
14

The system integration architecture: A
framework for extended enterprise
information systems

1. 1. Mills and M. Brand
The Agile Aerospace Manufacturing Research Center,
The Automation & Robotics Research Institute,
The University of Texas at Arlington
Fort Worth, TX, USA, 8171272-5927 FAX: 8171272-5952
jmills@arri.uta.edu mbrand@arri.uta.edu

Abstract

Manufacturing and enterprise formation is changmg dramatically with speed and response time
key parameters in competitive success. Companies are forming extended or virtual enterprises
to tap core competencies and speed up their response times. Unfortunately, current
information systems are a major hindrance to the mpid formation of such organizations and
often to the rapid response of a single company wanting to change the way it does business.
The Systems Integration Architecture (SIA) project is a research project to identify and
resolve issues in the mpid integmtion of dynamic heterogeneous hardware, software and
typical in this agile world. SIA is an integration framework based on a new basis model and
definition of integmtion which are briefly described. The background to SIA, some of the
issues involved and the approach taken to address them within SIA are presented. Specifically,
some of the critical issues in the design of an information infrastructures such as SIA are
discussed

Keywords
Systems Integration Architecture, integration, infrastructure, manufacturing, information
systems, extended enterprises, virtual enterprises, heterogeneous systems integration

1 INTRODUCTION AND BACKGROUND

Manufacturing is undergoing dramatic and mdical changes. Quality has advanced to the
point where it is no longer a major competitive advantage and time to market is a key driver.
Outsourcing has become a way of life - suppliers are being asked to participate in the design
phase of a project instead of simply being handed a set of prints and asked for a low cost bid.
Strategic partnerships, with integrated suppliers, qualified on performance, quality and
delivery, are now recognized as critical for bringing a low cost, high quality product to market
faster than anyone else. Agility, the term coined to describe these changes and paradigm shifts
has entered the vocabulary of all manufacturers.

J. Goossenaerts et al. (eds.), Information Infrastructure Systems for Manufacturing
© Springer Science+Business Media Dordrecht 1997

156 Part Three Integration Frameworks and Architectures

Agility has been defined as the ability to rapidly respond to unanticipated changes in market
and customer demands and to thrive and prosper in such an environment (Goldman). In
pursuit of "agility", organizations are reconfiguring their business processes, incorporating
"core functions" from suppliers and customers to form "virtual or extended enterprises" in a
very short period of time. One goal of these activities is to achieve extremely short response
times for product realization and order fulfillment. The environment which these activities
create and in which modem information systems must operate includes rapid change and
reconfiguration, heterogeneous computer hardware, data bases and applications, and different
business rules and control paradigms. Traditional, monolithic systems incorporating a central,
shared data base are not designed to accommodate such requirements and new approaches are
needed. Indeed, current information systems form a significant barrier to the formation of an
extended or virtual enterprise. Integration must take on a new meaning and meet new
requirements in this agile, virtual word. Further, agile information systems must facilitate the
reconfiguration and the formation of a new business in a very short time, not the 1-2 years
required for a conventional approach.

The technology of "integration" itself is complex and vast in scope, from the integration of
shop floor motion control devices (Senehi et al., 1991) to the integration of whole enterprises
including computers, machines, management organization and human resources (CIM-OSA
Reference Architecture Specification, 1990). Integration is a much abused and much
misunderstood word that has many meanings and as many implications. For the purposes of
this paper, we define the scope of "integration" to encompass the unification of: (a)
heterogeneous, distributed computers, (b) heterogeneous data and information, (c) functions
provided by software applications (d) diverse control paradigms and business rules, and (e)
diverse communications systems. We do not consider the broader issues of how the computers
integrate with humans, organizations and other resources. However, under heterogeneous
computers we do include any machine that is controlled by a computer.

The Systems Integration Architecture project at the Automation & Robotics Research
Institute is focused on deepening our understanding of integration, including reference
frameworks, architectures, and information infrastructures for these agile environments, and to
explore integration issues within such an environment.

