
7 

Acquiring requirements: a domain­
specific approach 
N.A.M. Maiden 
Centre for HCI Design, City University 
Northampton Square, London, UK 
Tel: +44-171-477-8412 
Fax: +44-171-477-8859 
E-Mail: N.A.M.Maiden@city.ac.uk 

Abstract 
This paper outlines two domain-specific techniques to improve the acquisition of requirements 
for software-intensive systems. The principles ideas, theoretical models and computational 
mechanisms needed to implement these techniques are presented. Both techniques exploit 
results from the ESPRIT m NATURE basic research action which proposes domain-specific 
requirements engineering environments. NATURE provides a set of problem abstractions 
which are the basis for intelligent guidance during requirements acquisition. Mter outlining 
these abstractions, the paper presents a framework for guiding requirements acquisition which 
incorporates the two techniques. 

Keywords 
Requirements engineering, requirements acquisition, domain modelling, scenario generation 

1 REQUIREMENTS ENGINEERING 

The task of determining requirements for software-intensive systems is in need of new tools 
and methods. Although requirements engineering research has led to considerable advances, it 
has focused on the improvement of methods (e.g. Easterbrook 1993, Sommerville et al. 1993), 
tools (e.g. Johnson et al. 1992, Nuseibeh et al. 1994) and languages (e.g. Mylopoulos et al. 
1990, Yu 1993) which enable formal specification and validation of requirements. In 
comparison, acquisition of requirements from stakeholders has been neglected. Such acquisition 
is different because requirements are often expressed as linguistic expressions (Sutcliffe & 
Maiden 1993) which are not amenable to formalisation or computational reasoning. It is now 
agreed that new methods and tools are needed. 
The ESPRIT 6353 'NATURE' basic research action (Jarke et al. 1993) has identified a large 

set of problem abstractions to provide domain-specific guidance for requirements engineers. 
Problem abstractions are semi-formal models of the fundamental behaviours, states, objects, 
agents, goals, constraints and functions which belong to members of possible categories of 
requirements engineering problem. In this sense, these abstractions are similar to problem 
frames (Jackson 1995) or cliches (Reubenstein & Waters 1991). However, NATURE has 
derived a larger data base of problem abstractions (e.g. Sutcliffe & Maiden 1994), undertaken 
empirical validation (e.g. Maiden et al. 1995) and constructed tools to exploit the abstractions 
during activities such as requirements structuring (Maiden & Sutcliffe 1993), critiquing (Maiden 
& Sutcliffe 1994) and communication, as well as reuse (Maiden & Sutcliffe 1992). 

A. Sutcliffe et al. (eds.), Domain Knowledge for Interactive System Design
© IFIP International Federation for Information Processing 1996



Acquiring requirements 91 

This paper proposes using NATURE's problem abstractions to provide domain-specific 
guidance for requirements acquisition. Once the requirements engineer has identified the 
categories of the problem domain under analysis, problem abstractions can be used to generate 
large numbers of questions about the problem domain and scenarios describing common and 
unexpected events which the system must handle. Both techniques aid acquisition of both 
requirements of the software system and knowledge about that system's environment, described 
by diverse phenomena in the problem domain such as behaviour, events, structure and states. 
Furthermore these two techniques are embedded in a method framework to guide selection of 
these and other requirements acquisition methods, thus providing a more complete outline 
approach for requirements acquisition. 
This paper is in four parts. ACRE, the method framework for requirements acquisition is 

outlined. This is followed by two domain-specific techniques for requirements acquisition in the 
form of automatic question and scenario generation. The paper ends with future research 
directions, focusing on further implementation of the work presented in this paper. First 
however, the next section reviews the set of NATURE's problem abstractions. 

2. NATURE'S SET OF PROBLEMABSTRACfiONS 

There have been several attempts to produce sets of problem models for reuse during 
requirements engineering (e.g. Reubenstein & Waters 1991, Constantopoulos et al. 1991). 
However, NATURE represents the first systematic attempt to model the space of requirements 
engineering problems. Its theoretical justification draws on hierarchical models of natural 
categories (e.g. Rosch 1983) and mental schemata (e.g. Riesbeck & Schank 1989) from 
cognitive science. It hypothesises that problem abstractions are equivalent in categorisation, 
scale, content and structure to mental abstractions which are often recalled by requirements 
engineers. This is anticipated to maximise reuse of domain knowledge and lead to better 
recognition, understanding and adaptation of problem abstractions. Alternative means of 
detecting and validating such problem abstractions, such as domain analysis (Prieto-Diaz 1990), 
are time-consuming and difficult, and do not provide sufficient exposure to different domains to 
enable effective abstraction. NATURE's emphasis on cognitive validation (e.g. Maiden et al. 
1995) is a novel and powerful approach to this research problem. 
Each problem abstraction is a composition of several object system models and information 

