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Abstract 
Goossens defined a structural operational semantics for a subset of VHDL-
87 and proved that the parallelism present in VHDL is benign. We extend 
this work to include VHDL-93 features such as shared variables and post­
poned processes that change the underlying semantic model. In the presence 
of shared variables, nondeterministic execution ofVHDL-93 processes destroys 
the unique meaning property. We identify and characterize a class of portable 
VHDL-93 descriptions for which unique meaning property can be salvaged. 
Our specification can serve as a correctness criteria for a VHDL-93 simulator. 
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1 INTRODUCTION 

VHDL has been designed to facilitate specification, documentation, commu­
nication and formal manipulation of hardware designs at various levels of 
abstraction (Bhaskar 1994). The semantics of VHDL-93 are given in English 
prose in (IEEE 1993). The goal of developing formal semantics is to pro­
vide a complete and unambiguous specification of the language. Adherence 
to this standard will contribute significantly to the sharing, portability and 
integration of various applications and computer-aided design tools; to the im­
plementation of language processors; and for formal reasoning about VHDL 
descriptions. Furthermore, this exercise enhances our understanding of the 
various VHDL-93 constructs/features. 
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There have been a number of proposals for a formal semantics of VHDL, 
almost all of them dealing with subsets of VHDL-87 (Breuer et al. 1995, 
Kloos et al. 1995, Goossens 1995, van Tassel 1993, Wilsey 1992). In par­
ticular, Goossens (Goossens 1995) defines a structural operational semantics 
(Hennessy 1990) for a subset of VHDL-87 that includes almost all the funda­
mental behavioral constructs in a single VHDL-87 entity. Borger et al (Chap­
ter 4, (Kloos et al. 1995)) provide a formal definition of VHDL-93 features 
using EA-machines. However, they do not formally prove properties of their 
semantics. 

In this paper we build on Goossens work which deals with a subset of 
behavioral VHDL-87. We define a structural operational semantics for a subset 
of behavioral VHDL-93 that includes features such as shared variables and 
postponed processes, not present in VHDL-87. These VHDL-93 constructs 
fundamentally change the underlying semantic model of VHD L. In particular, 
the unique meaning (monogenicity) property proved for the subset of VHDL-
87 in (Goossens 1995) no longer holds in the presence of shared variables 
because of nondeterministic and asynchronous nature of process executions. 
However, we characterize a class of portable VHDL-93 descriptions for which 
the unique meaning property can be salvaged. That is, we specify VHDL-
93 descriptions that will always yield the same results when interpreted by 
different simulators or by the same simulator on different runs. The goal is to 
provide an approximate but formal interpretation of the following statement 
in Section 4.3.1.3 in the VHDL LRM (IEEE 1993). 

A description is erroneous if it depends on whether or how an implementation 
sequentializes access to shared variables. 

Our definition of portability is based on the following observations: In each 
simulation cycle, if only one process accesses a shared variable, then the final 
value of the shared variable is uniquely determined (because of the sequential 
execution of the statements in a process). Similarly, if a shared variable is 
only read by some/all processes, the value of the shared variable remains 
unchanged. However, if multiple processes try to access a shared variable 
while one of them is writing into it in the same cycle, there is potential for 
ambiguity in the final value of the shared variable. 

Our formalization can be viewed as a specification for the VHDL-93 simu­
lators against which the correctness of an implementation can be verified. It 
specifies additional run-time machinery that can potentially be incorporated 
in a VHDL-93 simulator to flag VHDL-93 descriptions that cannot be "safely" 
ported. In course of this development we also explain and correct a few errors 
that have crept into the formal description of the VHDL-87 semantics given 
in (Goossens 1995). 

The rest of this paper is organized as follows: Section 2 presents the ab­
stract syntax of the VHDL-93 subset and Section 4 specifies its semantics. 
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The primary emphasis is on the changes to the semantics in (Goossens 1995) 
resulting from the introduction of shared variables and postponed processes. 
We explore the causes of non-portability and then formally define what we 
mean by portable VHDL-93 descriptions. Section 3 illustrates the portabil­
ity problem. In Section 5 we prove some interesting properties of portable 
descriptions. Section 6 presents some conclusions. 