The purpose of this paper is to present our current thinking on the major issues in
integrating heterogeneous information systems, discussing various issues and our approaches
to addressing them. Specifically, a new basis model for integration is suggested which leads to
a new, more appropriate definition of integration. We describe the services required to
support this new defmition and model of integration and show how the System Integration
Architecture (SlA), which is being developed by the Agile Aerospace Manufacturing Research
Center, can provide these services. We recommend a standard set of attributes of data
interfaces required for plug compatibility and present progress on the design and
implementation of SIA.

2 BASIS FOR THE INTEGRATION ARCHITECTURE DESIGN

In previous work, we have identified several issues and presented an approach which
addresses them (Mills I, 1995). We describe them briefly below to provide some background

The system integration architecture 157

for the discussion of our infoffi1ation infrastructure. The fIrst and major issue concerns the
definition of integration in the environment (scoped out above). Elsewhere, we have examined
previous defmitions, models and identifIed problems with them (Mills II, 1995). Several
features appear common: the concept of a central data base or repository, the need for data
integration to include the ability to manage relationships among data sets (Jarke, 1992,
Wasseffi1an, 1990), the idea of "Levels of Integration" (CIM-OSA Reference Architecture
SpecifIcation, 1990), and the need for integration of "processes" or ''functions'' (Jarke, 1992,
Wasseffi1an, 1990). and control (Nof and Papstravrou, 1992). None of these features address
the problems of trying to integrate dynamic, heterogeneous systems with legacy data and
applications.

2.1 Traditional Basis model

A conclusion we reached during this research was that the traditional basis model (Mills II,
1995) of the logically unifIed, but physically distributed yet shared data base in a neutral fOffi1at
is not adequate in an agile, virtual world. It has several flaws, among them: Lack of time
dependence, unifIcation, no concern for the relationships among data sets and the inability to
consider task, function or activity integration.

This traditional basis model has been and still is very useful, and provided a very powerful
concept for developing integrating systems. The importance of a common basis model can be
illustrated by observing what is happening in the object oriented domain with the Object
Management Group using one object model, Microsoft using another, and IBM using yet
another (Betz, 1994). This means that the integration of two systems, based on these two
different object models, is very diffIcult. A new, more appropriate basis model is needed for
integration in the dynamic agile world of manufacturing.

2.2 Proposed Basis Model of Integration

From the basis model perspective, therefore, the main issue outlined above might be better
stated; "What is the new basis model for integration in an environment of heterogeneous,
physically distributed hardware, operating systems, software and data?"

Elsewhere we have proposed a new basis model based on research in the design theory and
methodology domain (Finger and Dixon, 1989, Nguyen and Rieu, 1987, Takeda et al., 1990,
Suh, 1990, Ulrich and Seering, 1987, Sthanusubramonian et al., 1992, Talukdar and Fenves,
1989). Briefly stated, this model, called the TAR model (Mills II, 1995), suggests that all
infoffi1ation processing simply ''transfoffi1s'' data sets (Figure I).

The model is intrinsically modular consisting of software and an input and output data set.
The output data set of one becomes the input data set of another (see Section 2.5). Some

158 Part Three Integration Frameworks and Architectures

Input Interface

In1ellace
Boundary

FtndlonaJ

Agar!

Figure 1. Proposed Basis Model for Integration

transfonnations may require more than one data set as input. Others may output more than
one data set. Transfonnation modules can also share data sets. The entity which perfonns the
transfonnations can be as large as a whole business infonnation system (which transfonns
orders into shipped products and invoices) or modules which transfonn two numbers into their
sum. Modules can be assembled into processes which are simply larger transfonnation
modules (Figure 2). For convenience we call the data sets "Aspects" since they are an aspect
of the product model.

Figure 2. Linking of atomic FTA's into Complex FTA's

Transfonnations can be manual (i.e. by humans using pen and paper), partially automated
(i.e. by humans using some fonn of computer application to capture the results of hislher
transfonnation), or fully automated (the computer application transforms the Aspect on its
own with no human intervention). For brevity, we define the entities which effect
transformations as "Functional Transfonnation Agents" or FTA's. Three kinds of FTA's are
recognized: Primary, Secondary and Tertiary. Primary FTA's transfonn Aspects along the
primary product realization process. In the 3-D space formalism of Taylor and Henderson,
Primary Transfonnations transfonn information sets along the life cycle application axis
(Taylor and Henderson, 1994).