system models. Object system models define all features of one class of requirements 
engineering problem which discriminate it from other classes. These are stored in a hierarchical 
class structure. An orthogonal set of information system models defmes functions which report 
on states defmed in object system models. Object system models are defmed in the hierarchical 
class structure in a systematic manner. Models at different levels in this structure are 
distinguished using different knowledge types with different powers of discrimination. These 
knowledge types are the basis of our problem modelling language (Sutcliffe & Maiden 1994). 
The object system models are structured in 13 hierarchies, see Figure 1. The top-level object 

system model of each hierarchy is defmed using the basic behaviours, states, objects, agents 
and domain structure of one problem category. Specialisation of each of these models, in the 
form of systematic addition of different knowledge types (e.g. goal states, events), generates a 
space of over 200 leaf-node object system models. Each leaf-node model is defined using 
states, state transitions, events, objects, agents, domain structure, higher-order relations 
between objects and agents, preconditions on transitions, goal states, and object properties and 
attributes. 
The 13 top-level object system models are resource returning, resource supplying, resource 

usage, item composition, item decomposition, resource allocation, logistics, object sensing, 
object messaging, agent-object control, domain simulation, worlq>iece manipulation and object 
reading. For example, domain simulation models describe complex environment simulations for 



92 Part Two Process Views of Domain Engineering 

human agents. The model at the top of this hierarchy is specialised according to domain 
structure (e.g. user is inside/outside the environment, number of users in the environment), 
event triggers (e.g. real-time nature of interaction) and object properties (e.g. physical or 
conceptual). Furthermore, most leaf-node object system models can be specialised through 
addition of different types of more domain-specific knowledge. Domain simulation models have 
different types of interaction devices which are application-specific (e.g. steering wheels, 
joysticks, keyboards). On the other hand, object sensing system models are specialised through 
addition of attributes which type sensing agents (e.g. radar, infra-red sensors, video cameras, 
pressure pads), moving objects (e.g. unidirectional or bi-directional objects) and spaces (e.g. 
three-dimensional versus two-dimensional space, moving versus fixed spaces). Indeed, object 
system models, when integrated with existing methods, provide an alternative starting point for 
more detailed domain modelling. 

basic behaviour, 
stales, objects, 
agents & structure 

object properties 

resource 
usage 

object workpiece item 

-~HH :::~:00~ 
200 leaf-node object system models 

Figure 1 Graphical depiction of the hierarchical class structure of object system models. 

3. AIR TOOLKIT 

The AIR (Advisor for Intelligent Reuse) tookit is composed of six tools which exploit object 
system models during requirements engineering tasks. Its current architecture is shown in 
Figure 2. Several tools have been designed and implemented on a SparcStation IPX under 
UNIX using the ConceptBase object-oriented deductive data base (Jarke et al. 1994) and 
ProLog by BIM. Others are being implemented on the same platform. The toolkit encourages 
iterative acquisition, definition and critiquing based on retrieval of more and lower-level object 
system models. More details of these tools are given in Maiden & Sutcliffe (1994). 

AIR toolkit 

object 
sy tern 
models 

retr~~d models and inferred mappings 

Figure 2 Outline architecture of NATURE's AIR toolkit. 



Acquiring requirements 93 

At the heart of the toolkit are two computational mechanisms which retrieve and reason with 
object system models: 

• the domain matcher is a computational analogical reasoning mechanism for retrieving object 
system models (Maiden & Sutcliffe 1994). Retrieval is achieved by first matching entered 
facts and requirements to a high-level object system then refming this match to specialisations 
of the object system until no further specialisation is possible. Matching also retrieves 
information system models linked to the retrieved object system models. Another tool, the 
problem classifier, exploits inferred object-pair and fact-pair mappings to aid detection of 
problem situations in entered requirements. This is linked to yet another tool called the 
requirements critic which aids problem understanding and requirements critiquing by 
explaining retrieved object system models and detected problem situations to the requirements 
engineer; 

• the domain decomposer is the second computational mechanism. It retrieves multiple object 
system models from a larger requirements problem (Maiden & Sutcliffe 1996). New 
requirements are neither well-defmed or well-structured. Therefore, the mechanism combines 
domain semantics with pattern matching algorithms to detect fact and requirement patterns for 
then retrieving single object system models using the domain matcher. 