2 ABSTRACT SYNTAX OF VHDL-93 SUBSET 

The abstract syntax of the core subset of behavioral VHDL-93 IS shown 
below.* 

• Syntactic Categories 

pgm E 

P E 
ss E 
s E 
x E 
v E 

• Definitions 

pgm 
proci 

Pi 

PP' 
sSi 

Programs proc E Processes 
N onPostponedProcesses pp 
SequentiaIStatements(= SSt) e 
Signals(= Sig) S 
Variables(= Var) sx 
V alues{ = Val) 

lIieI proci 
Pi I postponed PPi 
while true do SSi 
while true do ss. 

E PostponedProcesses 
E Expressions(= Expr) 
E SetsO fSignals 
E SharedV ariables( = SVa 

null I x:= ei I sXi:= e. I s <= ei after ei 
Iss. j ss. I wait on S for ei until ei 
I while ei do SSi I if e. then ss. else ss. 

null I v I x I sx. I s 
I e. bop e. I uop e. I s' delayed( e.) 

A program in this VHDL-93 subset can be viewed as a fully elaborated 
behavioral VHDL-93 description (IEEE 1993). It is a collection of processes 
communicating with each other through signals and shared variables. II is the 
parallel composition operator and I is a finite index set. As mentioned earlier, 
a VHDL-93 description is portable if one can associate a unique meaning with 
it. To characterize portable VHDL-93 descriptions, we associate the identity 
of a process with each occurrence of a shared variable. So we have tagged the 

·The VHDL-93 concrete syntax for the process statement is: (lihUe true do ss;) = 
(i: process begin SSi end process i;) 
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meta-variables proc, p, pp, ss, and e with subscript i representing the index 
of the associated process prOCi. * 

The set of processes has been partitioned into postponed processes (pp) 
and non-postponed processes (p). The predicate postponed? is true of all 
postponed-process indices. A process is a sequence of statements that can be 
executed repeatedly. The statements include assignments, wait statements, 
and control statements. In wait statements, whenever "on 5", "for e", or 
"until e" are omitted, "on Sue" (where Sue is the set of signals in the until 
clause), "for 00", or "until true" respectively are assumed. In signal as­
signments, whenever the after-clause is omitted, "after 0" is assumed. The 
expression syntax is standard and includes logical and arithmetic expressions. 

With regards to the static semantics, we assume that the VHDL-93 descrip­
tions are well-typed, and all the signals with multiple drivers have a suitable 
resolution function associated with them. For instance, the expression e in 
"for e" is assumed to be of integer type, while that in "until e" is of boolean 
type. 

We now explore the semantic complications caused by the introduction of 
shared variables into VHDL. 

3 THE CAUSES OF NON-PORTABILITY 

Intuitively, a VHDL-93 description is portable if it assigns the same "ob­
servable" values to all (shared) variables and signals. The following exam­
ples illustrate the causes of non-portability and motivate restrictions required 
to guarantee portability of VHDL-93 descriptions. We assume that all vari­
ables/shared variables of integer type are initially O. 

Example 1. The following VHDL description is not portable as the value of 
sx after t-ns (> 0) can be either 1 or 2 (due to inherent nondeterminism). 

while true do (sx := 1; wait for 1 ns;) 

II 
while true do (sx := 2; wait for 1 ns;) 

Example 2. Similarly, the following description is not portable as the value 
of z after t-ns can be either y or y + 1 (either t or t + 1). 

while true do (y := y + 1; sx := y; wait for 1 ns;) 

II 
while true do (z := sx; wait for 1 ns;) 

Example 3. On the contrary, the following description is portable because, 
in each unit-time-interval, the shared variable is either only read simultane­
ously by both processes, or is accessed in read/write mode only by the second 
process. The value of sx after t-ns is r ~ 1-

• Alternatively, this can be easily specified through the static semantics. 
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while true do (y := sx; wait for 2 ns;) 

II 
while true do (z := sx; wait for 1 ns; sx := sx + 1; wait for 1 ns;) 

Example 4. Similarly, the following description is portable because the two 
processes execute in separate (delta) cycles. 

while true do (sx := sx + 1; wait for 1 ns;) 

II 
while true do (wait until sx = 5; sx := 0; ) 

In what follows, we develop the structural operational semantics for the 
given VHDL-93 subset by extending the work of Goossens (Goossens 1995). 

4 STRUCTURAL OPERATIONAL SEMANTICS 

Let Val, Sig, Var, SVar, Expr, and SSt denote the domains of values, signals, 
variables, shared variables, expressions and sequential statements respectively. 

4.1 Semantic Entities 

The state of a computation is captured by the history of values of each signal, 
the value bound to each variable and each shared variable, and the "activity" 
status of each postponed process. 

