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Abstract 
The paper describes the MIKE (Model-based and Incremental Knowledge Engineering) ap­
proach for the development of knowledge-based systems (kbs). It integrates semifonnal spe­
cification techniques, formal specification techniques, and prototyping into a coherent 
framework. This allows the domain and task model of a kbs to be described on different for­
malization levels. All activities in the building process are embedded in a cyclic life cycle 
model. For the semiformal representation we use a hypermedia-based fonnalism which ser­
ves as a communication basis between expert and knowledge engineer during knowledge ac­
quisition. The semiformal knowledge representation is also the basis for formalization, 
resulting in a formal and executable model of expertise specified in the Knowledge Acquisi­
tion and Representation Language (KARL). Since KARL is executable the model of exper­
tise can be developed and validated by prototyping. A smooth transition from a semiformal 
to a formal specification and further on to design is achieved as all the description techniques 
rely on the same conceptual model to describe the functional and non-functional aspects of 
the system. Thus, the system is thoroughly documented at different description levels, each 
of which focuses on a distinct aspect of the entire development effort. Traceability of requi­
rements is supported by linking the different models to each other. Though the MIKE ap­
proach aims at supporting the building process of kbs, its principles and methods apply also 
to the development of non-knowledge-based software systems, e.g. information systems. 

Keywords 
Knowledge Engineering, Knowledge Acquisition, Domain Modeling, Task Modeling, Pro­
blem-Solving Method, MIKE, KARL 

1 INTRODUCTION 

In earlier days the development of a kbs has been seen as a transfer process of knowledge 
from the head of the expert into the computer system. As a consequence it was assumed (i) 
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that interviewing the expert brings all necessary knowledge to day, (ii) that the knowledge 
in the kbs is best structured in the same way as the expert structures it, (iii) that the existing 
representation formalisms, which were formalisms for the realization of the final kbs, are 
adequate to capture this knowledge, and (iv) that the kbs might be developed using the rapid 
prototyping approach, i.e. that the acquired knowledge may be implemented immediately 
and that the running prototype may be used to validate the acquired knowledge. 

In contrast to the expectations this paradigm failed in building large expert systems for 
commercial use in many cases, due to the following reasons: 
• Typically kbs are developed to solve very complex problems or even problems which 

are not entirely understood (Shaw,Gaines, 1992). So the functionality of the system is not 
completely available in advance. Instead such a specification must be developed itera­
tively in cooperation with expert(s) and the user(s) of the system. 

• While the expert may consciously articulate some parts of his or her knowledge, he or 
she will not be aware of a significant part of this knowledge since it is hidden in his or 
her skills. This knowledge is not directly accessible by interviews but only by observing 
the expert and interpreting these observations. 

• Even if the functionality of a kbs is entirely specifiable the complexity of every compu­
tational mechanism might be so high, that the problem in its entire generality may only 
be solved for small instances. Many AI-problems in their general formulation are at least 
NP-hard problems (Nebel,1995). Experts solve such problems by using a large amount 
of domain specific knowledge, which allows to restrict the problem, to approximate the 
problem or to reformulate the problem in order to solve a simpler problem efficiently or 
to use domain specific heuristics which reduce the average complexity (Nebel,1995). It 
is often exactly this knowledge which distinguishes an expert from a novice and moreo­
ver its exactly this knowledge which is only partially conscious to the expert. 

Due to these reasons it is not sufficient to give a detailed functional specification of a kbs 
and to build a solution using 'normal' computer science know-how. Instead task and doma­
in specific knowledge and task and domain specific heuristics are necessary in order to be 
able to build a solution which allows to solve larger instances of the problem in a reasonable 
time. Thus the process of building a kbs is nowadays seen as a modeling activity, i.e. as the 
construction of several models capturing different types of knowledge (Clancey,1989). 
Building a kbs means building a computer model with the aim of imitating an expert's ap­
proach. It is not intended to create a cognitive adequate model, i.e. to simulate the cognitive 
processes of an expert in general, but to create a model which offers similar results in pro­
blem-solving for problems in the area of concern. 