These two computational mechanisms, when combined with the set of object system models, 
provide a basis for determining the types of knowledge to acquire and generating large numbers 
of domain-specific questions and scenarios. Next however, the methodological framework for 
using these and other techniques is outlined. 

4. ACRE: METHODS FOR ACQUIRING REQUIREMENTS 

A framework called ACRE (ACquisition of REquirements) provides guidelines for method 
selection based on theoretical models and empirical evidence from cognitive and social science. 
ACRE offers 12 acquisition methods as a representative sample of the types available. Most of 
these methods are also comparable in their objectives, duration and manpower needed. ACRE's 
central premise is that different methods are more effective for acquiring different types of 
knowledge and requirements. Six facets inform method selection: 

• purpose of requirements: requirements can be acquired for different purposes such as 
specification of bespoke systems, selection of software packages and to provide a legal 
contract for requirements procurement; 

• knowledge types: requirements modelling languages include semantic primitives such as 
events, states and agents. ACRE proposes methods for acquiring different types of 
knowledge; 

• internal filtering of knowledge: it is often the case that stakeholders are unaware of their own 
knowledge and its boundaries. Problems can include poor recall and communication of 
incomplete or incorrect knowledge. Methods are also offered to overcome these limitations; 

• observable phenomena: some knowledge cannot be communicated by stakeholders but only 
learned by observing the domain and its environment; 

• acquisition context: method choice also depends on the context of its use. Complex 
organisational, political, financial and temporal pressures influence acquisition and method 
selection in the framework also recognises this; 

• method interdependencies: an acquisition programme will include a sequence of methods, 
therefore selection is influenced by other chosen methods. The need for such sequencing and 
interaction was shown in the case studies with card sorting and laddering. 



94 Part Two Process Views of Domain Engineering 

The fll'SI factor to con idef is whclller the method mu 1 acquire knowledge about the elli ting domain or 
requiremeo~ for the new systcm. Scenario analysis, prototypiog and RAD are bcucr for acquiring 
requirements for new systems. Scenarios and prototypes can provide good simulations of lbc future 
system and its interaction with its eovi.ronment Such simulations provide powerful tools for deten:n.ioiog 
requirements. ·~ .11' ·!; 

~ C(l c.. ~ 

Internal represenllltion 
of knowledge 

Future system knowledge 

Non-taeit knowledge 

Recognised knowledge 

TFG knowledge 

Worldng memory knowledge 

Compiled knowledge 

Implicit knowledge 

X ..J 

. "" 
X X 

"" X l 

"" 
. 

"" . 

" X . 

"" "" ..J..J 

X - ..J 

..J 

l "" X 

. "" . "" 

Ol § ~ ... .g a ·esa "8. 

-rf-§! ·5 ~ 
~ ~ ~ -~ § ~ i 
" . " "" "" "" X 

"" "" " - "" "" 
. 

- " ..J..J "" "" X 

- . ..J ..J ..J "" 
l l X X X l l 

. . ..J " ..J ..J..J 

. . ..J ..J ..J "" 
When considering existing domain knowledge, the framework makes a broad distinction between non­
tacit, semi-tacit and tacit knowledge. Rceall or non-taCit knowledge iS uncontrOversial but ubjcet to 
numerous well-documented biases. For example, even domain experts may selectively rceall only 
examples which fit with tbcir preconceived schemata, and forget examples which do not A RE 
proposes u ing verbal method for acquiring non-tacit knowledge. 

Semi-tacit knowledge has three factors to consider. 
• recognition of non-tacit knowledge differ.; from recall in the access to knowledge. Recall often 
accesses only a fraction or the knowledge which can be recognised. For example, most people are able 
to recall only a few function names of a software package which tbcy routinely use, but are able to 
recognise all of them if shown ali L Rapid prototyping, scenario analysi and RAD are the most 
effective methods. Some brainstorming methods also produce models. 
• taken-for-granted (TFG) knowledge refers to the filtering process in communication (Grice 1975) 
which leads to the omission of information which can be taken for granted (e.g. one would not say: "My 
computer, which is a machine ... ."). Stakeholders often treat knowledge as TFG when it involves 
everyday things, forgeting that it may be unknown to outsiders such as requirements engineers. 1FG 
knowledge is best acquired u ing methods which do not rely on communication such as observation, 
protocol analysis and ethnograpbic methods. 
• working memory is a limited-capacity, short-duration memory for information used during a task 
which i forgo11en within a few seconds unl tbcre is some reason to commit it to long term memory. 
Only protocol analysis. which combines observation with vcrbalisation of thought processes. can 
capture knowledge in working memory. 