Each process has a local store LStore that models the persistent value 
bindings of the variables and the signals. Without loss of generality, we assume 
that each variable implicitly holds an integer or a boolean value.· Val = 
Z U B. Each signal s is interpreted as a partial function 1 : Z f-+ Vall. 
(representable as a subset of Z x Vall. ) satisfying the following constraints 
(Goossens 1995): for n < 0, I(n) is the value of the signal n time steps ago; 
1(0) is the current value of the signal s; for n 2: 0, I( n + 1) is the projected 
value for n time steps into future. 1(1) contains the value scheduled for the 
next delta cycle. 1 contains at least (-00, i) and (0, v) for initial value i and 
current value v of s. Note that only for n 2: ° is ((n + 1),.1..) a valid pair in 1 
and encodes a null transaction for time n. 

The domain SStore models the value bindings of the shared variables. To 
guarantee portability of VHDL-93 descriptions, access to shared variables 
must be restricted. In any simulation cycle, all processes may read a shared 
variable, or exactly one process may read and write a shared variable, with­
out jeopardizing portability. However, one cannot permit arbitrary reads and 
writes across processes. To characterize portable VHDL-93 descriptions, we 

• Z stands for the set of integers and B for the set of booleans. 
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associate with each shared variable, its current value, the type of last ac­
cess (read/write) and the index of the process accessing it. The distinguished 
constants .1.. and T denote undefined and all respectively. The constant .1.. 
represents the case where a shared variable has not yet been accessed in the 
current cycle, while the constant T represents the case where all processes are 
permitted to access the shared variable. 

It is also necessary to remember whether or not a postponed process is 
active, ready to be run at the end of the last delta cycle for the current time. 
Thus, the domain P PStat is defined as a subset of (postponed) process indices I. 

Thus, the signatures of the semantic domains are* : 

LStol"e = (Val" ...... Val) x (Sig ...... P(Z x Vali)) 
SStol"e = (SVal" ...... (Val x (IU{J..,T}) x P({l",w}))) 
P P Stat = P(I) 

(a) Handling of Shared Variables for Portability 
We now propose a scheme to ensure that the value bound to each shared 
variable in every cycle is well-defined (unique) in spite of the nondeterministic 
execution of the processes. For this purpose, we tag each shared variable with 
two additional pieces of information - the index of the process accessing it 
and the type of last access (read/write). One can capture the constraints for 
portability by defining a suitable transition function on the "states" of the 
shared variable as explained below: 

• At the beginning of each simulation cycle, the state of a shared variable 
can be denoted by (v,.1.., 0), where 0 signifies that the variable has not yet 
been accessed. Assume that a read by process i is denoted by i, while the 
action of writing u is denoted by (i, u). 
If process i issues a read, the state of the shared variable changes to 

{v, i, {r } ). The corresponding state transition is written as: (v,.1.., 0) ~ 
(v,i,{r}). 
If process i now writes a u, the state of the shared variable changes to 

{u, i, {r, w}) and the state transition is written as: {v, i, {r}) td {u, i, {r, w}). 
• If the current state of the shared variable is {v, i, {r }) and process j issues 

a read, all subsequent accesses to the shared variable can only be reads, 
to ensure portability. This is because, a subsequent write to the shared 
variable by a process i (resp. j) can potentially affect the value of the 
shared variable read by the remaining statements in process j (resp. i). To 
capture this restriction, the following state transitions are defined, where 
T means any process: 

(v, i, {r}) ~ {v, T, {r}) and {v, T, {r}) fi.d (u, T, {r, w}) . 

• p stands for the powerset operator. 
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The state (v, T, {r}) should permit only reads by any process, while the 
state (v, T,{r,w}) signifies a non-portable computation. This is mirrored 
by the following transitions: 

(v, T, {r}) J..... (v, T, {r}) and (v, T, {r}) ~ (u, T, {r, w}). 

(v, T, {r, w}) J..... (v, T, {r, w}) and (v, T, {r, w}) ~ (u, T, {r, w}) . 
• Now consider all possible transitions from the state (v,i,{w}). 

If process i issues a read, then only i should be allowed subsequent access, 
for portability. However, if process j issues a read, the code is not portable, 
because there is potential for ambiguity in the value that process j reads. 
In particular, it could be v or the value the shared variable had prior to v. 

(v,i,{w})~(v,i,{r,w})and(v,i,{w})J.....(v,T,{r,w}) if i1j. 
If process i writes v, there is no change in the state. However, if process i 
writes u, then process i should have exclusive access, for portability. 

