
13
Characterizing a portable subset
of behavioral VHDL-93
K rishnaprasad Thirunarayan
Dept. of Computer Science and Engineering
Wright State University, Dayton, OH-45435
email: tkprasad@cs. wright. edu
phone: {937}-775-5109 fax: {937}-775-5133

Robert L. Ewing
Software-Hardware Technology Branch
Wright Laboratory {A vionics Division}
Wright Patterson APB, Dayton, OH-45433.

Abstract
Goossens defined a structural operational semantics for a subset of VHDL-
87 and proved that the parallelism present in VHDL is benign. We extend
this work to include VHDL-93 features such as shared variables and post­
poned processes that change the underlying semantic model. In the presence
of shared variables, nondeterministic execution ofVHDL-93 processes destroys
the unique meaning property. We identify and characterize a class of portable
VHDL-93 descriptions for which unique meaning property can be salvaged.
Our specification can serve as a correctness criteria for a VHDL-93 simulator.

Keywords
VHDL, formal specification, simulation, shared variables

1 INTRODUCTION

VHDL has been designed to facilitate specification, documentation, commu­
nication and formal manipulation of hardware designs at various levels of
abstraction (Bhaskar 1994). The semantics of VHDL-93 are given in English
prose in (IEEE 1993). The goal of developing formal semantics is to pro­
vide a complete and unambiguous specification of the language. Adherence
to this standard will contribute significantly to the sharing, portability and
integration of various applications and computer-aided design tools; to the im­
plementation of language processors; and for formal reasoning about VHDL
descriptions. Furthermore, this exercise enhances our understanding of the
various VHDL-93 constructs/features.

© IFIP 1997. Published by Chapman & HaIl

98 Part Three Formal Characterizations of Systems

There have been a number of proposals for a formal semantics of VHDL,
almost all of them dealing with subsets of VHDL-87 (Breuer et al. 1995,
Kloos et al. 1995, Goossens 1995, van Tassel 1993, Wilsey 1992). In par­
ticular, Goossens (Goossens 1995) defines a structural operational semantics
(Hennessy 1990) for a subset of VHDL-87 that includes almost all the funda­
mental behavioral constructs in a single VHDL-87 entity. Borger et al (Chap­
ter 4, (Kloos et al. 1995)) provide a formal definition of VHDL-93 features
using EA-machines. However, they do not formally prove properties of their
semantics.

In this paper we build on Goossens work which deals with a subset of
behavioral VHDL-87. We define a structural operational semantics for a subset
of behavioral VHDL-93 that includes features such as shared variables and
postponed processes, not present in VHDL-87. These VHDL-93 constructs
fundamentally change the underlying semantic model of VHD L. In particular,
the unique meaning (monogenicity) property proved for the subset of VHDL-
87 in (Goossens 1995) no longer holds in the presence of shared variables
because of nondeterministic and asynchronous nature of process executions.
However, we characterize a class of portable VHDL-93 descriptions for which
the unique meaning property can be salvaged. That is, we specify VHDL-
93 descriptions that will always yield the same results when interpreted by
different simulators or by the same simulator on different runs. The goal is to
provide an approximate but formal interpretation of the following statement
in Section 4.3.1.3 in the VHDL LRM (IEEE 1993).

A description is erroneous if it depends on whether or how an implementation
sequentializes access to shared variables.

Our definition of portability is based on the following observations: In each
simulation cycle, if only one process accesses a shared variable, then the final
value of the shared variable is uniquely determined (because of the sequential
execution of the statements in a process). Similarly, if a shared variable is
only read by some/all processes, the value of the shared variable remains
unchanged. However, if multiple processes try to access a shared variable
while one of them is writing into it in the same cycle, there is potential for
ambiguity in the final value of the shared variable.

Our formalization can be viewed as a specification for the VHDL-93 simu­
lators against which the correctness of an implementation can be verified. It
specifies additional run-time machinery that can potentially be incorporated
in a VHDL-93 simulator to flag VHDL-93 descriptions that cannot be "safely"
ported. In course of this development we also explain and correct a few errors
that have crept into the formal description of the VHDL-87 semantics given
in (Goossens 1995).

The rest of this paper is organized as follows: Section 2 presents the ab­
stract syntax of the VHDL-93 subset and Section 4 specifies its semantics.

Characterizing a portable subset of behavioural VHDL-93 99

The primary emphasis is on the changes to the semantics in (Goossens 1995)
resulting from the introduction of shared variables and postponed processes.
We explore the causes of non-portability and then formally define what we
mean by portable VHDL-93 descriptions. Section 3 illustrates the portabil­
ity problem. In Section 5 we prove some interesting properties of portable
descriptions. Section 6 presents some conclusions.