The system integration architecture 159

Secondary FfA's move any particular Aspect off this main path into a secondary Aspect
necessary to perronn some test, verification, evaluation or analysis or to assist a human in
some activity necessary to understand a particular product representation. They transfonn the
Aspect into another fonn within a product realization phase. In Taylor and Henderson
fonnalism, they transfonn infonnation sets with the Generalization-Specialization levels of
detail planes (Taylor and Henderson, 1994). Tertiary FfA's translate fonnat, see section 2.5.

2.3 New defmition of Integration

Integration within this basis model then is the act of defming FfA's with matching Aspects,
and providing mechanisms to support (a) their composition into higher level FfA's or
processes, and (b) their enactment, monitoring and control. If this is done in a pennanent
manner using a shared data base then we have a traditional infonnation systems solution such
as has been implemented in many companies. If. we provide an infrastructure in which FfA's
with matching Aspects and modalities can be configured and reconfigured rapidly, then agile
manufacturing can be accommodated. Note that this defmition is very close to that suggested
by Seheni et al. (1991).

2.4 Module Definition

If this basis model and definition are accepted, a concomitant issue is: What should the
modules (i.e. FfA's) be - applications or functions? The traditional, vendor supported view
is that since applications are provided by the vendors, the modules should be applications.
However, tools or applications are complex combinations of functions which generally (in the
case of a suite of applications from a single vendor) cannot be easily separated and can only be
readily composed into higher level functions or processes when all the applications to be
composed are from a single vendor. From a systems engineering viewpoint, it makes more
sense to be able to compose well defmed functions with clearly defined interraces into
processes. Examples of "function": might be "create model," "edit model," "assemble
product," "plan production," etc. Hence, it is our position that the modules (PTA's) should be
based on functions not applications.

2.5 Module Interfaces

The next issue of importance is: "What should the interraces of the modules look like?" In
other words, how should we structure the Aspects so that an Aspect created as the output of
one FfA can be the input of another.

In theory, all "data", including commands to start, stop, pause and resume applications can
be regarded as data and transfonned. Consequently, one could envisage an interrace definition
based only on data sets. However, in some domains, a function may require another function
(or application) to launch and control a second function. This is important in the domains of
shop floor control and virtual manufacturing and engineering. As Seheni et al (1991) have
pointed out in their work on manufacturing systems integration, commands need to be
separated from data, and they, in fact, identify five different components to an interrace. To
simplify matters, only two major interrace components are recognized: (a) administrative

160 Part Three Integration Frameworks and Architectures

commands such as start stop, etc., and (b) Aspect~, the data sets in the TAR basis model.
Figure 2 illustrates the concept of one FT A commanding another by means of the thicker
arrow.

The purpose of an Aspect is to be able to match up the output Aspect(s) from one or more
FTA's to the input Aspect(s) of other FTA's so that they can be formed into processes. In the
System Integration Architecture project at the Automation & Robotics Research Institute,
research has indicated at least six attributes are required to define the structure of the Aspect
so that this matching can be achieved reliably: the data model or type of data, the data format
(e.g. DXF, IGES, STEP for CAD, RTF, ASCII for text, TIFF, HGL, PCX for graphics, etc.)
the existence, the location, the physical storage structure (e.g. fIle or data base) and the access
type (e.g. read/write, data base query, STEP SDAl, RPC, API or http call) of the actual data
set. These attributes are not unrelated. Clearly if the data are accessed through an API, then
the physical storage attribute is not relevant. This structure incorporates the idea of the data
model and the Standard Data Access Interchange (SDAl) of STEP, but broadens the concepts.
It is proposed that this structure be called the Modality of the Aspect since different values of
the attributes describe different modes of the Aspect

A two step method of use for a Modality has been identified. During process composition
(i.e. build time) only the data model attribute need be matched to form a process. At run time,
however, the data format, existence, location, physical storage structure and access type
become important for an executable process. Figure 2 illustrates the concept of linking FTA's
through Aspects, into processes. It also illustrates the concept of Tertiary FTA's which simply
transform the modality of an Aspect. These are typically the translators provided by CAD
vendors.