(v,i,{w}) ~ (v,i,{w}) and (v,i,{w}) ~ (u,i,{r,w}) if u 1v. 
If process j writes v, all processes can be permitted to write the same 
value, for portability. However, if process j writes u, then the code is not 
portable because the final value of the shared variable can be either v or u 
depending on how the processes are scheduled. 

(v,i,{w})~(v,T,{w}) if i1j. 

(v,i,{w}) ~ (u,T,{r,w}) if if=jl\uf=v. 

We crystallize and complete the above description by formally defining a 
deterministic finite state automaton that keeps track of accesses to a shared 
variable, to distinguish access-sequences that are portable from those that are 
potentially non-portable. 

A deterministic finite-state automaton (DFA) is a 5-tuple (Hopcroft and 
Ullman 1979): (Q,n,r,F, qo), where Q is the set of possible states, n is the 
alphabet, r is the transition function (r : Q x n 1--+ Q), F is the set of 
accepting states (~ Q), and qo is the initial state (E Q). We customize these 
sets for the problem at hand as follows: 

• Q = Val x (IU{1.., T}) x P({r,w}). * 
Recall that the shared variable value is tagged with the index of the process 
that accesses it and the type of last/allowed access. The possible types of 
accesses are: 0, {r}, {w} and {r, w} representing no access yet, read-access, 
write-access, and read/write-access respectively. The 1.. value for the index 
signifies that no process has yet accessed the shared variable in the given 
simulation cycle, while the T value means that all processes are allowed 
access. 

• I is finite, but Val is infinite. However, for our purposes, we make the simplifying but 
realistic assumption that Val is arbitrarily large but finite. (Overflow will trigger a run-time 
error.) 
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• n = 1 U (1 X Val). 
The state of a shared variable changes when it is accessed. A read-action 
is represented by the index of the process from which the read has been 
issued, while a write-action is represented by a pair consisting of the value 
to be written and the index of the process from which the write has been 
issued. 

• The deterministic transition function r is given below: 

(v,.l,0) ~ (v,i,{r}) 

(v,i,{r}) ~ (v,i,{r}) 

(v,i,{r}) ~ (u,i,{r,w}) 

(v,i,{w}) ~ (v,i,{r,w}) 

(v,i,{w}) ~ (v,i,{w}) 

(v, i, { w }) Y.:j (v, T, { w } ) if i I j 

(v, i, {r, w}) ~ (v, i, {r, w}) 

(v,i,{r,w}) ~ (u,i,{r,w}) 

(v, T, {r}) J..... (v, T, {r}) 

(v, T,{w}) J..... (v, T,{r,w}) 

(v, T,{w}) Y.:j (v, T,{w}) 

(v, T, {r, w}) J..... (v, T, {r, w}) 

(v,.l,0) ~ (u,i,{w}) 

(v, i, { r }) J..... (v, T, { r } ) if i I j 

(v,i,{r}) ~ (u, T,{r,w}) if i Ij 

(v,i,{w})J.....(v,T,{r,w}) if ilj 

(v,i,{w})~(u,i,{r,w}) if ulv 

(v,i,{w}) ~ (u,T,{r,w}) if iljl\ulv 

(v,i,{r,w})J.....(v,T,{r,w}) if ilj 

(v,i,{r,w})~(u,T,{r,w}) if ilj 

(v, T, {r}) ~ (u, T, {r,w}) 

(v, T,{w}) ~ (u, T,{r,w}) if u I v 

(v, T,{r,w}) ~ (u, T,{r,w}) 

• F = (Val x {l-} x {0}) U (Val x 1 x {{r}, {w}, {r,w}}) U (Val x 
{T} x {{r}, {w}}) 
Informally, the set of accepting states characterizes the safe sequences of 
reads and writes for portability. 

• qQ = (v,.l,0). 
v is the value of the shared variable at the beginning of a simulation cycle. 
The index .l and the type of access ° signify that the shared variable has 
not yet been accessed. 

The states in (Val x {.l} x {{ r}, {w}, {r, w}}) U (Val x 1 x {0}) U (Val x 
{T} x {0}) are unreachable from qQ, and those in Val x {T} x {{ r, w}} are 
the dead states. 