The models resulting from this modeling process must contain different kinds of know­
ledge necessary to solve the task at hand: 
• Domain specific static knowledge about terminology, relationships and facts. This do­

main knowledge comprises all knowledge to solve the task in principle. These domain 
models may partially be reused for solving other problems in the same domain. Domain 
ontologies are reusable model components which provide a conceptualization of a spe­
cific domain and are shareable and reusable across different tasks (Gruber,1993). 

• Due to the failure of the general problem solver approach in AI, it is not possible to mo­
del all relevant knowledge and to solve every problem in a given domain using a general 
deduction mechanism. Instead task specific problem-solving methods (psm) must be 
used in order to solve the given task. These problem-solving methods may be kept gene­
ric, i.e. independent of the concrete domain, but specific for the given task. Therefore 
these problem-solving methods constitute building blocks which may be reused for si­
milar tasks in another domain (Breuker,Velde,l994). 
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• Task-specific heuristics formulated in domain-specific terms which allow to reduce the 
average complexity of the used problem solving method. 

Thus it is even indispensable for building a kbs to perform a detailed domain analysis and 
domain modeling as well as an analysis and modeling of the task in an early stage of this buil­
ding process. The distinction of symbol level and knowledge level (Newell,1982) gives rise 
to an abstract description of the task solved by the system and the knowledge, which is requi­
red to solve the task. This knowledge level description is built independently of the design 
and implementation activity. The separation of analysis and design/Implementation is an ana­
logue to the separation of analysis or requirement engineering on the one hand and design 
and implem~ntation on the other hand in software engineering. 

In this paper we present some aspects of the MIKE approach (Model-based and Incremen­
tal Knowledge Engineering) (Angele et al, 1993)*, which aims at a development method for 
kbs covering all steps from the initial specification to design and implementation. MIKE pro­
poses the integration of life cycle models, prototyping, semiformal, and formal specification 
techniques into a coherent framework: 
• Informal and semiformal models of the knowledge provide a high and mformallevel for 

description. Graphical means similar to entity-relationship diagrams, data flow diagrams, 
flow charts, and state-transition diagrams are used. This type of information is easy to und­
erstand and very useful as a mediating representation for the communication between the 
domain expert, the user and the system developer. These models also contain non-functio­
nal requirements which have to be met by the system. 

• The formal specification of the domain and problem-solving knowledge (knowledge how 
to solve the task) in the language KARL allows to describe the functionality of a system 
in an unambiguous and precise way. 

• Making this formal model executable adds the flavour of prototyping to the specification 
process. The model may be evaluated by a running prototype. Often, this is nearly the only 
way to arrive at realistic descriptions of the desired functionality of the systems. 

• Additional representations document modelling decisions made during the various phases 
of the life-cycle (Landes,Studer,1995). This enables requirements traceability, i.e. it is re­
corded which parts of the implementation are addressing a particular requirement. 

• All different activities of the building process itself are embedded in a cyclic life cycle mo­
del (Boehm, 1988). 

This paper presents the models and the description formalisms used in MIKE, namely the 
structure model described by the semiformal hypennedia-ba'Sed formalism MEMO (Neu­
bert,l993) and the model of expertise formulated in the formal and executable Knowledge 
Acquisition and Representation Language KARL (Fensel et al,1995), (Fensel,1995a), (Ange­
le,1993). An extension to KARL, namely DesignKARL (Landes,l994) has been developed to 
describe the design model. The description of the models at different abstraction and forma­
lization levels and the strong conceptual model all models are based on enables a smooth 
transition from a semiformal to a formal specification and further on to the design of the sy­
stem. This conceptual model enables a clear separation of domain specific knowledge and 
knowledge to describe the problem-solving method (task related knowledge). The clear se­
paration of different knowledge types allows to describe the problem-solving method gene­
rically and thus to reuse it in another domain, and it allows to reuse parts of the domain model 
for another task. Due to the executability of all formal models (the formal specification and 
the design model) and due to the cycles described in the life cycle model the different models 
may be constructed and validated by prototyping. 