Tacit knowledge subsumes compiled and implicit knowledge. For example, compiled knowledge is 
knowledge which was once non-tacit. but which bas since been practised so often that it has become 
babitualised and speeded up to the point where accurate introspection i no longer possible (Anderson 
1990). ACRE promoleS use of observational methods (observation, protocol analysis, ethnographic 
methods) for acquiring both compiled and implicit knowledge. 

Figure 3 Example of guidelines provided in the ACRE framework. 

The ACRE method is presented as simple steps and look-up tables which guide planning of a 
requirements acquisition programme and choice of methods for each acquisition session. For 



Acquiring requirements 95 

example, consider the facet "internal flltering of knowledge", see Figure 3. Interviewing is a 
traditional method for acquiring requirements. However, it assumes that the stakeholder has 
conscious, accurate access to all relevant knowledge. In fact though, this is often not the case. 
Much knowledge is not accessible to conscious introspection, and of the knowledge which is, 
much may be missed. Alternative methods are recommended. 
The two domain-specific techniques described in the remainder of the paper can be seen as 

supporting methods in the ACRE framework. Question generation can inform unstructured 
interviewing and both inform and shorten the preparation time for structured interviewing, 
laddering, brainstorming and the use of prototypes. Automatic scenario generation has an 
obvious role for scenario analysis. It provides a more complete set of scenarios and reduces 
preparation time considerably. It can also provide information for informing evaluation of 
prototypes. Both techniques are now described in more detail. 

5. DOMAIN-SPEOFIC QUFSfiON GENERATION 

Requirements acquisition involves asking a lot of questions. However, a reoccurring problem is 
that important questions are often unforeseen or overlooked. Furthermore, when the right 
questions are asked, they are not asked in the order which is most effective. Several commercial 
tools are available to overcome these problems, for example the GMARC method and tool (CSA 
1995). However, a better understanding of which questions to ask to obtain the right answers is 
needed. 

Question generation 
The essential but simple idea is to tum NATURE's object system models "inside-out". Each 
feature of the retrieved model then becomes the topic focus for a set of questions. This topic 
focus is associated with different questions depending on the type of feature in a model, such as 
an object, agent, state and behaviour. The result is a large number of questions about generic 
features. To make these questions more domain-specific, the requirements engineer can be 
asked to give simple mappings between question objects and domain objects. For example, 
questions would refer to the 'air traffic controller' rather than the 'controller agent'. One 
advantage from generating questions in this manner is to enable the acquisition session to be 
planned. Retrieved object system models suggest the structure of the problem space. The order 
in which requirements engineers ask questions should reflect this structure. Acquisition 
planning is also improved because the likely boundaries and key features of this space are 
defined at the beginning of the acquisition session. 

Computational mechanisms 
Generating a sequence of questions is, at least in part, clerical and hence amenable to 
automation. Taking its input from the domain knowledge in object system models, question 
generation is automated using a simple computational mechanism called the question generator. 
This mechanism informs question generation using the: (i) topic foci of questions, (ii) question 
types. A set of predefmed questions is asked about each feature in the object system model 
according to its type. Question templates are filled using domain-specific features and tailored 
using predefmed mappings between object system models and question types. 

Question types 
Each feature of an object system model is presented to requirements engineers in different 
styles, although all use natural language to ensure effective communication with end-users. 
These styles are questions (Potts et al. 1994), summarising statements (Reubenstein & Waters 
1991) and simple models (Maiden & Sutcliffe 1994). Several different, system-generated styles 
of questions can be identified. The system generates questions of the type what-is, how-to, 



96 Part 1\.vo Process Views of Domain Engineering 

who, what-kinds-of, when, relationships and what-if (Potts et al. 1994). The type of question 
asked is driven from the desired answers. The hierarchical structure of the models also informs 
procedural guidance for this acquisition through prioritisation of questions. 

Question presentation 
Qiestions are presented in two basic forms, depending on the context in which acquisition will 
take place. Often acquisition takes place on the stakeholder's own ground where use of 
technological support is difficult, if not impossible. In such cases, a booklet of questions is 
produced to act as a checklist and a guide. If technological support is possible, interactive 
guidance for questions to ask during the session is provided. Again, guidance for sequencing 
and prioritising questions can be provided using the structure of models in the data base. 
Furthermore, the depth and direction of questioning can be constrained depending on external 
factors such as the time available for acquisition and the level of knowledge of the stakeholder. 
Such tailorability is seen as critical for effective acquisition guidance. 