2 ABSTRACT SYNTAX OF VHDL-93 SUBSET

The abstract syntax of the core subset of behavioral VHDL-93 IS shown
below.*

• Syntactic Categories

pgm E

P E
ss E
s E
x E
v E

• Definitions

pgm
proci

Pi

PP'
sSi

Programs proc E Processes
N onPostponedProcesses pp
SequentiaIStatements(= SSt) e
Signals(= Sig) S
Variables(= Var) sx
V alues{ = Val)

lIieI proci
Pi I postponed PPi
while true do SSi
while true do ss.

E PostponedProcesses
E Expressions(= Expr)
E SetsO fSignals
E SharedV ariables(= SVa

null I x:= ei I sXi:= e. I s <= ei after ei
Iss. j ss. I wait on S for ei until ei
I while ei do SSi I if e. then ss. else ss.

null I v I x I sx. I s
I e. bop e. I uop e. I s' delayed(e.)

A program in this VHDL-93 subset can be viewed as a fully elaborated
behavioral VHDL-93 description (IEEE 1993). It is a collection of processes
communicating with each other through signals and shared variables. II is the
parallel composition operator and I is a finite index set. As mentioned earlier,
a VHDL-93 description is portable if one can associate a unique meaning with
it. To characterize portable VHDL-93 descriptions, we associate the identity
of a process with each occurrence of a shared variable. So we have tagged the

·The VHDL-93 concrete syntax for the process statement is: (lihUe true do ss;) =
(i: process begin SSi end process i;)

100 Part Three Formal Characterizations of Systems

meta-variables proc, p, pp, ss, and e with subscript i representing the index
of the associated process prOCi. *

The set of processes has been partitioned into postponed processes (pp)
and non-postponed processes (p). The predicate postponed? is true of all
postponed-process indices. A process is a sequence of statements that can be
executed repeatedly. The statements include assignments, wait statements,
and control statements. In wait statements, whenever "on 5", "for e", or
"until e" are omitted, "on Sue" (where Sue is the set of signals in the until
clause), "for 00", or "until true" respectively are assumed. In signal as­
signments, whenever the after-clause is omitted, "after 0" is assumed. The
expression syntax is standard and includes logical and arithmetic expressions.

With regards to the static semantics, we assume that the VHDL-93 descrip­
tions are well-typed, and all the signals with multiple drivers have a suitable
resolution function associated with them. For instance, the expression e in
"for e" is assumed to be of integer type, while that in "until e" is of boolean
type.

We now explore the semantic complications caused by the introduction of
shared variables into VHDL.

3 THE CAUSES OF NON-PORTABILITY

Intuitively, a VHDL-93 description is portable if it assigns the same "ob­
servable" values to all (shared) variables and signals. The following exam­
ples illustrate the causes of non-portability and motivate restrictions required
to guarantee portability of VHDL-93 descriptions. We assume that all vari­
ables/shared variables of integer type are initially O.

Example 1. The following VHDL description is not portable as the value of
sx after t-ns (> 0) can be either 1 or 2 (due to inherent nondeterminism).

while true do (sx := 1; wait for 1 ns;)

II
while true do (sx := 2; wait for 1 ns;)

Example 2. Similarly, the following description is not portable as the value
of z after t-ns can be either y or y + 1 (either t or t + 1).

while true do (y := y + 1; sx := y; wait for 1 ns;)

II
while true do (z := sx; wait for 1 ns;)

Example 3. On the contrary, the following description is portable because,
in each unit-time-interval, the shared variable is either only read simultane­
ously by both processes, or is accessed in read/write mode only by the second
process. The value of sx after t-ns is r ~ 1-

• Alternatively, this can be easily specified through the static semantics.

Characterizing a portable subset of behavioural VHDL-93 101

while true do (y := sx; wait for 2 ns;)

II
while true do (z := sx; wait for 1 ns; sx := sx + 1; wait for 1 ns;)

Example 4. Similarly, the following description is portable because the two
processes execute in separate (delta) cycles.

while true do (sx := sx + 1; wait for 1 ns;)

II
while true do (wait until sx = 5; sx := 0;)

In what follows, we develop the structural operational semantics for the
given VHDL-93 subset by extending the work of Goossens (Goossens 1995).

4 STRUCTURAL OPERATIONAL SEMANTICS

Let Val, Sig, Var, SVar, Expr, and SSt denote the domains of values, signals,
variables, shared variables, expressions and sequential statements respectively.

4.1 Semantic Entities

The state of a computation is captured by the history of values of each signal,
the value bound to each variable and each shared variable, and the "activity"
status of each postponed process.