Though the MIKE approach addresses the building process of kbs, these principles and 

• ·This paper presents an update to earlier descriptions of the MIKE approach. 
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methods apply to requirements analysis and specification for information systems and 
'conventional' software systems as well. For instance in (Fensel et al, 1993) it is shown 
how KARL may be used to formalize the system model of Structured Analysis. 

The paper is organized as follows. In section two, the semiformal models and their des­
cription formalisms are described. Then the model of expertise which is specified in the for­
mal specification language KARL is discussed in section three. Section four addresses the 
embedding of the different activities in a cyclic life cycle model. Section five gives a short 
overview of some of the tools that support the know ledge acquisition process in MIKE and 
some applications of the MIKE approach. Finally, related work is described and a conclu­
sion is given. 

2 THE SEMIFORMAL MODELS 

In this section we describe the models which describe the domain and task specific know­
ledge serniformally, i.e. in natural language already structured according to the underlying 
conceptual model. 

Developing a formal specification directly from informal knowledge protocols gained 
from interviews with experts or by observing experts is rather difficult. Therefore, media­
ting representations are constructed in MIKE before starting the formalization process 
(Neubert,I993). 

The development of mediating representations provides different advantages: Semifor­
mal representations can be used as a communication level between the knowledge engineer 
and the expert. The expert can be integrated in the process of structuring the complex know­
ledge such that the knowledge engineer is able to interpret and formalize it more easily. 
Thus, the cooperation between expert and knowledge engineer is improved and the forma­
lization process is simplified. An early evaluation process is possible in which the expert 
himself is integrated. In addition, a mediating representation is a basis for documentation 
and explanation. The maintenance of the system is also simplified. 

For our mediating representations we propose a semiformal, hypermedia-based forma­
lism called MEMO (MEdiating Model Organization) (Neubert,l993). This formalism ena­
bles to describe two semiformal models (the elicitation model and the structure model) 
which are defined as sets of special node and link types grouped into so-called contexts. A 
node is a hypermedia document with a content using text, graphics, audio or video to des­
cribe the meaning of the node. A link describes a relationship between two nodes. A link is 
directed and is defined by a source node, a destination node, a link name, a link type, and 
an explanation field. Contexts establish a specific view on a set of nodes and links. A model 
is defined as a set of nodes, links, and contexts. 

The first model, the elicitation model, documents the elicitation process. Thus, it inclu­
des knowledge protocols which are stored in so-called protocol nodes. Additionally, date 
links between protocol nodes are included to describe the elicitation ordering. 

The structure model, which is developed based on the elicitation model gives a more 
structured description of the knowledge. In Figure 1 at the left the structure model is sket­
ched for the Sisyphus office assignment task. The Sisyphus office assignment task is con­
cerned with assigning a set of employees to a set of office places. Both, employees and 
places are described by a set of properties. A valid assignment must assign a place to each 
employee and must fulfil several constraints like 'smokers must not be placed with non­
smokers in the same room', 'the boss must have a central, large single-room', etc. This task 
was used to compare different knowledge engineering approaches (Linster,1994). 

The structure model is composed of the following contexts: 
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• The activity context includes all activity nodes each describing a step of the problem-sol­
ving process. Additionally, refinement links are integrated. This context enables a view on 
the complete activity hierarchy. Every activity node has to be a refinement of another ac­
tivity node except for the global activity node which characterizes the whole problem-sol­
ving process. Looking at the example of Figure 1, the global Sisyphus activity node is 
divided into three subactivities, to create pairs of employees and places, to prune faulty 
pairs and to check whether a solution has been found (i.e., whether a placement is complete 
and correct). Each activity node is informally described in the node content. 