3 DESIGN ISSUES IN THE SYSTEMS INTEGRA nON
ARCHITECTURE

The next issue is: "How do we support rapid reconfiguration of FTA's?" That is: What
kind of infrastructure is required to support the creation, enactment and control of FTA's?
What services should this product provide for legacy systems, heterogeneous computers,
functions and data? The System Integration Architecture (SIA) will provide the services
necessary to address this and other, related issues. SIA is based on an object oriented, client
server paradigm. We are currently using lona Technologies' Orbix implementation of the
Common Object Request Broker Architecture (CORBA) to facilitate distributed objects for
our client-server environment.

3.1 Access to Remote Functionality

The infrastructure must communicate with an FTA whose application resides on one
remote computer while its Aspect(s) are located on another computer. The infrastructure
enacts, monitors, and controls the FTA execution process. The term "execution process"
indicates that an application has been enacted and remains within a computer's execution
space. FTA's must also have access to Aspects which reside on other computers. Finally the

The system integration architecture 161

system must allow FTA's to be enacted in a predefmed order. These requirements for the
infrastructure are discussed below with some of the design and implementation details of SIA.
While this paper is focused on manufacturing, the issues addressed in this project are much
more general and can be applied to a wide variety of other domains.

The Launching Server: The infrastructure must communicate with each node containing
an Aspect or an application which is a part of an FTA's defmition. A server is installed on
each computer within the SIA network to provide launching capabilities. The launching server
receives incoming communications and provides local functionality for controlling FTA
executing processes. The launching server must enact new execution processes, provide
monitoring functionality, and allows an end user or another FTA to control the execution
process by sending commands to kill, pause, and resume the process.

When the launching server receives a message to enact a new FTA it provides services for
notifying the end user if the execution process sends standard output or error messages or if
the process terminates normally or otherwise.

FTA's must be spawned as a new execution process so that the launching server's can
respond to new incoming messages. Multiple execution processes can therefore be monitored
by the same launching server. We are investigating possible solutions to this problem. One
possibility is for the dispatcher to be enacted as a forked (multi-threaded) process. A second
execution process, or thread, is created which in tum enacts the FTA's execution process. The
forked thread can monitor the output streams and will terminate when the FTA process
terminates. The forked thread must communicate with the infrastructure to provide
notification of errors or termination.

We have encountered a significant degree of complexity while implementing the launching
server. Maintaining communications between the parent and children forked processes has
proven difficult using the normal Orbix implementation. The multi-threaded version of Orbix
would add a considerable degree of complexity and cost to our implementation. Because
launching servers represent the most important limit on the scalability of SIA we are
investigating other possibilities.

Distributed Conununications: The infrastructure must provide communications between
the network computers. The communications module must provide distributed
communications between the various launching servers. Several methods of distributed
communications are available as third-party products. We use third party products wherever
possible within SIA to maximize re-use and efficiency. The Communications module must
provide distributed communications protocols which are efficient, integrate easily, accessibility,
and cost.

We initially implemented distributed communications for SIA using TCPIIP and UDP
communications protocols. We converted to Orbix as a result of the emergence of Object
Management Group's CORBA as a standard for distributed object communications ("The
Common Object Request Broker Architecture and Specification", 1993). CORBA provides
distributed communications between objects regardless of which execution space or computer
they reside. However, CORBA must be installed on each machine that provides a launching

162 Part Three Integration Frameworks and Architectures

server or end user interaction. Installation of the vendor product requires both a time and
economic investment for each computer and so reduces scalability.

RPC and HTIP are communications protocols which are commonly installed on
networked computers. RPC is readily available and has existed for long enough to be
considered a stable protocol. RPC is not, however, as directly applicable to the object
paradigm. HITP also appears to have much promise. The popularity of the World Wide
Web, which uses the HIT protocol, suggests that in the near future most, if not all computers,
will have an HTIP installed. The World Wide Web's dependence on HTIP servers ensure
that they will be freely available and easily accessible for all platforms. HITP also provides the
ability to transfer data and execute processes on remote network nodes. HITP was not,
however, designed for inter-process distributed communications and so is not as robust as
CORBA or RPc.