Each process has a local store LStore that models the persistent value
bindings of the variables and the signals. Without loss of generality, we assume
that each variable implicitly holds an integer or a boolean value.· Val =
Z U B. Each signal s is interpreted as a partial function 1 : Z f-+ Vall.
(representable as a subset of Z x Vall.) satisfying the following constraints
(Goossens 1995): for n < 0, I(n) is the value of the signal n time steps ago;
1(0) is the current value of the signal s; for n 2: 0, I(n + 1) is the projected
value for n time steps into future. 1(1) contains the value scheduled for the
next delta cycle. 1 contains at least (-00, i) and (0, v) for initial value i and
current value v of s. Note that only for n 2: ° is ((n + 1),.1..) a valid pair in 1
and encodes a null transaction for time n.

The domain SStore models the value bindings of the shared variables. To
guarantee portability of VHDL-93 descriptions, access to shared variables
must be restricted. In any simulation cycle, all processes may read a shared
variable, or exactly one process may read and write a shared variable, with­
out jeopardizing portability. However, one cannot permit arbitrary reads and
writes across processes. To characterize portable VHDL-93 descriptions, we

• Z stands for the set of integers and B for the set of booleans.

102 Part Three Formal Characterizations of Systems

associate with each shared variable, its current value, the type of last ac­
cess (read/write) and the index of the process accessing it. The distinguished
constants .1.. and T denote undefined and all respectively. The constant .1..
represents the case where a shared variable has not yet been accessed in the
current cycle, while the constant T represents the case where all processes are
permitted to access the shared variable.

It is also necessary to remember whether or not a postponed process is
active, ready to be run at the end of the last delta cycle for the current time.
Thus, the domain P PStat is defined as a subset of (postponed) process indices I.

Thus, the signatures of the semantic domains are* :

LStol"e = (Val" Val) x (Sig P(Z x Vali))
SStol"e = (SVal" (Val x (IU{J..,T}) x P({l",w})))
P P Stat = P(I)

(a) Handling of Shared Variables for Portability
We now propose a scheme to ensure that the value bound to each shared
variable in every cycle is well-defined (unique) in spite of the nondeterministic
execution of the processes. For this purpose, we tag each shared variable with
two additional pieces of information - the index of the process accessing it
and the type of last access (read/write). One can capture the constraints for
portability by defining a suitable transition function on the "states" of the
shared variable as explained below:

• At the beginning of each simulation cycle, the state of a shared variable
can be denoted by (v,.1.., 0), where 0 signifies that the variable has not yet
been accessed. Assume that a read by process i is denoted by i, while the
action of writing u is denoted by (i, u).
If process i issues a read, the state of the shared variable changes to

{v, i, {r }). The corresponding state transition is written as: (v,.1.., 0) ~
(v,i,{r}).
If process i now writes a u, the state of the shared variable changes to

{u, i, {r, w}) and the state transition is written as: {v, i, {r}) td {u, i, {r, w}).
• If the current state of the shared variable is {v, i, {r }) and process j issues

a read, all subsequent accesses to the shared variable can only be reads,
to ensure portability. This is because, a subsequent write to the shared
variable by a process i (resp. j) can potentially affect the value of the
shared variable read by the remaining statements in process j (resp. i). To
capture this restriction, the following state transitions are defined, where
T means any process:

(v, i, {r}) ~ {v, T, {r}) and {v, T, {r}) fi.d (u, T, {r, w}) .

• p stands for the powerset operator.

Characterizing a portable subset of behavioural VHDL-93 103

The state (v, T, {r}) should permit only reads by any process, while the
state (v, T,{r,w}) signifies a non-portable computation. This is mirrored
by the following transitions:

(v, T, {r}) J..... (v, T, {r}) and (v, T, {r}) ~ (u, T, {r, w}).

(v, T, {r, w}) J..... (v, T, {r, w}) and (v, T, {r, w}) ~ (u, T, {r, w}) .
• Now consider all possible transitions from the state (v,i,{w}).

If process i issues a read, then only i should be allowed subsequent access,
for portability. However, if process j issues a read, the code is not portable,
because there is potential for ambiguity in the value that process j reads.
In particular, it could be v or the value the shared variable had prior to v.

(v,i,{w})~(v,i,{r,w})and(v,i,{w})J.....(v,T,{r,w}) if i1j.
If process i writes v, there is no change in the state. However, if process i
writes u, then process i should have exclusive access, for portability.

(v,i,{w}) ~ (v,i,{w}) and (v,i,{w}) ~ (u,i,{r,w}) if u 1v.
If process j writes v, all processes can be permitted to write the same
value, for portability. However, if process j writes u, then the code is not
portable because the final value of the shared variable can be either v or u
depending on how the processes are scheduled.

(v,i,{w})~(v,T,{w}) if i1j.

(v,i,{w}) ~ (u,T,{r,w}) if if=jl\uf=v.

