way of achieving this.

• Due to the visual nature of many conceptual modeling languages they are believed to be
more helpful in the sense-making process of what is modeled than the model which is
implicit in the code of an application system. On the other hand, if we want to refine the
conceptual models into a fonn that is suitable for automatic code-generation, the essential
difficulty of complexity discussed by Brooks (Brooks Jr., 1986) will again appear.

• Since the separate conceptual modeling languages only include a limited set of phenom­
ena, this enable a focusing of concerns, and it is possible to deduce properties that are
difficult if not impossible to perceive directly, by concentrating on only some aspect at
the time. This is obviously also problematic if this makes one blind for other concern, or
makes it impossible to externalize certain explicit knowledge. Based on this we will claim
that one need a set of interrelated semi-fonnal and fonnal modeling languages which can
cover different perspectives for conceptual modeling to be more generally useful.

• Conceptual models developed in early parts of development can be used as an outset for
further design and implementation, supporting generative reuse. Conceptual models are
also believed to be easier to maintain than textual documents that do not have any other
mission than to serve as documentation, since they can be constructed as part of the process
of developing and maintaining the application system in the first place, thus supporting

286 Method Engineering

change and an integration of development and maintenance techniques. It is also easier
to get an overview of the CIS-support of an organization if the languages for conceptual
modeling are known and sufficient tool support for handling them exist, thus potentially
supporting the long range planning and evolution of the whole portfolio.

According to our survey (Krogstie, 1995), most of the organizations having started to use CASE­
tools for development and maintenance, use these for conceptual modeling.

2.6 Stakeholder participation

In general, stakeholders in CIS-support can be divided into the following groups (Macauley,
1993):

• Those who are responsible for its design, development, introduction and maintenance, for
example, the project manager, system developers, communications experts, technical au­
thors, training and user support staff, and their managers.

• Those with financial interest, responsible for the application systems sale or purchase.
• Those who have an interest in its use, for example direct or indirect users and users man­

agers.
We focus here specifically on end-user participation.

A user of a CIS is defined as a person who potentially increases his knowledge about some
phenomena other than the CIS with the help of the CIS. An end-user increases his and hers
knowledge in areas which are relevant to him by interacting with the CIS. Indirect users in­
crease their knowledge by getting results from the CIS without interacting directly with the CIS.

This is somewhat different from how' user' is often defined, terming the system development
and maintenance personell as ' primary users' (Hirschheim, 1984) or technical users. Not includ­
ing these persons as users in the following discussion do not mean that they are not important
stakeholders.

The term 'participation' means to take part in something. There exists different forms of
participation:

• Direct participation:
Every stakeholder has an opportunity to participate.

• Indirect participation:
Every stakeholder participate more or less through representatives that are supposed to
look after their interests. The representatives can either be:

- Selected: The representatives are picked out by somebody, e.g. management.
- Elected: The representatives are chosen from among their co-workers.

Many arguments for having participation have been given in the literature see e.g. (Greenberg,
1975; Mumford, 1983) for classifications. Here, user participation is basically motivated through
a cost-benefit-perspective on the long run. Since all stakeholders have their individual local re­
ality, everyone have a potential useful view of how the current situation can be improved. In­
cluding more people in the process will ideally increase the possibility of keeping up with the
ever more rapidly changing environment of the organization. Added to this is the general ar­
gument of including those who is believed to have relevant knowledge in the area, and which
are influenced by the solution. As indicated in several surveys, general participation appears to
be a general indicator for (development) project success as perceived by all the different stake­
holders. In Bergersen (Bergersen, 1990), the three most important factors for overall perceived

A classification of methodological framework 287

project success were found to be the goal-setting, management support, and user-participation.
In van Swede (van Swede and van Vliet, 1994) the main contributions of success in the sense of
satisfaction of all stakeholders were a cooperative environment, presence of a win-win starting
point by considering the interest of all stakeholder-group, quality of project staff, and quality of
project management.

According to Heller (Heller, 1991), participation is sharing power and influence. He has di­
vided the degree of influence and power into six categories as illustrated in Figure 2.