• An ordering context provides a view on activity nodes which are embedded in a control 
flow description. These activity nodes are elements on one hierarchy level of the activity 
refinement hierarchy. In Figure 1 the ordering context describes a loop of the three activi­
ties. 

• The concept context comprises domain specific concept nodes which describe static doma­
in aspects. Moreover, concepts are related by Generalization links, Aggregation links and 
Association links. Association links can be added by the user to describe an arbitrary rela­
tionship between concepts. The graphical notation has been adopted from OMT (Rum­
baugh et al,1991). In Figure I, one Generalization link and two Aggregation links are 
shown, that is, it is modelled that an Employee and a Place are part of a Pair. 

• A dataflow context is also a view on one hierarchy level of activity nodes. Here, activity 
nodes are related with concept nodes by so-called dataflow links. A data flow context de­
scribes the flow of data during the problem-solving process. Figure 1 shows in the data 
flow context section that e.g. Employee and Place are input for the activity Create Pairs. 

• A further context of the structure model which is constructed from the information provi­
ded by the elicitation model is the NFR context (Non-Functional Requirements context) 
which is used for describing the NFRs the system must fulfil. Node types like requirements 
category or evaluation criterion as well as link types like correlation or conflict solution 
are used to describe in a semi-formal way types of requirements as well as various relati­
onships which may exist between them (see (Landes,Studer,1995) for details). The non­
functional requirements modelled in the NFR context form the basis for the design process. 

The structure model together with its nodes and links is constructed on the basis of the node 
contents of the elicitation model. Its parts are related to the corresponding parts of the elici­
tation model via elicitation links. The graphical representation of the control flow, the data 
flow and the static knowledge have been adopted from corresponding representations in soft­
ware engineering (program flow diagrams, data flow diagrams, OMT notation). So large 
parts of this structuring process can be done by the expert himself, supported by the know­
ledge engineer. The resulting structure model is an adequate basis for the development of the 
formal models by the knowledge engineer. This model comprises the knowledge about the 
functional aspects as well as non-functional aspects. The domain knowledge is clearly sepa­
rated from the knowledge about the problem-solving method (task related knowledge). All 
the different parts of the structure model are well-integrated and linked to the appropriate 
parts of the elicitation model. 

3 THE FORMAL MODEL 

3.1 The KARL Model of Expertise 

The conceptual model underlying KARL is derived from the KADS model of expertise 
(Schreiber et al,l993). This model describes the functional specification of a kbs. It is struc-
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tured into different layers each containing a different type of knowledge. The KARL model 
of expertise distinguishes three types of knowledge at three different layers. These types 
establish a static view, a functional view, and a dynamic view to the kbs. 

Domain knowledge at the domain layer consists of static knowledge about the applicati­
on domain. The domain knowledge should define a conceptualisation of the domain as well 
as a declarative theory providing all the knowledge required to solve the given task. 

Inference knowledge at the inference layer specifies the inferences that can be made 
using the domain knowledge, and the knowledge roles, which model input and output of 
the inferences. Three types of knowledge roles are distinguished. Roles which supply do­
main knowledge to an inference action are called views, roles which model the data flow 
dependencies between inference actions are called stores, and roles which are used to write 
final results back to the domain layer are called terminators. The inferences and roles toge­
ther with their data flow dependencies constitute a description of the problem-solving me­
thod applied. The roles and the inference actions are specified in a problem-solving­
method-specific terminology independently of the domain-specific terminology. 

A domain view specifies the relationship between the knowledge used at the inference 
layer and the domain-specific knowledge. It performs a transformation of the domain-spe­
cific terminology of the domain layer to the problem-solving-method-specific terminology 
at the inference layer. 

Dynamic control knowledge at the control layer is used to specify control over the exe­
cution of the inferences of the inference layer. It determines the sequence in which the in­
ferences are activated. 