We crystallize and complete the above description by formally defining a
deterministic finite state automaton that keeps track of accesses to a shared
variable, to distinguish access-sequences that are portable from those that are
potentially non-portable.

A deterministic finite-state automaton (DFA) is a 5-tuple (Hopcroft and
Ullman 1979): (Q,n,r,F, qo), where Q is the set of possible states, n is the
alphabet, r is the transition function (r : Q x n 1--+ Q), F is the set of
accepting states (~ Q), and qo is the initial state (E Q). We customize these
sets for the problem at hand as follows:

• Q = Val x (IU{1.., T}) x P({r,w}). *
Recall that the shared variable value is tagged with the index of the process
that accesses it and the type of last/allowed access. The possible types of
accesses are: 0, {r}, {w} and {r, w} representing no access yet, read-access,
write-access, and read/write-access respectively. The 1.. value for the index
signifies that no process has yet accessed the shared variable in the given
simulation cycle, while the T value means that all processes are allowed
access.

• I is finite, but Val is infinite. However, for our purposes, we make the simplifying but
realistic assumption that Val is arbitrarily large but finite. (Overflow will trigger a run-time
error.)

104 Part Three Formal Characterizations of Systems

• n = 1 U (1 X Val).
The state of a shared variable changes when it is accessed. A read-action
is represented by the index of the process from which the read has been
issued, while a write-action is represented by a pair consisting of the value
to be written and the index of the process from which the write has been
issued.

• The deterministic transition function r is given below:

(v,.l,0) ~ (v,i,{r})

(v,i,{r}) ~ (v,i,{r})

(v,i,{r}) ~ (u,i,{r,w})

(v,i,{w}) ~ (v,i,{r,w})

(v,i,{w}) ~ (v,i,{w})

(v, i, { w }) Y.:j (v, T, { w }) if i I j

(v, i, {r, w}) ~ (v, i, {r, w})

(v,i,{r,w}) ~ (u,i,{r,w})

(v, T, {r}) J..... (v, T, {r})

(v, T,{w}) J..... (v, T,{r,w})

(v, T,{w}) Y.:j (v, T,{w})

(v, T, {r, w}) J..... (v, T, {r, w})

(v,.l,0) ~ (u,i,{w})

(v, i, { r }) J..... (v, T, { r }) if i I j

(v,i,{r}) ~ (u, T,{r,w}) if i Ij

(v,i,{w})J.....(v,T,{r,w}) if ilj

(v,i,{w})~(u,i,{r,w}) if ulv

(v,i,{w}) ~ (u,T,{r,w}) if iljl\ulv

(v,i,{r,w})J.....(v,T,{r,w}) if ilj

(v,i,{r,w})~(u,T,{r,w}) if ilj

(v, T, {r}) ~ (u, T, {r,w})

(v, T,{w}) ~ (u, T,{r,w}) if u I v

(v, T,{r,w}) ~ (u, T,{r,w})

• F = (Val x {l-} x {0}) U (Val x 1 x {{r}, {w}, {r,w}}) U (Val x
{T} x {{r}, {w}})
Informally, the set of accepting states characterizes the safe sequences of
reads and writes for portability.

• qQ = (v,.l,0).
v is the value of the shared variable at the beginning of a simulation cycle.
The index .l and the type of access ° signify that the shared variable has
not yet been accessed.

The states in (Val x {.l} x {{ r}, {w}, {r, w}}) U (Val x 1 x {0}) U (Val x
{T} x {0}) are unreachable from qQ, and those in Val x {T} x {{ r, w}} are
the dead states.

Lemma 41 Every string (of read/write actions) in the language of the DFA
satisfies one of the following properties:

(a) Every action in the string is a read action, that is, it is in 1. Furthermore,
the value of the shared variable remains unchanged.

Characterizing a portable subset of behavioural VHDL-93 105

(b) Every action in the string contains the same index i, that is, it is either
i or (i, ?Val). Furthermore, the final value of the shared variable is the last
value written.

(c) Every action in the string is a write action with the same value compo­
nent, that is, it is in I x {{ v}}. Furthermore, the final value of the shared
variable is the value written.

Proof Sketch: It is easy to see the result by starting from the final states
and tracing all the relevant transitions in reverse. •

Lemma 41 lays the foundation for defining portability. Let Size(rs) return
the size of the set of indices in the read sequence rs. (size(ijkjij) = 3.)

Lemma 42 Let q, ql, q2 E Q, and rSl, rS2 E 1* be two sequences of reads that
are permutations of each other. Then, the relation (q ~* ql 1\ q ~* q2 ::}
ql = q2) holds.