Example 
Consider retrieval of the resource hiring system model, which describes all library circulation 
control problems such as book lending or car hire. This model has five basic objects: the 
resource, the borrower, lender, the container (holding the resource) and a controller (who 
controls circulation). A large number of critical questions can be asked about each of these 
objects, including: do you have these objects, what are their names and attributes, how do each 
of these objects behave, who manipulates each of the objects, and what are the relationships 
between them? The model also includes a number of states, such as whether a book is loaned or 
not, whether it is reserved or not, as well as the structure of the domain itself. Questions about 
states can include: when does a state arise, how long does the state last for, what stops the state, 
and what are attributes of the state? The model also includes events, state transitions, goal states 
and object properties. Different questions can be generated for all of these phenomena types. 
The question generator achieves this with a small data base of predefined question types and 
presentation templates. The result is several hundred questions from just one simple object 
system model. This provides significant, scaleable and planned guidance for more complete 
requirements acquisition. 

Advantages 
The automatic question generation approaches outlined here have at least four clear advantages. 
First, generating the topic focus of questions from the models ensures greater coverage and 
hence question completeness. This is because object system models aim to include the key 
features of all requirements engineering problems. Second, the models provide a context for 
focusing and scoping problems. Stakeholders often misunderstand acquisition questions, 
therefore contextualising these questions is important. Indeed models can be presented 
alongside questions to provide this context in an explicit manner. Third, the hierarchies of object 
system models provide a basis for both layering and focusing questions, thus introducing more 
flexibility into the questioning process. This is linked to the fourth advantage, which is in that 
models enable the requirements engineer to defme the order of questions before the acquisition 
session begins. Planning such acquisition sessions is both difficult and time-consuming, and 
object system models can provide an important basic structure for ordering questions. 

6. AUTOMATIC SCENARIO GENERATION 

Scenarios have been recognised as a useful technique for acquiring requirements. A scenario is 
a description of a sequence of actions or events for a specific case of some generic task which 
the system is meant to accomplish (Wexelblat 1987). Scenarios can serve as a useful, informal 



Acquiring requirements 97 

explanatory device where questions about a desired future state cannot be easily answered. One 
advantage is that stakeholders do not need to learn any formal syntax. The importance of 
scenarios is shown by their recent integration into structured and object-oriented methods, such 
as use-cases in the OOSE method (Jacobson et al. 1992). 

Scenario generation 
Although benefits of scenarios for requirements acquisition have been shown, generating a large 
and useful set of scenarios remains a bottleneck (Gough et al. 1995). One solution is to extend 
the question generation approach outlined above to the generation of scenarios. Question 
generation is simple. It generates different questions for individual features of an object system 
model. Scenario generation is different. It identifies different permutations of these model 
features to generate a set of possible scenarios. Agents, events, transitions, states and goal 
states are all fundamental components of both object system models and scenarios (Potts et al. 
1994). These can be manipulated, as a set, to determine different permutations, or scenarios, for 
a problem domain. These permutations are extended using a set of exception conditions which 
define unforeseen situations and events in problem domains. Furthermore, features in object 
system models are interconnected, thus enabling the imposition of useful constraints on scenario 
generation. A computational mechanism to generate these permutations has been designed to 
overcome the scenario generation bottleneck. 
It is important to note that scenario generation is more sophisticated than just deriving all 

possible permutations of all actions, events, agents, state transitions and states in one object 
system model. The space of these permutations would be just too great. Rather the generation 
engine examines different permutations of causal chains of actions, events, state transitions and 
resultant states which are defined in the object system model. A causal chain is shown in Figure 
4. For example, a borrower undertakes a sequence of actions which includes the event of 
loaning books, which causes the state of those books to be loaned to change. Each chain is 
divided into a series of causal links, each of which has a fmite set of permutations. Therefore 
the set of all permutations for a causal chain is equal to the permutations of all permutations for 
each causal link, and the complete set of permutations for an object system model is equal to all 
permutations for all causal chains belonging to that model. 

Agent Action Awl! .d&li2.n ~ State Transition St$ 

ctmsal chain • •• •• •• •• •• •• Agl Al Ag2 A2 El Tl Sl 

borrowing • •• •• ... •• •• •• student request staff check-<lut loan books loan-a-book "book-unavailable" 

returning • •• •• •• •• •• •• student request staff check-in return-books return-a-book "book available" 

Figure 4 Causal chains as the basis for automatic scenario generation. 