Opportunity Advice Complete
Noor to taken Joint control
minimal give Into declslon- (autonomy or

Information Information advise consideration making delegation)

I t I I t I
1 3 4 6

Figure 2: Scale of influence and power

We would claim that participation when applied should be in categories 4, 5, or 6 on this
scale, and we will use this scale when classifying methodologies according to this aspect.

Due to the large number of potential stakeholders in a development effort, in most cases rep­
resentative participation will be the only practical possibility. From the point of view of social
construction, it is doubtful that a user representative can truly represent anyone else than himself.
On the other hand, even if the internal reality of each individual will always differ to a certain
degree, the explicit knowledge concerning a constrained area might be more or less equal, es­
pecially within groups of social actors (Gjersvik, 1993; Orlikowski and Gash, 1994). Another
factor is the scope of participation, i.e. when do participation take place. Usually one would
expect that user-participation would take place heavily in analysis and in acceptance testing,
more lightly in design, and very little in implementation, but this will often depend on the chosen
methodology. When it comes to suggesting improvements of the current information system of
the organization, direct participation should be possible. Also in planning leading up to project
establishment, a larger proportion of the stakeholders should be able to participate.

Another aspect related to this point, is where the changes of the portfolio takes place:
• In the user organization.
• In a data department, developing customized systems.
• Centrally, with one unit developing the core of the systems, which are then customized

locally.
• Externally developed packages with large local adaptions.
• Externally developed packages with small local adaptions.
• By a different organization all-together (out~ourcing)
Typically, one would expect a mix of these models within the support of a portfolio. We will

not investigate this in detail here.

2.7 Maturity

Whereas some of the methodologies being presented in literature have been used for many years
by many organizations, others are only described in theory, and never tried out in practice. When

288 Method Engineering

discussing the maturity of a methodology, we can differentiate between the following factors:
• Is the methodology properly described? (vs. representation of process)
• Is the methodology supported by mature, high quality tools?
• Is the methodology (re)used and updated through practical application? Is it used by many

organizations, supporting a large part of the portfolios in these organizations?
• Is the methodology undergoing a conscious evolution based on experience with the use of

the methodology, being "annotated" with information about what parts of the methodology
seems appropriate in a given situation?

Different parts of a methodology will typically be of varying maturity.

3 SUMMARY AND CONCLUSION

We have in (Krogstie, 1995) given an overview and classification of a host of existing method­
ologies and frameworks using the above classification. The following methodologies and frame­
works were classified primarily based on the cited works.

• The conventional waterfall model (Royce, 11}70).
• The structured life cycle (Yourdon, 1988).
• Iterative and throwaway prototyping (Carey, 1990).
• Incremental development (Davis et al., 1988).
• Transformational and operational development (Zave, 1982).
• Tempora (Loucopoulos et al., 1991).
• Methodll (METHOD1:89, 1989).
• The spiral model (Boehm, 1988).
• The hierarchical spiral model (Iivari, 1990a).
• The fountain model (Henderson-Sellers and Edwards, 1990).
• OMT (Rumbaugh et al., 1991).
• REBOOT (Karlsson (ed.), 1995).
• CONFORM (Capretz and Munro, 1994).
• Maintenance as reuse-oriented development (Basili, 1990).
• Multiview (Avison and Wood-Harper, 1990).
• STEPS (Hoyd et al., 1989).
• Systems devtenace (Krogstie, 1995).

Due to space limitation, we will here only summarize this work, noting that we have tried to
include examples such that all aspects are covered in full by at least one approach. A short sum­
mary of our classifications is given in Table 3. It includes the first six aspects of the classification.
The first column indicate the "Weltanschauung" as judged by what we have read on the method­
ologies. Process coverage indicates the areas that we judge the methodologies give comprehen­
sive support in. Product coverage differentiate upon those methodologies which we regard as
being useful for the support of more than one CIS at the time. Reuse is not discussed explicitly
in many methodologies, which is indicated with - in the table. The 'conceptual modeling' col­
umn indicate the use and kind of languages used. 'OOA' refers to the use of languages for object
oriented analysis, which are mostly semi-formal. Finally, the participation column indicates the
strength of participation as indicated in the descliptions of the methodology.