Proof: We consider two cases: (a) Size(rsd <= 1. Trivial. (b) Size(rs!) > 1.
Follows straightforwardly from the definition of the transition function. •

(b) Advancing time
A program is evaluated with respect to the global structure Store defined as
follows:

Store P(LStore) x SStore x PPStat

(J', (J'j E LStore
'lj! E SStore

E P(LStore)
E PPStat

Two functions - T,U : Store 1-+ Store - are defined to advance time and
delta time respectively (Goossens 1995).

The function T effects only the value of the signals, the state of the shared
variables, and the status of the postponed processes. It leaves unchanged the
values of the variables and the shared variables.

The function T transforms a Store as follows:

• The (local) variables are unchanged: T((J'j)(x) = (J'j(x).
• For signals: T((J'j)(s) = {(n-1, v) I (n, v) E (J'j(s)} U {(O, (J'j(s)(2) else (J'j(s)(O»))

Here x else y means "if x is defined then x else y". Note that there is an
error in (Goossens 1995) since it has 1 in place of 2, and as shown later,
(J'j(s)(l) is always undefined when T is applied.

• For shared variables: T('lj!)(sx) = (v, 1.,0), where 'lj!(sx) = (v, _, _).
• For the status of the postponed-processes: T(e) = 0.

106 Part Three Formal Characterizations of Systems

A signal s is active if3lTi E ~I,V E Va1.L: (l,v) E lTi(S). A process can
resume if it is sensitive to an active signal or it has been timed-out. (See
Section 4.4.)

The function U effects only the value of the active signals, the state of
the shared variables, and the status of the postponed processes. It leaves
unchanged the values of the variables, the shared variables, and the inactive
signals.

• For shared variables: U(1jJ)(sx) = (v, 1., 0), where 1jJ(sx) = (v, _, _).
• For active signals s, the current value is replaced by rs E Val, obtained

through the signal resolution function fs applied to the driving values of
the signal (Goossens 1995):

rs = fs{{vi 13i E I: (1, Vi) E lTi(S) 1\ Vi =I null}}
U(lTi)(S) = (lTi(S) \ {(O,lTi(s)(O)),(I,lTi(S)(I))}) U {(O,rs)}

Here, {{.}} denotes a multiset. fs is assumed to be a commutative resolu­
tion function. null signifies disconnection. Note that inactive signals do not
participate in determining the final resolved value.

• The determination of the status of the postponed processes is described in
Section 4.4.

The signatures of the relevant semantic functions are:

[: Expr 1-+ LStore x SStore 1-+ Vall. x SStore
->.s, ->proc: (LStore x SStore x SSt) 1-+ (LStore x SStore x SSt)
->pgm : (Store x SSt) x (Store x SSt)

An expression is evaluated with respect to the local/shared store and it
returns a value and a (possibly modified) shared store. A program (resp.
statement) and a store evolve into a new program (resp. statement) and an
(resp. unique) updated store.

4.2 Semantics of Expressions

Let fst stand for the function that extracts the first component of a pair and
the set dom(f) stand for the domain of a partial function f. Let 1jJv (sx) E Val
denote the first (value) component of the triple 1jJ(sx) associated with the
shared variable SX. For concreteness, we specify the rules for variables, signals

Characterizing a portable subset of behavioural VHDL-93 107

and for compound expressions involving a binary operator. Also,
¢[sx 1-+ st] = (ASY. if sx == sy then st else ¢(sy)).

£ [x] (0", ¢)

£ [sxd (0", ¢)
£ [s] (O", ¢)

£ [s'delayed(et}] (0", ¢)

(O"(x), ¢)

(¢v(sxd, ¢[SXi 1-+ st)),
(O"(s)(0), ¢)
(O"(s)(n), ¢)

(v bop v', ¢/I)

if ¢(SXi) ~ st

n = max{m I mE dom(O"(s)) 1\

m ~ -fst(£ [ei] ((1,¢) ~ O}
if £ [ei] ((1, ¢) = (v, ¢')

and £ [ei] ((1,¢') = (v',¢/I)

The value of the delayed expression is required to be nonnegative. (There
is a minor error in (Goossens 1995) here.) s'delayed(O ns) t= s during any
simulation cycle where there is a change in the value of s. (See Section 14.1
in the LRM (IEEE 1993).) For correct handling of delayed-attribute we also
need to store the previous value of each signal in the LStore.

Theorem 41 The meaning of an expression is independent of the order of
evaluation of its subexpressions.

Proof Sketch: The meaning of an expression consists of its value and the
shared store. As the expressions only inspect (read) the values bound to vari­
ables, shared variables and signals, and never modify (write) them, the value
component is independent of the order of evaluation. So the result follows
from Lemma 42 and structural induction. _

4.3 Semantics of Statements

The semantic rules for all but the signal assignment statement and the wait
statement are more or less standard.