Lemma 41 Every string (of read/write actions) in the language of the DFA 
satisfies one of the following properties: 

(a) Every action in the string is a read action, that is, it is in 1. Furthermore, 
the value of the shared variable remains unchanged. 
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(b) Every action in the string contains the same index i, that is, it is either 
i or (i, ?Val). Furthermore, the final value of the shared variable is the last 
value written. 

( c) Every action in the string is a write action with the same value compo­
nent, that is, it is in I x {{ v}}. Furthermore, the final value of the shared 
variable is the value written. 

Proof Sketch: It is easy to see the result by starting from the final states 
and tracing all the relevant transitions in reverse. • 

Lemma 41 lays the foundation for defining portability. Let Size(rs) return 
the size of the set of indices in the read sequence rs. (size(ijkjij) = 3.) 

Lemma 42 Let q, ql, q2 E Q, and rSl, rS2 E 1* be two sequences of reads that 
are permutations of each other. Then, the relation (q ~* ql 1\ q ~* q2 ::} 
ql = q2) holds. 

Proof: We consider two cases: (a) Size(rsd <= 1. Trivial. (b) Size(rs!) > 1. 
Follows straightforwardly from the definition of the transition function. • 

(b) Advancing time 
A program is evaluated with respect to the global structure Store defined as 
follows: 

Store P(LStore) x SStore x PPStat 

(J', (J'j E LStore 
'lj! E SStore 

E P(LStore) 
E PPStat 

Two functions - T,U : Store 1-+ Store - are defined to advance time and 
delta time respectively (Goossens 1995). 

The function T effects only the value of the signals, the state of the shared 
variables, and the status of the postponed processes. It leaves unchanged the 
values of the variables and the shared variables. 

The function T transforms a Store as follows: 

• The (local) variables are unchanged: T((J'j)(x) = (J'j(x). 
• For signals: T((J'j)(s) = {(n-1, v) I (n, v) E (J'j(s)} U {(O, (J'j(s)(2) else (J'j(s)(O»)) 

Here x else y means "if x is defined then x else y". Note that there is an 
error in (Goossens 1995) since it has 1 in place of 2, and as shown later, 
(J'j(s)(l) is always undefined when T is applied. 

• For shared variables: T('lj!)(sx) = (v, 1.,0), where 'lj!(sx) = (v, _, _). 
• For the status of the postponed-processes: T(e) = 0. 
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A signal s is active if3lTi E ~I,V E Va1.L: (l,v) E lTi(S). A process can 
resume if it is sensitive to an active signal or it has been timed-out. (See 
Section 4.4.) 

The function U effects only the value of the active signals, the state of 
the shared variables, and the status of the postponed processes. It leaves 
unchanged the values of the variables, the shared variables, and the inactive 
signals. 

• For shared variables: U(1jJ)(sx) = (v, 1., 0), where 1jJ(sx) = (v, _, _). 
• For active signals s, the current value is replaced by rs E Val, obtained 

through the signal resolution function fs applied to the driving values of 
the signal (Goossens 1995): 

rs = fs{{vi 13i E I: (1, Vi) E lTi(S) 1\ Vi =I null}} 
U(lTi)(S) = (lTi(S) \ {(O,lTi(s)(O)),(I,lTi(S)(I))}) U {(O,rs)} 

Here, {{.}} denotes a multiset. fs is assumed to be a commutative resolu­
tion function. null signifies disconnection. Note that inactive signals do not 
participate in determining the final resolved value. 

• The determination of the status of the postponed processes is described in 
Section 4.4. 

The signatures of the relevant semantic functions are: 

[ : Expr 1-+ LStore x SStore 1-+ Vall. x SStore 
->.s, ->proc: (LStore x SStore x SSt) 1-+ (LStore x SStore x SSt) 
->pgm : (Store x SSt) x (Store x SSt) 

An expression is evaluated with respect to the local/shared store and it 
returns a value and a (possibly modified) shared store. A program (resp. 
statement) and a store evolve into a new program (resp. statement) and an 
(resp. unique) updated store. 

4.2 Semantics of Expressions 

Let fst stand for the function that extracts the first component of a pair and 
the set dom(f) stand for the domain of a partial function f. Let 1jJv (sx) E Val 
denote the first (value) component of the triple 1jJ( sx) associated with the 
shared variable SX. For concreteness, we specify the rules for variables, signals 
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and for compound expressions involving a binary operator. Also, 
¢[sx 1-+ st] = (ASY. if sx == sy then st else ¢(sy)). 