It is not clear which, if any, protocol will emerge as the dominant standard. Accordingly,
we are implementing SIA so that distributed communications protocols themselves are rapidly
reconfigurable. We can then compare the different methods of distributed communications and
choose the most applicable. The design will also allow for dynamic reconfigurability of the
communications protocol. Each node may have some different form of communications
previously installed. Dynamically reconfigurable communications protocols allow new
computers to be integrated rapidly using their native communications protocols.

Distributed Aspects(Data Sets): FfA's generally require input and output Aspects.
Aspects are composed of data stored somewhere on the network. The FfA's application must
have access to an input Aspect and must provide output Aspects to the infrastructure. The
infrastructure must, therefore, transfer or otherwise make available data which exists on one
network computer to an application which executes on another.

The infrastructure must provide methods of transferring data securely through the network
on demand. The infrastructure must also know the Modality (including the location) of the
input Aspects before an Ff A can be enacted. It may be necessary to extract data from within a
database for use as input to the FfA. A file may be transferred from one computer to another,
but the copied file is considered to be transitory and will be destroyed upon completion of the
FfA's execution process. Output Aspects must be dealt with in a similar manner. If an output
Aspect is defined to reside on a network computer other than that of the FfA's application,
the Aspect file must be transferred to the specified computer. Only one copy of a particular
file should exist on the network in the location specified by the FfA design unless a transitory
Aspect is in use.

Definition of Complex FTA's: We defme the composition of a number of FfA's and their
Aspects into a process, a Complex FTA. The Complex FfA provides a higher level
transformation. The implementation of Complex FfA's is another important issue for the
infrastructure. A Simple FTA is defined as an FfA which enacts a single execution process. A
Complex FfA links multiple simple FfA's together so they can be executed in a predefined
order. Complex FfA paths are defmed by a directed graph data structure and must allow
parallel paths and iterations. Multiple parallel processes can execute using a target-dependent
structure to maintain a proper order of execution. Fig 2 shows an example of a complex Ff A
graph.

The system integration architecture 163

A Complex FTA is similar to a Simple FTA in that it transfonns a set of input aspects to a
set of output aspects. A node within a complex FTA directed graph can be either a Simple or
a Complex FTA. An infinite degree of scalability is therefore available within FTA design.
The designer of Complex FTA need not know or understand the internal structure of another
complex FTA to use that FTA within the new design.

There are two directed graphs which represent any Complex FTA. The ftrst is the highest
level graph which shows a directed graph in which each node is either a Complex or Simple
FTA. Figure 2 shows the high level Complex FTA graph. The second graph is an exploded
view of the high level Complex FTA graph in which each node in the graph represents a Simple
FT A. Figure 3 shows the exploded Complex FT A graph version of Figure 2 with the exploded
complex FTA highlighted in grey. In this ftgure we have dropped the data base representation
of the Aspect in the Complex FTA for clarity.

Figure 3. Exploded directed graph of complex Ff A showing all simple Ff A's

3.2 Entity Design

SIA is an infonnation infrastructure which locates and communicates with network
services. The infrastructure must also address the issue of identification and storage of FTAs
and other infonnation. The infonnation required to identify, launch, and control FTA's is
stored within a second key SIA module, the Librarian. The Librarian is the central point for
the infrastructure and usually resides on a single computer. The Librarian provides a database
which stores centralized infonnation. A special type of object within SIA's object oriented
architecture is called an entity or reference. The objects provide infonnation about
applications, aspects, and FT A' s. The entities also allow infonnation to be accessed and for
messages to be sent from the entity to other network nodes. Entities can also store
administrative infonnation such as User infonnation.

Identification of FTA's, Aspects, Applications, Functions, and Jobs: FTA's, Aspects,
and applications are all network services for which speciftc entity classes must be defined. An
FTA entity identifies the application, as well as input and output Aspects associated with the
FTA. Aspect entities record the Modality of the Aspect. Application entities record the
location of the executable file.