The library circulation control example 
The object system model for resource hiring defmes different causal chains for borrowing 
.resources, returning resources, reserving resources and making resources available. This 
example focuses on the causal chain for borrowing. In this chain, in its generic form, the 
borrower agent requests the lender to undertake a sequence of events and actions which trigger a 
state transition which changes the state of the desired resource from "available" to "borrowed". 
Assuming once again that a simple mapping process is available to instantiate this causal chain, 
a student requests check-out staff to check-out a book which then changes state from "available" 
to "borrowed". However, more importantly, different permutations of this chain can be 
generated, for example: 



98 Part Two Process Views of Domain Engineering 

• different agents or individuals can undertake the same actions, for example one student tries to 
borrow a book using the identification number of another student; 

• actions might happen in a different sequence to the model sequence, for example the student 
asks to borrow the book without bringing it to the check-out desk; 

• events can trigger different state transitions, for example one student might ask to loan the 
same book several times during a loan transaction; 

• possible states when a state transition occurs, for example the requested book is reserved to 
either the student requesting it or to a different student 

Given that object system models describe abstractions of phenomena in the problem domain, 
scenarios also describe the problem domain and the system's interaction with it Therefore 
scenarios can generate both direct and indirect requirements for the software system. Indeed, 
this generative role for scenarios should be exploited. Often one scenario will lead to recognition 
of a wider set of scenarios and requirements which cannot be generated using the engine 
described here. However, combining casual chain permutations for one object system model 
gives a large set of more complex permutations. It provides the baseline for generating a large 
set of scenarios which are then elaborated using human errors and technical problems. 

Human errors 
Systematic generation of scenarios needs a research basis to determine a complete and useful set 
of exception situations. Exceptions can arise from different sources. One is human error. Most 
problem domains include human agents who can make errors and hence give rise to exceptions. 
Human errors in requirements engineering were investigated by Bowers et al. (1994). Slips 
often occur during performance of familiar tasks and include attentional failures (e.g. a librarian 
failing to see when a borrower has overdue books), memory failures (e.g. forgetting to tag 
borrowed books for the security system) and selection failures (e.g. tagging books before 
checking them out). Mistakes occur in the formulation of actions and include bad application of 
rules (e.g. inappropriate charging of fines for overdue books) and various biases (e.g. 
confusing borrowers and over-confidence with the system). Human errors are attributable to 
human agents in object system models, and provide different permutations of this kind. 
Research into human error has led to a tentative classification scheme of such errors. 

Technical problems 
Most problem domains also involve computer systems and other technologies which are prone 
to act unexpectedly. Types of technical problem include power failures (e.g. the library looses 
power from the national grid or other power sources), "hanging" systems (e.g. the check-out 
system hangs during different check-out activities) and "overactive" systems (e.g. the security 
system signals illegal removal of books for all people entering and leaving). As with human 
errors, a tentative classification of such problems has been derived to inform scenario 
generation. 

Back to the library circulation control example 
Both human errors and technical problems enables generation of further permutations of the 
resource borrowing causal chain. Borrowing involves two human agents (borrower and 
lender). Lender errors include attentional failures (e.g. stamping with the wrong return date), 
memory failures (e.g. forgetting to tag borrowed books) and mistakes (e.g. failing to reserve 
requested books). The borrower is prone to similar errors such as memory errors, for example 
forgetting to hand over all books for checking out. Technical problems can also complicate 
borrowing. Power failures and "hanging" systems are all possible during a loan transaction, 
therefore alternative and repair strategies are needed. Combining these possible exceptions with 



Acquiring requirements 99 

permutations of causal chains in object system models generates a large set of possible 
scenarios. Furthermore, human errors and technical problems are presented in a more useful 
context It is possible to present the classification of human errors without scenarios, however 
scenarios provide a mechanism for both interpreting such errors as well as exploring problems 
and generating further scenarios. 

Constraints on permutations 
Combining different permutations of events, activities and states of object systems with large 
possible of exceptions (both human and technical) can result in a very large set of permutations. 
Therefore, effective use of scenarios generated in this manner needs to be constrained. Our 
approach implements several forms of constraint The most important is the likelihood of the 
permutation occurring in the problem domain. Object system models defme most common 
patterns of situations and actions. Scenarios often need to include less probable variations on 
these patterns. One option is to grade the likelihood of permutation on a model-by-model basis. 
In essence, each object system model is extended to include probable and important exceptions. 
For example, attentional failures in object sensing system models such as air traffic control and 
patient monitoring (Maiden et al. 1995) are often safety-critical and hence a priority. Second, 
business rules are applicable for constraining permutation by defining what should and should 
not happen, however further research is still needed in this direction. Third, the requirements 
engineers themselves can select the topic focus of each scenario depending on the agenda and 
stakeholders present at an acquisition session. Returning to circulation control in the library, an 
acquisition session with counter staff should use scenarios which involve counter staff, while a 
session investigating how books are loaned should utilise scenarios which include book 
loaning. The current algorithm can generate scenarios for specific objects, agents, activities and 
types of error, for example meetings might investigate safety-critical aspects of a system. 