For concreteness, the rules for assignment to a shared variable and for while­
loop can be specified as follows: (Recall that, O"[x 1-+ v] = (Ay. if x ==
y then v else (1(Y)).)

£[e] ((1,¢) = (v,¢') 1\ ¢/I = ¢'[SXil-+r(¢'(SXi),(i,v)]
(0", ¢, SXi:= e ; ss) -+88 (0", ¢/I, ss)

£ [e] ((1, ¢) = (true, ¢')
((1, ¢, while e do ss') -+88 (0", ¢', ss' ; while e do ss')

£ [e] ((1, ¢) = (false, ¢')
{(1, ¢, while e do ss' ; ss) -+83 {(1, ¢', ss)

108 Part Three Formal Characterizations of Systems

The signal assignment statement changes the value of a signal by adding a
time-value pair and eliminating all other pairs that are scheduled for a later
time. Let update((J', s, v, t) = ((J'(s) \ {(n, (J'(s)(n)) In> t}) u {(t + 1, v)}.
(There is a minor error in (Goossens 1995) here.)

£ [e] ((J',1/;) = (v, 1/;') 1\ £ [et] ((J',1/;') = (t, 1/;") 1\ t;::: 0
((J',1/;, S <= e after et ; ss) -+ss (update((J', s, v, t), 1/;", ss)

4.4 Semantics of Processes and Programs

The semantic rules for processes/postponed processes (that is, for -+proc)

are similar to those for statements (that is, -+S8)' A process unwinds into a
potentially infinite sequence of statements.

A program (that is, fully elaborated behavioral VHDL-93 description) con­
sists of a collection of sequential processes that execute independently. Global
synchronization and (synchronous) communication through (common) signals
takes place when all the processes reach a wait-statement. Otherwise, these
processes execute asynchronously between wait-statements and can commu­
nicate (asynchronously) through shared variables. (We use III ((J'i, 1/;, ~, SSj)
for ((III (J'i, 1/;, ~), III SSj).)
Rule 1:

((J'j,1/;, SSj) -+00 ((J'j, 1/;', ssj)
IIIU{j} ((J'i, 1/;,~, SSi) -+pgm 11!U{j} ((J'i, 1/;',~, Ssi)

where (J'i = (J'j 1\ ssi = SSi for all i i= j, and (J'i = (J'j 1\ ssi = ssj for i = j.
This rule is applicable as long as the first statement of SSj is not a wai t­
statement.

In the presence of shared variables, the nondeterministic execution of pro­
cesses embodied in this rule may yield different results. However we can define
restrictions that ensure that all possible executions are "equivalent", as ex­
plained later.

If no processes can resume (and there are no postponed processes that can
run in the last delta cycle), then the global simulation time is advanced by
one. To achieve this, the store is updated using T and the timeout value in
the wait-statment is decremented by one. We use wSi[tei, bed for (wait on Si
for tei until bed.
Rule 2:

--'resume(lII((J'i,1/;,~, wSi[tej,bei];ssi)) 1\ ViEI: (tvi,1/;')=£[tei] ((J'i,1/;)
III ((J'i, 1/;,~, WSi[tei, bei] ; SSi) -+pgm III (T((J'i) , T(1/;), T(~), WSi[tvi -1, bei] ; sSi)

resume(III ((J'i,1/;,~, ws;[tei,bei] ;SSi)) = 3i E I: resume((J'j,1/;,tei) V (~i= 0)

Characterizing a portable subset of behavioural VHDL-93 109

A process can resume if it contains a signal that is active or it has been
timed out.

resume(Ui, 1/;, tei) == active(ud V timeout(Uj, 1/;, tei)
active(u) == 3s E dom(u), 3v E Val.t : (l,v) E u(s)

timeout(u,1/;,te) == fst(£ [te] (u,1/;) = 0

A delta cycle* is initiated in the above situation. Non-postponed processes
are executed if they are timed-out or if the condition in the wait-statement
holds.
Rule 3:

3i E I: -,postponed?(i) /\ resume(ui,1/;,tej)

Informally, the function :F executes the wait-statements for those non­
postponed processes that can run.

'1""([b 1) {SSi if -,postponed?(i) /\ run(Uj,U(Ui)' 1/;, tei, bei)
.r WSj tei, ei ; SSj = . [t . b oJ' 0 h . h f (C' [] (./.) WS, VI, el , SS, ot erwlse, were tw = st c;, tei Ui, or

(timeout(Ui, 1/;, tei) V

[3s E Sj : event(ui, uL s) /\ fst(£ [bei] (uL 1/;)])

event(u, u', s) == u(s)(O) =1= u'(s)(O)

Effectively, the timeout expression is evaluated only once in the first delta­
cycle, while the condition in the wait-statement is evaluated in every delta
cycle in which there is an event on a signal that the process/condition is
"sensitive" to. Whether or not a postponed process can run in the last delta
cycle is determined as follows.