Many applications can perfonn multiple tasks. The speciftc task perfonned is often
determined by command line parameters or input data. A function is defined within SIA as the

164 Part Three Integration Frameworks and Architectures

execution of a given application in a specific mode to perform a specific task. FfA's can be
defmed for each function rather than just each application. A critical distinction between
applications and FfA's is that the FfA entity also includes information about the Aspect(s)
required for that function.

Information about execution processes resulting from launching an Ff A must also be
maintained. The Job entity is introduced to provide this service. A "Job" is created when the
end user requests that an FfA be launched. At this point the end user may be called upon to
identify any Aspects whose physical names and locations were not predefined within the FfA's
defmition. Mter the Job is created and the Aspect locations are identified, SIA sends a
launching request message to the appropriate launching server.

Administrating Access to FT A's: As networks increase in size the number of network
services (i.e. FfA's) available to an end user will increase geometrically. Scalability is
therefore· an important issue for an agile information infrastructure. The number of available
FfA's must be ftltered to insure that the end user can easily find FfA's to address a particular
problem. SIA introduces administrative entities to address these issues. Like other entities,
administrative entities provide storage of relevant data and the ability for other entities to
communicate among themselves and network services

We have identified several administrative entities which can help reduce the complexity of
an infmitely scalable network. These include User, Project, and Group. User entities identify
users so that the set of available information is reduced to only that required by a particular
User. Projects allow FfA's, Aspects, and Users necessary to address a particular problem to
be grouped together. Group is similar to but more general than the Project Entity.

Security will also be an issue for a large distributed system. Only a small number of Users
should be allowed access to a given project. Administrative entities allow access to Projects,
Groups, Aspects, and FfA's to be limited to the subset of Users.

3.3 Access Control

The Graphical User Interface: SIA has been implemented in modular fashion to
maximize the efficiency of network communications. The Librarian is a central server existing
on one network computer and providing persistent storage of SIA's entities. An end user
accesses this database by enacting SIA's graphical user interface (GUI) on a local machine.
Once logged in, the user is presented with a list of projects which the end user may address. A
list of jobs which the user has launched is also available, allowing them to monitor and control
the remote execution processes associated with a launched Ff A. The end user can select a
project, at which time a list of appropriate FfA's will appear. The end user can choose to
launch an Ff A from this point

The end user can exit SIA's GUI at any time without affecting launched processes. If an
execution process sends standard output or error messages and the user launching the job is
running a GUI, these messages are sent immediately to that user's monitor. If there is no GUI
open for the user, the Libnirian will simply store them. When the user next enacts a SIA GUI,
the messages will be immediately sent to that monitor. This allows a user to terminate the SIA

The system integration architecture 165

GUI during long executions and return later without losing any information regarding the
execution or the results.

3.4 Design Flexibility

SIA Modules and Layers: Each "module" contains internal layers which provide specific
services. Layers generally communicate with only layers directly above or directly below them
in the architecture. The layers are also easily replaceable by alternate layers having different
implementations. Figure 4 presents an overview of the current design.

The Librarian Module: The Librarian module the central module of SIA. All inter-modular
communications pass through the Librarian to determine the network location of the message
recipient A database is located within the Librarian module to persistently record the message.
The Librarian has administrative and functional components which provide access for those
services to the database. The database forms the final layer within the Librarian, providing
passive data, but no active services.

Figure 4. Overview of the Systems Integration Architecture

The Executive Module: The Executive module provides the end user access to SIA
through a graphical user interface layer. The Librarian is a server for the Executive providing
it with requested entities. The Librarian can also be a client of the Executive, notifying the
Executive of any change in the state of launched jobs. The Executive module includes an
entity "buffer" layer which provides local access to the remote Librarian entities upon request,
and a control subsystem to control the executionof complex FT A's. There can be many
executive modules distributed across the network.

The Communications Module: The Executive and Librarian modules need not reside on
the same machine. The Communications module provides access between the Executive and
Librarian and among the other modules. Executive, Librarian, and Dispatcher
Communications layers are defmed within the Communications module to provide distributed
communications between the Executive and Librarian modules and the Librarian and Function
modules.