Summarising 
The research outlined here represents a pragmatic solution for automatic scenario generation. 
Such generation needs domain knowledge, such as in the form of object system models, to 
provide context-specific knowledge for this task. This approach introduces some novel 
advantages. One is that the generating mechanism provides an indexing mechanism for their 
retrieval and use. One can envisage the requirements engineer retrieving different scenarios from 
a data base according to the topic focus or interests of stakeholders, for example during 
exploration of a specific exception or obstacle. However, there are still some outstanding 
research questions. The use of genetic algorithms for generation of scenario permutations 
remains an open issue. Further effort is also needed to extend and validate the taxonomy of 
human errors and technical problems. In most current cases, scenarios are presented using 
natural language. Further work is also needed to determine how to present generated scenarios 
to stakeholders. However, the main unanswered question is constraining the space of possible 
permutations to make it manageable. 

7. FUTURE RESEARCH AND EXPLOITATION 

This paper has described two domain-specific guidance guidelines for requirements acquisition. 
Requirements acquisition has received little attention from researchers, let alone with domain­
specific guidance in mind, despite the fact that several problems, such as the scenario generation 
bottleneck, have been identified. However, acquisition also needs stronger methodological 
guidance, hence the inclusion of ACRE in this paper. This is ongoing work to be taken further 
at a theoretical level and a practical level through method and tool design. 
There are several issues, despite those outlined so far, which warrant further exploration. First, 
domain-specific guidance first necessitates retrieval of relevant object system models. NATURE 
implemented computational mechanisms for retrieving object system models for partial problem 
descriptions, however earlier retrieval is needed. Two options are available. First, more 



100 Part Two Process Views of Domain Engineering 

facilities for browsing and asking questions about object system models can be provided, to 
enable easier access. This approach seems feasible during multi-session bouts of acquisition. 
After a first, high-level analysis to scope the problem, the requirements engineer can select 
relevant object system models as basis for further, more detailed acquisition sessions. The 
second option is to place an emphasis on training requirements engineers about the data base of 
object system models, so that models can be quickly retrieved and used during acquisition 
sessions. Successful reuse programmes place an emphasis on training about code libraries: there 
is no reason why such training will not help retrieval of object system models. 
The other area for further research is to extend and evaluate the classification of human errors 
and technical problems to enable generation of more complete and more realistic scenarios. This 
will involve both further studies of the literature and direct empirical studies. The author looks 
forward to reporting the results of this and other work outlined in this paper in the near future. 

Acknowledgements 

Part of this research was funded as part of the European Commission's ESPRIT III 6353 
'NATURE' basic research action. Special thanks goes to Alistair Sutcliffe. 

References 

Anderson J.R., 1990, 'The Adaptive Character of Thought', Hillsdale NJ, Erlbaum. 
Bowers J., Viller S. & Rodden T., 1994, 'Human Factors in Requirements Engineering', 

Technical Report REAIMSIWP1.2/LU004, Lancaster University, UK. 
Constantopoulos P., Jarke M., Mylopoulos J. & Vassiliou Y., 1991, 'Software Information 

Base: A Server for Reuse', Technical Report, FORTH Research Institute, Univ of Heraklion, 
Crete. 

CSA, 1995, 'Getting the Requirements Right- A Professional Approach', Computer Systems 
Architects Internal Document. 

Easterbrook S., 1993, 'Domain Modeling With Hierarchies of Alternative Viewpoints', 
Proceedings 1st IEEE Symposium on Requirements Engineering, IEEE Computer Society 
Press, 65-72. 

Gough P.A., Fodemski F.T., Higgins S.A. & Ray S.J., 1995, 'Scenarios- an Industrial Case 
Study and Hypermedia Enhancements', Proceedings 2nd IEEE Symposium on Requirements 
Engineering, IEEE Computer Society, 10-17. 

Grice H.P., 1975, 'Logic and Conversation', in Cole, P. & Morgan, J.L. (eds.) Syntax and 
Semantics 3, New York: Academic Press. 