A classification of methodological framework 289

Table 1 Classifications of methodologies

Methodology Weltanschauung Process Product Reuse Conceptual Part.
coverage coverage modeling (range)

Waterfall Objecti vistic Development + one Little 2-4
Structured Objectivistic Development one Semi-formal 2-4
Proto typing Objecti vistic Development one with 4-5

(early)
Operational Objectivistic Development one Generative Formal 2-4
Tempora Objectivistic Development one Generative Formal 2-4
Method/l Objectivistic Planning/ one/ In the large Semi-formal 2-5

Development portfolio
Spiral Objectivistic Development! one with 3-5

maintenance
Hierarchical Objectivistic Development! one Yes 3-4
spiral maintenance
Fountain Objectivistic Development one for/with OOA

(mainly)
OMT Objectivistic Development one for OOA 2-4
REBOOT Objectivistic Development! one/ for/with OOA 2-3

maintenance portfolio
CONFORM Objecti vistic Maintenance one
Basili Objectivistic Development! one/ for/with

maintenance portfolio
Multiview Constructi vistic Development one Semi-formal 4-5
STEPS Constructivistic Development one 4-5

maintenance/use
Devtenance Constructivistic Development One/ Generative Formal 4-5

maintenance/useportfolio

290 Method Engineering

According to our classifications we conclude the following:

• Weltansscahuung: As also noted in (Hirschheim and Klein, 1989), most earlier and current
methodologies for application systems development and maintenance have an objectivis­
tic outlook. Some exceptions illustrated are STEPS (Floyd et al., 1989), Multiview (Avi­
son and Wood-Harper, 1990), and systems devtenance (Krogstie, 1995). Other examples
are methodologies based on SSM (Checkland, 1981) and some PD-methodologies (Schuler
and Namioka, 1993).

• Coverage in process: Most methodologies for CIS-support are focused on development,
with maintenance being looked upon as a separate end-phase if considered at all. Several
methodologies focused on maintenance also exist (e.g.CONFORM (Capretz and Munro,
1994), see also (Boldyref et al., 1994», even if this part of CIS-support is not shown the
same interest as development by researchers according to (Hale et al., 1990; l¢rgensen,
1994). Some methodologies covers both development and maintenance in the same frame­
work in an integrated manner (e.g. The Spiral Model (Boehm, 1988), the Hierarchical
Spiral Model (livari, 1990a; Iivari, 1990b) and the framework presented by Basili (Basili,
1990) where also emergency error-correction is covered). STEPS (Floyd et al., 1989) and
systems devtenance (Krogstie, 1995) also includes the usage aspect. Methodll includes
IT-planning in an integrated manner.

• Coverage in product: We have found few methodologies apart from system devtenance
that cover traditional development or maintenance of the whole portfolio in a focused man­
ner, even though maintenance can be said to often be performed in this way (Swanson
and Beath, 1989). Several methodologies include organization-wide CIS-planning (e.g.
METHODIl (METHOD1:95, 1995».

• Reuse: Some methodologies explicitly addressing reuse exist (e.g. REBOOT (Karlsson
(ed.), 1995», even if few development and maintenance methodologies are geared to­
wards conscious component reuse. Operational and transformational approaches as de­
scribed in (Zave, 1982) are highly geared towards generative reuse. This is also the case
with Tempora and systems devtenance.

• Use of conceptual models: Many methods use conceptual modeling to some extent, even if
most use only semi-formal modeling languages. On the other hand, the use of operational
conceptual models have received increasing interest as illustrated through Tempora and
systems devtenance.

• Stakeholder participation: Increasingly looked upon as important both in objectivistic and
especially constructivistic methodologies. This might be endangered by the current trend
of more and more use of packages and outsourcing, although this might have economic
advantages in the short run.

• Maturity: Most mature methodologies resembles traditional waterfall, but many of these
are taking newer aspects into account e.g. Method!1 and extensions of this. Most method­
ological frameworks described in literature have a very low maturity. This especially ap­
plies to system devtenance, which is the framework which otherwise are meant to best
cover the other six aspects.