166 Part Three Integration Frameworks and Architectures

The Function Module: The Function module includes the set of all PTA's, launching
servers, dispatchers, remote processes, and remote data available to SIA. Launching servers
and dispatcher are being developed for UNIX, PC, and Macintosh operating systems. There
are many Function modules spread across the network.

4 SUMMARY AND CONCLUSIONS

Various issues in the integration of information systems in an agile environment have been
discussed and the problems with the traditional basis model or abstraction presented. A new
basis model and deftnition of integration are proposed and the services required for an
integrating system suggested. A brief overview of the System Integration Architecture project
shows how the Agile Aerospace Manufacturing Research Center is attempting to address these
issues by implementing a new architecture based on the proposed basis model.

The Systems Integration Architecture has been implemented as a framework which is easily
extensible for any project that requires an information infrastructure framework. We have also
designed SIA to have the flexibility to experiment with alternate technologies whose
introduction may contribute to the efftciency of some portion of the project. SIA is being
implemented, not as a product which is meant for market, but as a research framework which
can be modifted and tuned for various needs. The modularity of the design including the
reconftgurability of the communications and database layers provides many advantages for
research into integration issues in the dynamically changing domain of agile manufacturing.

5 ACKNOWLEDGMENTS

The author acknowledges the ftnancial support of the National Science Foundation from
cooperative agreement DDM-9320949. This work is being performed as part of the Agile
Aerospace Manufacturing Research Center. The assistance of Dr. Ramez Elmasri in the data
base area is acknowledged. The contributions of Dr. Marc Turcotte in the design and
implementation of SIA is gratefully recognized.

6 REFERENCES

Betz, M., "Interoperable Objects,", Dr. Dobb's Journal, #220, a Miller Freeman Publication,
p.p. 18-39, October, 1994.

CIM-OSA Reference Architecture Speciftcation" ESPRIT Project Nr. 688, pub. by CIM­
OSN AMICE, Brussels, Belgium, 1990.

Finger, S. and Dixon, lR., "A Review of Research in Mechanical Engineering Design. Part
II: Representations, Analysis and Design for the Life Cycle," Research in Engineering
Design, Vol. 1, p.p. 121-137,1989.

Fulton, lA., PDES/STEP Model Uniftcation: SUMM," Product Data International, May, pp.
6-7,1992.

Goldman, S.L. "Agile Manufacturing: A New Paradigm for Society," White paper published
by the Agile Manufacturing Enterprise Forum, the Iaccoca Institute, Lehigh University,
P A, undated.

Jarke, M., "Strategies for Integrating CASE Environments," IEEE Software, March, p.p. 54-
61,1992.

The system integration architecture 167

I. Mills, 1.1., "An Agile Information Infrastructure: Integration Issues and Approaches; "
Proceedings of the Fifth National Agility Conference, Boston, March 5-7, The Agility
Forum, 1995.

II. Mills, J.J., "A Basis Model for Agile Computer integrated Manufacturing, " Proceedings of
the Third International Conference on CIM, Singapore, July 9-14, Vol. 3, p.p. 53-63,
1995.

Mills, J.J., Elmasri, R., Khan, K., Miriyala, S., and Subramanian, K., "The Systems Integration
Architecture: An Agile Information Infrastructure, " in Information Systems Development
for Decentralized Organizations, Eds. A Solveberg, 1. Krogstie, and AH. Seltveit,
Chapman Hall, 1995.

Nguyen, G.T. and Rieu, D., "Expert Database Concepts for Engineering Design," AI EDAM
Vol. 1(2), p.p. 88-101,1987.

Nof, S. Y. and Papstravrou, 1. D., "Decision Integration Fundamentals in Distributed
Manufacturing Topologies, " lIE Trans., Vol. 24(3), p.p. 27-42, 1992.

Senehi, M.K., Wallace, S, Barkemeyer, M.E., Ray, S.R. and Wallace, E.K., "Manufacturing
Systems Integration Initial Architecture Document, NIST Interagency Report 91-4682,
September, 1991.