Jackson M., 1995, 'Software Requirements and Specifications', ACM Press/Addison-Wesley. 
Jacobson 1., Christerson M., Jonsson P. & Overgaard G., 1992, 'Object-Oriented Software 

Engineering: A Use-Case Driven Approach', Addison-Wesley. 
Jarke M., Bubenko Y., Rolland C., Sutcliffe A.G. & Vassiliou Y., 1993, 'Theories 

Underlying Requirements Engineering: An Overview of NATURE at Genesis', Proceedings 
1st IEEE Symposium on Requirements Engineering, IEEE Computer Society Press, 19-31. 

Jarke M., Eherer S., Gallersdorfer R., Jeusfeld M. & Staudt M., 1994, 'ConceptBase - A 
Deductive Object Manager for MetaData Bases', Journal of Intelligent Information Systems, 
1994. 

Johnson W.L., Feather M.S. & Harris D.R., 1992, 'Representation and Presentation of 
Requirements Knowledge', IEEE Transactions on Software Engineering 18(10), 853-869. 

Maiden N.A.M., Mistry P. & Sutcliffe A. G., 1995, 'How People Categorise Requirements for 
Reuse: a Natural Approach', Proceedings 2nd IEEE Symposium on Requirements 
Engineering, IEEE Computer Society, 148-155. 



Acquiring requirements 101 

Maiden N.A.M. & Sutcliffe A.G., 1994, 'Requirements Critiquing Using Domain 
Abstractions', Proceedings IEEE Conference on Requirements Engineering, IEEE Computer 
Society Press, 184-193. 

Maiden N.A.M. & Sutcliffe A.G., 1993, 'Requirements Engineering by Example: An Empirical 
Study', Proceedings IEEE Symposium on Requirements Engineering, IEEE Computer 
Society Press 104-112. 

Maiden N.A.M. & Sutcliffe A.G., 1992, 'Exploiting Reusable Specifications Through 
Analogy', Communications of the ACM 34(5), April 1992, 55-64. 

Maiden N.A.M. & Sutcliffe A.G., 1996, 'Computational Mechanisms for Parallel Problem 
Decomposition During Requirements Engineering', Proceedings 8th International Workshop 
on Software Specification and Design, IEEE Computer Society Press. 

Mylopopoulos J., Borgida A., Jarke M. & Koubarakis M, 1990, 'Telos: Representing 
Knowledge about Information Systems', ACM Transactions on Office Information Systems 
8(4), 325. 

Nuseibeh B., Kramer J. & Finkelstein A., 1994, 'A Framework for Expressing the 
Relationships Between Multiple Views in Requirements Specification', IEEE Transactions on 
Software Engineering 20(10), 760-773. 

Potts C., Takahashi K. & Anton A.l., 1994, 'Inquiry-Based Requirements Analysis', IEEE 
Software 11(2), 21-32. 

Prieto-Diaz R., 1990, 'Domain Analysis: An Introduction', ACM SIGSOFT Software 
Engineering Notes 15(2), April 1990, 47-54. 

Reubenstein H.B. & Waters R.C., 1991, 'The Requirements Apprentice: Automated Assistance 
for Requirements Acquisition', IEEE Transactions on Software Engineering 17(3), 226-240. 

Riesbeck C.K. & Schank R.C., 1989, 'Inside Case-based Reasoning', Lawrence Erlbaum 
Associates, Hillsdale NJ. 

Rosch E., 1983, 'Prototype Classification and Logical Classification: the Two Systems', New 
Trends in Conceptual Representation: Challenges to Piaget's Theory, edited K. Scholnick, 
Lawrence Erlbaum Associates, Hillsdale NJ. 

Sommerville I., Rodden T., Sawyer P., Bentley R. & Twidale M., 1993, 'Integrating 
Ethnography into the Requirements Engineering Process', Proceedings 1st IEEE Symposium 
on Requirements Engineering, IEEE Computer Society Press, 165-173. 

Sutcliffe A.G. & Maiden N.A.M., 1994, 'Domain Modeling for Reuse', Proceedings 3rd 
International Conference on Software Reuse, IEEE Computer Society Press, 157-164. 

Sutcliffe A.G. & Maiden N.A.M., 1993, 'Bridging the Requirements Gap: Policies, Goals and 
Domains', Proceedings 7th International Workshop on System Specification and Design, 
IEEE Computer Society Press, 52-55. 

Wexe1blat A., 1987, 'Report on Scenario Technology', MCC Technical Report STP-139-87, 
MCC, Austin Texas, 1987. 

Yu E.S.K., 1993, 'Modelling Organisations for Information Systems Requirements 
Engineering', Proceedings IEEE Symposium on Requirements Engineering, IEEE Computer 
Society Press, 34-41. 