A classification of methodological framework 291

4 CONCLUDING REMARKS

There seems to be an overall view that there are no right detailed methodology for all situa­
tion (Avison and Wood-Harper, 1990; Floyd et al., 1989; Glasson, 1989; Iivari, 1990a) some­
thing which are also recognized in more traditional methodologies like Method/I. The different
development and maintenance effort5 can vary according to several factors e.g.:

• The complexity of the application system (cf. (Brooks Jr., 1986».
• The current rate of change(cf. the discussion on evolution in the introduction).
• The size, perceived importance, and risks of performing the changes (cf. (Boehm, 1988».
• The number of stakeholders affected, skills needed and possessed.
• The number of different views of the situation (cf. social construction theory as described

in the introduction).
Thus there is a need for flexibility, but in our opinion one still need a methodological framework
of some sort to be able to deliver CIS-support in an organization. Taking into account the mul­
titude of techniques, there is an obvious need for an integrative framework that can incorporate
existing more detailed approaches and support their flexible situation-dependant use. The work
presented in this paper is meant to give an indication of some of the main aspects that such a
framework should cover.

Taking a philosophical standpoint neither reuse nor conceptual modeling nor having a de­
fined methodology can be optimal, since all situations are unique, and thus in principle can best
be attacked by using unique means. Reusing artifacts originally produced for some other pur­
pose, in effect means to apply an externalization of the local reality of someone else than the
current stakeholders, which thus can not be optimal. On the other hand, reuse is performed all
the time. Using a commercial DBMS is for instance reuse, but it is not very wise to produce
your own database management system when you perceive a need for this kind of functionality
if you do not have very special needs. A balance between the different concerns brought up by
our philosophical outlook is thus necessary.

5 REFERENCES

Alagappan, V. and Kozaczynski, W. (1991). The evolution of very large systems. In Lowry,
M. R. and McCartney, R. D., editors, Automating Software Design, pages 1-24, California,
USA. The MIT Press.

Arnold, R. S. and Parker, D. A. (1982). The dimensions of healthy maintenance. In Proceedings
of the 6th International Conference on Software Engineering (ICSE), pages 10-17. IEEE
Computer Society Press.

Avison, D. E. and Wood-Harper, A. T. (1990). Multiview: An Exploration in Information Sys­
tems Development. Blackwell, Oxford, England.

Basili, V. R. (1990). Viewing maintenance as reuse-oriented software development. IEEE Soft­
ware, 7(1):19-25.

Bergersen, L. (1990). Prosjektadministrasjon i systemutvikling. Aktiviteter i planlegningsfasen
som pavirker suksess (In Norwegian). PhD thesis, ORAL, NTH, Trondheim, Norway.

292 Method Engineering

Blum, B. I. (1994). A taxonomy of software development methods. Communications of the
ACM,37(1l):82-94.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Com­
puter, pages 61-72.

Boldyref, C., Burd, E. L., and Hather, R. M. (1994). An evaluation of the state of the art for
application management. In (Milller and Georges, 1994), pages 161-169.

Borgida, A., Greenspan, S., and Mylopoulos, J. (1985). Knowledge representation as the basis
for requirements specification. IEEE Computer, 18(4): 82-91.

Brooks Jr., F. P. (1986). No silver bullet. Essence and accidents of software engineering. In
Kugler, H. J., editor, Information Processing '86, pages 1069-1076. North-Holland.

Bubenko jr., J. A. (1983). On concepts and strategies for requirements and information analysis.
In Information Modelling, pages 125-169. Chartwell-Bratt Ltd.

Burrel, G. and Morgan, G. (1979). Sociological Paradigms and Organizational Analysis. Heine­
mann.

Capretz, M. A. M. and Munro, M. (1994). Software configuration management issues in the
maintenance of existing system. Journalqf Software Maintenance, 6: 1-14.

Carey, J. M. (1990). Prototyping: Alternative systems development methodology. Information
and Software Technology, 32(2): 119-126.