Sthanusubramonian, T. Finger, S, and Rinderle, J, "A Transformational Approach to
Configuration Design," in The 1992 NSF Conference on Design, p.p. 419-424,1992.

Suh, N., The Principles of Design, Oxford University Press, 1990.
Takeda, H, Veerkamp, P, Tomiyama, T. and Yoshikawa, H. "Modeling Design Processes,"

AI Magazine, Winter, p.p. 37-48, 1990.
Talukdar, S.N. and Fenves, S. J., "Towards a Framework for Concurrent Design", in

Computer-Aided Cooperative Product Development, MIT-JSME Workshop, D. Sriram et.
al, Lecture Notes in Computer Science No. 492, Springer-Verlag, pp. 140-151, November
1989.

Taylor, L., and Henderson, M., "The Role of Features and Abstraction in Mechanical Design,"
Proceedings of the Design Theory and Methodologies Conference, ASME, Minneapolis,
September, 1994.

"The Common Object Request Broker Architecture and Specification, " by Digital Equipment
Corporation, Hewlett-Packard, HyperDesk Corporation, NCR Corporation, Object Design
Inc., SunSoft Inc, the Object Management Group, Rev. 1.2, 1993.

Ulrich, K., and Seering, W., "Conceptual Design: Synthesis of Systems of Components," in
Intelligent and Integrated Manufacturing Analysis and Synthesis, PED Vol. 25, ASME.,
p.p. 57-66 NY, 1987.

Wasserman, AI., "Tool Integration in Software Engineering Environments:" Proc. Int'l
Workshop on Environments, F. Long, Ed., Springer-Verlag, Berlin, p.p. 137-149,1990.

Wunderli, M., Norrie, M.C., and Schaad, W, "Multidatabase Agents for CIM Systems,"
Proceedings of the 3rd International Conference on CIM, Singapore, July, Ed. By
Winsor, 1., Sivakumar, AI,. and Gay, R., World Scientific, Volume 1, pp. 13-20,1995.

168 Part Three Integration Frameworks and Architectures

7 BIOGRAPHY

Dr. John J. Mills received his Ph. D degree in Applied Physics at the University of
Durham, Durham, England in June 1965. As the Director of the Automation & Robotics
Research Institute, Dr. Mills manages a multi-million institute which is dedicated to
helping US industry become globally competitive. Dr. Mills is also the director of the
Agile Aerospace Manufacturing Center, one of three Agile Manufacturing Institutes in the
nation. Funded by an ARP NNSF Agility Initiative, the Center is helping to define agility
in aerospace manufacturing in the United States. He also serves as a member of the Board
of Directors for several organizations including the ASME Manufacturing Technologies
Group Operating Board(MTGOB), the Agile Enterprise Quarterly Editorial Board, the
Academic Coalition for Intelligent Manufacturing Systems(A-CIMS) Board of Directors
and others.

In addition to his administrative responsibilities, Dr. Mills also maintains an active
research program focusing on the information infrastructures required for agile
manufacturing. He is author of over 100 publications including book chapters, articles in
prestigious journal, and industry reports.

Mike Brand has been the project manager for the $250,000 Systems Integration
Architecture project of the Agile Aerospace Manufacturing Research Center at the
Automation and Robotics Research Institute of the University of Texas at Arlington since
September of 1995. He is also the chief architect for the Systems Integration
Architecture, producing all high-level analysis and design and directly supervising all lower
level analysis and design. Design issues include identifying client-server partitions within
the architecture, implementing architectural design changes for the development of
reconfigurable architectural layers, supervising the implementation of distributed object
client-server applications using the CORBA compliant Orbix software from lona
Technologies, and supervising the implementation of an object oriented database using
Object Design's Object Store. Mike Brand graduated with a Bachelor of Arts degree in
Physics from Earlham College in Richmond Indiana and expects to receive a doctorate in
Physics from the University of Texas at Arlington in May of 1997. His graduate work
involved designing and implementing an application capable of processing and rendering
data about solid state Fermi surfaces retrieved from a two-dimensional angular correlation
of annihilation radiation (2D ACAD) experiment