£ [x] (0", ¢) 

£ [sxd (0", ¢) 
£ [s] (O", ¢) 

£ [s'delayed(et}] (0", ¢) 

(O"(x), ¢) 

(¢v(sxd, ¢[SXi 1-+ st)), 
(O"( s )(0), ¢) 
(O"(s)(n), ¢) 

(v bop v', ¢/I) 

if ¢(SXi) ~ st 

n = max{m I mE dom(O"(s)) 1\ 

m ~ -fst(£ [ei] ((1,¢) ~ O} 
if £ [ei] ((1, ¢) = (v, ¢') 

and £ [ei] ((1,¢') = (v',¢/I) 

The value of the delayed expression is required to be nonnegative. (There 
is a minor error in (Goossens 1995) here.) s'delayed(O ns) t= s during any 
simulation cycle where there is a change in the value of s. (See Section 14.1 
in the LRM (IEEE 1993).) For correct handling of delayed-attribute we also 
need to store the previous value of each signal in the LStore. 

Theorem 41 The meaning of an expression is independent of the order of 
evaluation of its subexpressions. 

Proof Sketch: The meaning of an expression consists of its value and the 
shared store. As the expressions only inspect (read) the values bound to vari­
ables, shared variables and signals, and never modify (write) them, the value 
component is independent of the order of evaluation. So the result follows 
from Lemma 42 and structural induction. _ 

4.3 Semantics of Statements 

The semantic rules for all but the signal assignment statement and the wait 
statement are more or less standard. 

For concreteness, the rules for assignment to a shared variable and for while­
loop can be specified as follows: (Recall that, O"[x 1-+ v] = (Ay. if x == 
y then v else (1(Y)). ) 

£[e] ((1,¢) = (v,¢') 1\ ¢/I = ¢'[SXil-+r(¢'(SXi),(i,v)] 
(0", ¢, SXi:= e ; ss) -+88 (0", ¢/I, ss) 

£ [e] ((1, ¢) = (true, ¢') 
((1, ¢, while e do ss') -+88 (0", ¢', ss' ; while e do ss' ) 

£ [e] ((1, ¢) = (false, ¢') 
{(1, ¢, while e do ss' ; ss) -+83 {(1, ¢', ss ) 
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The signal assignment statement changes the value of a signal by adding a 
time-value pair and eliminating all other pairs that are scheduled for a later 
time. Let update((J', s, v, t) = ((J'(s) \ {(n, (J'(s)(n)) In> t}) u {(t + 1, v)}. 
(There is a minor error in (Goossens 1995) here.) 

£ [e] ((J',1/;) = (v, 1/;') 1\ £ [et] ((J',1/;') = (t, 1/;") 1\ t;::: 0 
((J',1/;, S <= e after et ; ss) -+ss (update((J', s, v, t), 1/;", ss) 

4.4 Semantics of Processes and Programs 

The semantic rules for processes/postponed processes (that is, for -+proc) 

are similar to those for statements (that is, -+S8)' A process unwinds into a 
potentially infinite sequence of statements. 

A program (that is, fully elaborated behavioral VHDL-93 description) con­
sists of a collection of sequential processes that execute independently. Global 
synchronization and (synchronous) communication through (common) signals 
takes place when all the processes reach a wait-statement. Otherwise, these 
processes execute asynchronously between wait-statements and can commu­
nicate (asynchronously) through shared variables. ( We use III ((J'i, 1/;, ~, SSj) 
for ( (III (J'i, 1/;, ~), III SSj ).) 
Rule 1: 

((J'j,1/;, SSj ) -+00 ((J'j, 1/;', ssj ) 
IIIU{j} ((J'i, 1/;,~, SSi) -+pgm 11!U{j} ((J'i, 1/;',~, Ssi) 

where (J'i = (J'j 1\ ssi = SSi for all i i= j, and (J'i = (J'j 1\ ssi = ssj for i = j. 
This rule is applicable as long as the first statement of SSj is not a wai t­
statement. 

In the presence of shared variables, the nondeterministic execution of pro­
cesses embodied in this rule may yield different results. However we can define 
restrictions that ensure that all possible executions are "equivalent", as ex­
plained later. 