The postponed processes that can run are executed only when no non­
postponed process can resume. The condition that causes a postponed process
to run may no longer hold in the state in which the postponed process is
actually executed. (See Section 8.1 in the LRM (IEEE 1993).) It is an error
if the execution of a postponed process initiates another delta-cycle.

• A delta cycle is a simulation cycle where the global time is not advanced.

110 Part Three Formal Characterizations of Systems

Rule 4:

-(3i E I: -,postponed?(i) 1\ resume((T;,'ljJ,te;)) 1\ e i= 0 1\

Vi Ee: ((U((T;),U('ljJ), sS;) -+ss ((TL'ljJ', wsHte:,be:l ;ss:)) 1\

'Vi E I - e : (((Ti = (TD 1\ (wsdte;, be;] ; sS; == wsHte~, be~l ; ssD)
1\ 'Vi E I : -,readY((T:,U((TD, 'ljJ', te~, beD

Again, the well-definedness of -+;gm depends on the portability restric­
tions we impose. Also recall that -+ss is transitive.

5 PROPERTIES OF THE OPERATIONAL SEMANTICS

We are now ready to formally define the notion of portability. Let -+;gm

be the reflexive transitive closure of -+pgm , and (Q,n,r,F, qo) be the DFA
described in Section a.

Definition 51 A program ~II while true do sS;) zs a portable VHDL-93
description if, for every computation of the form

we have 'Vsx E SVar: ('ljJ(sx) = qo) => 'ljJ'(sx) E F.

From Lemma 41 this implies permitting arbitrary interleaving of statement­
executions as long as each shared variable is accessed either by all processes
in read-mode, or by all processes in write-mode and the same value is writ­
ten in, or by the same process in read/write mode, between two successive
synchronization points.

We now investigate properties about the semantics of the portable VHDL-
93 descriptions, to gain deeper understanding and to increase our confidence
in the formalization of the semantics.

Theorem 51 A process that does not contain a wait-statement loops forever.

Theorem 52 The semantics of expressions £ (resp. statements -+ss) is de­
termisni ti c.

Theorem 53 The statement wait on 0 for 00 until true; causes the en­
closing process to suspend forever.

We now show that the portable VHDL-93 descriptions can be given a unique
meaning.

Characterizing a portable subset of behavioural VHDL-93 111

Theorem 54 The values bound to variables, shared variables, and signals of
the processes of a portable VHDL-93 description sampled when all of them
are waiting are unique.

Proof Sketch: Effectively, we need to show that, if

III (cri,1jJ,e, wSi[tei,bed ;SSi; wsHte~,be~l ;ssi) -+;gm III (cri,1jJ',e', wsHte~,be~l ;ss~)

holds, then crL 1jJ', and e are unique, where each SSi does not contain any wait­
statements.

Now consider the four semantic rules for -+pgm given in Section 4.4, which
have disjoint antecedents. The application of Rule I and Rule 4 for portable
descriptions yields unique result because of Definition 51 and Lemma 41. The
application of Rule 2 and Rule 3 for the wait-statement define a unique
transformation because the resolution functions fs and U, and the time incre­
ment function T are one to one and total. •

Theorem 55 The portability condition given in Definition 51 is sufficient
but not necessary for VHDL-93 descriptions to have a unique meaning.

Proof: There exist trivial descriptions such as III while true do sx := sx;
that have a unique meaning, but violate the portability definition. •

Theorem 56 The portability condition given in Definition 51 is nonlocal.

Proof: Consider the two processes PS (with sfiag initially true)
while true do (if sfiag then sx := 1 else sx := 2; wait for 2 ns;)

II
while true do (sx := 1; wait for 2 ns;)

executing in parallel with each of the following processes:

PI: while true do (wait for 1 ns; sfiag := true; wait for 1 ns;)

P2: while true do (wait for 1 ns; sfiag := false; wait for 1 ns;)

PS with PI is portable; PS with P2 is not portable. •
As a consequence of this nonlocality it is not possible to incrementally check

VHDL-93 descriptions for portability.

Theorem 57 Given a VHDL-93 description, it is not possible to determine
statically (that is, at compile time) whether or not it is portable.

Proof Sketch: If the VHDL-93 description contains a "free" shared variable
whose value is not known at compile-time, then it is obvious that portability
check cannot be made statically. The program PS and the shared variable
sfiag given in the proof of Theorem 56 exemplify this situation.