Checkland, P. B. (1981). Systems Thinking, Systems Practice. John Wiley & Sons.

Davis, A. M. (1988). A comparison of techniques for the specification of external system be­
havior. Communications of the ACM, 31 (9): 1098-11l5.

Davis, A. M. (1995). Object-oriented requirements to object-oriented design: An easy transi­
tion? Journal of Systems and Software, 30(l/2):151-159.

Davis, A. M., Bersoff, E. H., and Corner, E. R. (1988). A strategy for comparing alternative
software development life cycle models. IEEE Transactions on Software Engineering,
14(8):1453-1461.

Dekleva, S. M. (1992a). Delphi study of software maintenance problems. In Proceedings of the
Conference on Sofware Maintenance (CSM'I.)2), pages 10-17.

Dekleva, S. M. (l992b). The influence of the information systems development approach on
maintenance. MIS Quarterly, pages 355-372.

Floyd, C., Reisin, F.-M., and Schmidt, G. (1989). STEPS to software development with users. In
Ghezzi, C. and McDermid, J. A., editors, 2nd European Software Engineering Conference
(ESEC'89), pages 48-63, University of Warwick, Coventry, England.

FRISCO (March 1995). Personal communication with the FRISCO task group.

A classification of methodological framework 293

Gjersvik, R. (1993). The Construction of Information Systems in Organization: An Action Re­
search Project on Technology, Organizational Closure, Reflection, and Change. PhD thesis,
ORAL, NTH, Trondheim, Norway.

Glass, R. L. (1992). We have lost our way. lournal of Systems and Software, 18(2):111-112.

Glasson, B. C. (1989). Model of system evolution. Information and Software Technology,
31(7):351-356.

Greenberg, E. S. (1975). The consequences of worker participation: A clarification ofthe theo­
rethicallitterature. Social Science Quarterly, 56(2).

Hagelstein, J. (1988). A declarative approach to information systems requirements. Knowledge
Based Systems, 1(4):211-220.

Hale, D. P., Haworth, D. A., and Sharpe, S. (1990). Empirical software maintenance studies
during the 1980s. In Proceedings of the Conference on Software Maintenance (CSM'90),
pages 118-123. IEEE Computer Society Press.

Heller, F. (1991). Participation and competence: A necessary relationship. In Russel, R. and Rus,
Y., editors, International Handbook of Participation in Organizations, pages 265-281.

Henderson-Sellers, B. and Edwards, J. M. (1990). The object-oriented systems life cycle. Com­
munications of the ACM, 33(9):142-159.

Hirschheim, R. A. (1984). A participative approach to implementing office automation. In Pro­
ceedingsfrom the loint International Symposium on Information Systems, pages 306-329,
Sydney, Australia.

Hirschheim, R. A. and Klein, H. K. (1989). Four paradigms of information systems develop­
ment. Communications of the ACM, 32(lO):pages 1199-1216.

Iivari, J. (1990a). Hierarchical spiral model for information system and software development.
Part 1: Theoretical background. Information and Software Technology, 32(6):386-399.

Iivari, J. (1990b). Hierarchical spiral model for information system and software development.
Part 2: Design process. Information and Software Technology, 32(7):450-458.

JfI!rgensen, M. (1994). Empirical studies of Software Maintenance. PhD thesis, Department of
Informatics, University of Oslo, Oslo, Norway.

JfI!rgensen, M. and Maus, A. (1993). A case study of software maintenance tasks. In Proceedings
of Norsk Informatikk Konferanse 1993 (NIK'93), pages 101-112, Halden, Norway.

Karlsson (ed.), E.-A. (1995). Software Reuse: A Holistic Approach. John Wiley & Sons.

Krogstie, I. (1995). Conceptual Modeling for Computerized Information Systems Support in
Organizations. PhD thesis, IDT, NTH, Trondheim, Norway.

Krogstie, J. and SfI!lvberg, A. (1994). Software maintenance in Norway: A survey investigation.
In (MUller and Georges, 1994), pages 304-313. Received "Best Paper Award".