If no processes can resume (and there are no postponed processes that can 
run in the last delta cycle), then the global simulation time is advanced by 
one. To achieve this, the store is updated using T and the timeout value in 
the wait-statment is decremented by one. We use wSi[tei, bed for (wait on Si 
for tei until bed. 
Rule 2: 

--'resume(lII((J'i,1/;,~, wSi[tej,bei];ssi)) 1\ ViEI: (tvi,1/;')=£[tei] ((J'i,1/;) 
III ((J'i, 1/;,~, WSi[tei, bei] ; SSi) -+pgm III (T((J'i) , T(1/;), T(~), WSi[tvi -1, bei] ; sSi ) 

resume(III ((J'i,1/;,~, ws;[tei,bei] ;SSi)) = 3i E I: resume((J'j,1/;,tei) V (~i= 0) 
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A process can resume if it contains a signal that is active or it has been 
timed out. 

resume(Ui, 1/;, tei) == active(ud V timeout(Uj, 1/;, tei) 
active(u) == 3s E dom(u), 3v E Val.t : (l,v) E u(s) 

timeout(u,1/;,te) == fst(£ [te] (u,1/;) = 0 

A delta cycle* is initiated in the above situation. Non-postponed processes 
are executed if they are timed-out or if the condition in the wait-statement 
holds. 
Rule 3: 

3i E I: -,postponed?(i) /\ resume(ui,1/;,tej) 

Informally, the function :F executes the wait-statements for those non­
postponed processes that can run. 

'1""( [ b 1 ) {SSi if -,postponed?(i) /\ run(Uj,U(Ui)' 1/;, tei, bei) 
.r WSj tei, ei ; SSj = . [t . b oJ' 0 h . h f (C' [ ] ( ./.) WS, VI, el , SS, ot erwlse, were tw = st c;, tei Ui, or 

(timeout(Ui, 1/;, tei) V 

[3s E Sj : event(ui, uL s) /\ fst(£ [bei] (uL 1/;)] ) 

event(u, u', s) == u(s)(O) =1= u'(s)(O) 

Effectively, the timeout expression is evaluated only once in the first delta­
cycle, while the condition in the wait-statement is evaluated in every delta 
cycle in which there is an event on a signal that the process/condition is 
"sensitive" to. Whether or not a postponed process can run in the last delta 
cycle is determined as follows. 

The postponed processes that can run are executed only when no non­
postponed process can resume. The condition that causes a postponed process 
to run may no longer hold in the state in which the postponed process is 
actually executed. (See Section 8.1 in the LRM (IEEE 1993).) It is an error 
if the execution of a postponed process initiates another delta-cycle. 

• A delta cycle is a simulation cycle where the global time is not advanced. 
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Rule 4: 

-(3i E I: -,postponed?(i) 1\ resume((T;,'ljJ,te;)) 1\ e i= 0 1\ 

Vi Ee: ((U((T;),U('ljJ), sS;) -+ss ((TL'ljJ', wsHte:,be:l ;ss:)) 1\ 

'Vi E I - e : ( ((Ti = (TD 1\ (wsdte;, be;] ; sS; == wsHte~, be~l ; ssD ) 
1\ 'Vi E I : -,readY((T:,U((TD, 'ljJ', te~, beD 

Again, the well-definedness of -+;gm depends on the portability restric­
tions we impose. Also recall that -+ss is transitive. 

5 PROPERTIES OF THE OPERATIONAL SEMANTICS 

We are now ready to formally define the notion of portability. Let -+;gm 

be the reflexive transitive closure of -+pgm , and (Q,n,r,F, qo) be the DFA 
described in Section a. 

Definition 51 A program ~II while true do sS;) zs a portable VHDL-93 
description if, for every computation of the form 

we have 'Vsx E SVar: ('ljJ(sx) = qo) => 'ljJ'(sx) E F. 

From Lemma 41 this implies permitting arbitrary interleaving of statement­
executions as long as each shared variable is accessed either by all processes 
in read-mode, or by all processes in write-mode and the same value is writ­
ten in, or by the same process in read/write mode, between two successive 
synchronization points. 

We now investigate properties about the semantics of the portable VHDL-
93 descriptions, to gain deeper understanding and to increase our confidence 
in the formalization of the semantics. 

Theorem 51 A process that does not contain a wait-statement loops forever. 

Theorem 52 The semantics of expressions £ (resp. statements -+ss) is de­
termisni ti c. 

Theorem 53 The statement wait on 0 for 00 until true; causes the en­
closing process to suspend forever. 

We now show that the portable VHDL-93 descriptions can be given a unique 
meaning. 
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Theorem 54 The values bound to variables, shared variables, and signals of 
the processes of a portable VHDL-93 description sampled when all of them 
are waiting are unique. 