112 Part Three Formal Characterizations of Systems

Interestingly, the result holds even when all the variables, shared variables
and signals are completely defined. The test for portability can then be re­
duced to determining whether or not two programs compute the same func­
tion.

while true do (... sx := Fund (xl) ... ; xl:= xl + 1; wait for 1 ns;)

II
while true do (... sx := Func2{x2) ... ; x2:= x2 + 1; wait for 1 ns;)

Let xl and x2 be initially 0; Fund and Func2 abbreviate the effect of the
code that computes sx from xl and x2. The above program is portable if
and only if the value written into sx by the two processes in every step is
identical. That is, Fund and Func2 stand for the same function. However,
since equivalence problem for Turing-complete languages is undecidable, the
portability cannot be determined at compile-time. •

In order to detect lack of portability at run-time, the simulator can be
augmented with additional information specified in the DFA described in
Section a. One can view this as a new implementation of the abstract data
type shared variable.

6 CONCLUSIONS

The designers ofVHDL-93 extended VHDL-87 by introducing shared variables
and postponed processes into the language. Here, we developed a structural
operational semantics for a behavioral subset of VHDL-93 along the lines of
Goossens' work. In particular, we extended the underlying semantic model to
accomodate new VHDL-93 features. This formal specification can serve as a
guide to the implementor and as a correctness criteria for the VHDL-93 simu­
lator. Furthermore, VHDL-93 LRM stipulates that the VHDL-93 descriptions
that generate different behaviors on different simulators are erroneous. In this
paper, we explored causes of non-portability through examples and later pro­
posed sufficient conditions for a VHDL-93 behavioral description with shared
variables and postponed processes to have unique meaning. We also specified
how a simulator can be augmented with additional information to detect and
flag non-portability. We then stated some basic properties about VHDL-93
descriptions, and showed that test for portability is neither local nor static.

Pragmatically, our approach has some limitations compared to the recent
proposal for introducing protected types into the language to deal with shared
variables (Willis 1996). In this proposal, Hoare's monitors are used as the
basis for implementing shared variable mutual exclusion semantics. Each pro­
cedure defined in the monitor can be thought of as encapsulating "atomic"
sequence of reads and writes. Any arbitrary permutation of these procedure
calls from various processes in a simulation cycle is assumed to be acceptable
to the designer as long as each call is executed atomically. Thus, this construct
enables expression of algorithmic nondeterminism (Willis 1996).

Characterizing a portable subset of behavioural VHDL-93 113

REFERENCES

Bhasker, J. (1994) A VHDL Primer, Second Edition, Prentice Hall, Inc ..
Breuer, P., Sanchez, L., and Kloos, C. D. (1995) A simple denotational seman­

tics, proof theory and validation condition generator for unit delay
VHDL, Formal Methods in System Design, 7(1-2).

Kloos, C. D., and Breuer, P., eds. (1995) Formal Semantics of VHDL, 307,
Kluwer Academic Publishers.

Goossens, K. G. W. (1995) Reasoning about VHDL using operational and
observational semantics, Advanced Research Workshop on Correct
Hardware Design Methodologies, ESPRIT CHARME, Springer Ver­
lag.

Hennessy, M. (1990) The Semantics of Programming Languages: An Ele­
mentary Introduction using Structural Operational Semantics, John
Wiley & Sons.

Hopcroft, J., and Ullman, J. (1979) Introduction to Automata Theory, Lan­
guages and Computation, Addison-Wesley Co.

Institute of Electrical and Electronics Engineers, 345 East 47th Street, New
York, USA. IEEE Standard VHDL Language Reference Manual, Std
1076-1993.

van Tassel, J. P. (1993) Femto- VHDL: The Semantics of a Subset of VHDL
and its Embedding in the HOL Proof Assistant, Ph. D. Dissertation,
University of Cambridge.

Willis, J., et a1 (1996) Shared Variable Language Change Specification, 1996.
(Draft)

Wilsey, P. A. (1992) Developing a formal semantic definition of VHDL, In:
Mermet, J., eds, VHDL for Simulation, Synthesis and Formal Proofs
of Hardware, Kluwer Academic Publishers, 243-256.

7 BIOGRAPHY

K. Thirunarayan is an Associate Professor in the Dept. of Computer Science
and Engineering at Wright State University, Dayton, Ohio. He received his B.
Tech degree in Electrical Engineering from the Indian Institute of Technology,
Madras, in 1982, and his M.E. degree in Automation from the Indian Institute
of Science, Bangalore, in 1984. He received his Ph.D. in Computer Science
from the State University of New York at Stony Brook in 1989. His current
research interests are in formal specification and verification of hardware,
programming languages, and knowledge representation.

Dr. Robert L. Ewing works in the areas of hardware description languages
(VHDL), formal verification, analog synthesis and design, built-in testability
and electronic devices at Wright Laboratory, Wright-Patterson Air Force Base.
He is an adjunct professor at Wright State University and also at the Air Force
Institute of Technology, in the area of electronic devices.