294 Method Engineering

Layzell, P. J. and Macauley, L. (1994). An investigations into software maintenance - perception
and practices. Software Maintenace: Research and Practice, 6:105-119.

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management. Addison Wesley.

Loucopoulos, P., McBrien, P., Schumacker, F., Theodoulidis, B., Kopanas, Y., and Wangler, B.
(1991). Integrating database technology, rule-based systems and temporal reasoning for
effective information systems: The TEMPORA paradigm. Journal of In/ormation Systems,
1:129-152.

Lyytinen, K. (1987). A taxonomic perspective of information systems development: Theoretical
constructs and recommendations. In Boland Jr, R. J. and Hirschheim, R. A., editors, Critical
Issues in In/ormation Systems Research, chapter I, pages 3-41. John Wiley & Sons.

Macauley, L. (1993). Requirements capture as a cooperative activity. In Proceedings of the First
Symposium on Requirements Engineering (RE'93), pages 174-181.

METHOD1:89 (1989). FOUNDATION - Method/I, 1iwls Reference Manual, Version 2.1. An­
dersen Consulting.

METHODI:95 (1995). Method/I, System Development Management. Andersen Consulting.

MUller, H. A. and Georges, M., editors (1994). Proceedings of the International Conference on
Software Maintenance (ICSM'94). IEEE COmputer Society Press.

Mumford, E. (1983). Participation - from Aristotle to today. In Bemelmans, T. M. A., editor,
Beyond Productivity: Information Systems Development for Organizational Effectiveness,
pages 95-104. North-Holland.

Orlikowski, J. W. and Gash, D. C. (1994). Technological ti·ames: Making sense of information
technology in organizations. ACM Transactions on Information Systems, 12(2):174-207.

Prieto-Diaz, R. (1993). Status report: Software reuseability. IEEE Software, pages 61-66.

Royce, W. W. (1970). Managing the development oflarge software systems: Concepts and tech­
niques. In Proceedings WESCON.

Rumbaugh, J., Blaha, M., Premerlani, w., Eddy, F., and Lorensen, W. (1991). Object-Oriented
Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ.

Schuler, D. and Namioka, A. (1993). Participatory design: Principles and Practices. Lawrence
Erlbaum.

Swanson, E. B. and Beath, C. M. (1989). Maintaining Information Systems in Organizations.
Wiley Series in Information Systems. John Wiley & Sons.

Thomas, I. and Nejmeh, B. A. (1992). Definitions of tool integration for environments. IEEE
Software, 9(2):29-35.

van Assche, F., Layzell, P., Loucopoulos, P., and Speltincx, G. (1988). Information systems
development: A rule-based approach. Knowledge Based Systems, 1(4):227-234.

A classification of methodological framework 295

van Swede, V. and van Vliet, H. (1994). Consistent development: Results of a first empirical
study of the relation between project scenario and success. In Wijers, G., Brinkkemper,
S., and Wasserman, T., editors, Proceeding~ of the 6th International Conference on Ad­
vanced Information Systems EngineerinK (CAiSE'94), pages 80-93, Utrecth, Netherlands.
Springer Verlag.

Wilkie, G. (1993). Object-Oriented Software EnKineerinK - The Professional Developers's
Guide. Addison-Wesley.

Williams, G. B., Mui, C. K., Johnson, B. B., and Alagappan, V. (1988). Software design issues:
A very large information systems perspective. Technical report, CStar, Arthur Andersen,
Chicago.

Yourdon, E. (1988). ManaginK the System Lit!' Cycle. Prentice-Hall.

Zave, P. (1982). An operational approach to requirements specification for embedded systems.
IEEE Transactions on Software EnKineering, X(3):250-269.

6 BIOGRAPHY

• John Krogstie is a Senior Consultant with Andersen Consulting ANS in Norway. Krogstie
received a MSc and a PhD in computer science from the University of Trondheim .

• Arne Slflvberg is a professor of computer Science at the University of Trondheim, NTNU.
Ss;;lvberg received a MSc in applied physics and a PhD in computer science from the Uni­
versity of Trondheim.