Proof Sketch: Effectively, we need to show that, if 

III (cri,1jJ,e, wSi[tei,bed ;SSi; wsHte~,be~l ;ssi) -+;gm III (cri,1jJ',e', wsHte~,be~l ;ss~) 

holds, then crL 1jJ', and e are unique, where each SSi does not contain any wait­
statements. 

Now consider the four semantic rules for -+pgm given in Section 4.4, which 
have disjoint antecedents. The application of Rule I and Rule 4 for portable 
descriptions yields unique result because of Definition 51 and Lemma 41. The 
application of Rule 2 and Rule 3 for the wait-statement define a unique 
transformation because the resolution functions fs and U, and the time incre­
ment function T are one to one and total. • 

Theorem 55 The portability condition given in Definition 51 is sufficient 
but not necessary for VHDL-93 descriptions to have a unique meaning. 

Proof: There exist trivial descriptions such as III while true do sx := sx; 
that have a unique meaning, but violate the portability definition. • 

Theorem 56 The portability condition given in Definition 51 is nonlocal. 

Proof: Consider the two processes PS (with sfiag initially true) 
while true do (if sfiag then sx := 1 else sx := 2; wait for 2 ns;) 

II 
while true do (sx := 1; wait for 2 ns;) 

executing in parallel with each of the following processes: 

PI: while true do ( wait for 1 ns; sfiag := true; wait for 1 ns;) 

P2: while true do ( wait for 1 ns; sfiag := false; wait for 1 ns;) 

PS with PI is portable; PS with P2 is not portable. • 
As a consequence of this nonlocality it is not possible to incrementally check 

VHDL-93 descriptions for portability. 

Theorem 57 Given a VHDL-93 description, it is not possible to determine 
statically (that is, at compile time) whether or not it is portable. 

Proof Sketch: If the VHDL-93 description contains a "free" shared variable 
whose value is not known at compile-time, then it is obvious that portability 
check cannot be made statically. The program PS and the shared variable 
sfiag given in the proof of Theorem 56 exemplify this situation. 
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Interestingly, the result holds even when all the variables, shared variables 
and signals are completely defined. The test for portability can then be re­
duced to determining whether or not two programs compute the same func­
tion. 

while true do ( ... sx := Fund (xl) ... ; xl:= xl + 1; wait for 1 ns;) 

II 
while true do ( ... sx := Func2{x2) ... ; x2:= x2 + 1; wait for 1 ns;) 

Let xl and x2 be initially 0; Fund and Func2 abbreviate the effect of the 
code that computes sx from xl and x2. The above program is portable if 
and only if the value written into sx by the two processes in every step is 
identical. That is, Fund and Func2 stand for the same function. However, 
since equivalence problem for Turing-complete languages is undecidable, the 
portability cannot be determined at compile-time. • 

In order to detect lack of portability at run-time, the simulator can be 
augmented with additional information specified in the DFA described in 
Section a. One can view this as a new implementation of the abstract data 
type shared variable. 

6 CONCLUSIONS 

The designers ofVHDL-93 extended VHDL-87 by introducing shared variables 
and postponed processes into the language. Here, we developed a structural 
operational semantics for a behavioral subset of VHDL-93 along the lines of 
Goossens' work. In particular, we extended the underlying semantic model to 
accomodate new VHDL-93 features. This formal specification can serve as a 
guide to the implementor and as a correctness criteria for the VHDL-93 simu­
lator. Furthermore, VHDL-93 LRM stipulates that the VHDL-93 descriptions 
that generate different behaviors on different simulators are erroneous. In this 
paper, we explored causes of non-portability through examples and later pro­
posed sufficient conditions for a VHDL-93 behavioral description with shared 
variables and postponed processes to have unique meaning. We also specified 
how a simulator can be augmented with additional information to detect and 
flag non-portability. We then stated some basic properties about VHDL-93 
descriptions, and showed that test for portability is neither local nor static. 

Pragmatically, our approach has some limitations compared to the recent 
proposal for introducing protected types into the language to deal with shared 
variables (Willis 1996). In this proposal, Hoare's monitors are used as the 
basis for implementing shared variable mutual exclusion semantics. Each pro­
cedure defined in the monitor can be thought of as encapsulating "atomic" 
sequence of reads and writes. Any arbitrary permutation of these procedure 
calls from various processes in a simulation cycle is assumed to be acceptable 
to the designer as long as each call is executed atomically. Thus, this construct 
enables expression of algorithmic nondeterminism (Willis 1996). 
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