Inference and control knowledge are domain independent, i.e. they describe the pro­
blem-solving process in a generic way using a problem-solving-method-specific termino­
logy. Such a problem-solving method can be reused for different application problems. 
Using the MIKE approach it has been started to build up a library of formally specified pro­
blem-solving methods: Hill Climbing, Chronological Backtracking, Beam Search, Cover­
and-Differentiate, Board-game Method, Propose-and-Exchange, and Propose-and-Revise. 
In (Fensel,l995b) limitations and assumptions of the psm Propose-and-Revise have been 
analysed which is a precondition to match features of a given task to appropriate psms. 

Figure 1 shows a model of expertise of a solution of the Sisyphus problem. The domain 
terminology and the domain knowledge required by the problem-solving method is defined 
at the domain layer. For instance the employees are described by their properties like their 
name, whether they smoke etc. The inference layer contains the elementary inference steps 
and knowledge roles. Components and slots are combined by the inference action Create. 
Prune eliminates illegal states, and Check searches for valid solutions. The control flow 
between these inferences is defined at the control layer. The inference actions Create, Pru­
ne, and Check are repeatedly activated in this sequence until a solution is found, i.e. the role 
Solution at the inference layer is not empty. The inference layer is described in generic 
terms such as Components and Slots. These generic terms are mapped to the domain speci­
fic terms Employees and Place at the domain layer. 

All parts of the model of expertise are linked to the corresponding parts of the structure 
model via formalization links and are thus in tum connected to the corresponding parts of 
the elicitation model. 

3.2 Knowledge Acquisition and Representation Language (KARL) 

A description of KARL may be found in (Fensel,l995a), and (Fensel et al,l995). The 
main characteristics of KARL is the combination of a conceptual description of a know­
ledge-based system with a formal and executable specification. In the following we give a 



C
he

ck
 P

ai
rs

 
a

ct
iv

it
y 

co
n

te
xt

 

p 
vi

ew
 

c:
::

:>
 ac

tiv
ity

 I 
pr

oc
es

s 
G

en
er

al
iz

at
io

n 
__

 
_ 

c:
:::

;J 
te

rm
in

at
o

r 
c
=

:J
 co

nc
ep

t/
 c

la
ss

,s
to

re
 

-
_

.
 d

o
m

ai
n 

vi
ew

 
_

_
.
 o

rd
er

in
g 

lin
k 

C
he

ck
 P

ai
rs

 d
e

sc
ri

be
s 

th
e 
ac

ti
v~

y th
at

 a
 d

e­
fin

ed
 p

ai
r 

of
 a

n 
em

­
pl

oy
ee

 a
nd

 a
 p

la
ce

 is
 

.....
.....

. 
.
.
.
.
 d

at
af

lo
w

 l
in

k 
~
 

re
lin

e
m

e
n

tl
in

k 

ey
a

lu
at

ed
 ~g

ai
ns
t t

he
 
IJ···

·····
·····

·\ 
P

a
irs

 
J 

\ 
P

ai
rs

 
1 
~p
.=
;}
 ll
r;
:=
==
==
::
;;
;;
:=
==

=
=
=
=
=
:
:
:
;
-
-
-
-
-
-
-
-
-
-
~
 

g
ov

en
 r

eq
u

ore
m

en
ts

. 
fo

r 
. 

'-
._

..
..

.:
/ 
~
 ~
 . 

ex
am

p
le

 w
he

th
er

 th
er

e 
~
 

-
is

 a
 s

m
ok

e
r 

an
d 

a 
no

n
-s

m
ok

er
 in

 t
he

 
sa

m
e 

ro
om

 e
tc

. 

S
tr

u
ct

u
re

 M
od

el
 

E
m

p
lo

ye
e 

~ 
is

 im
po

rt
an

t 
w

he
th

er
 

a 
pe

rs
on

 s
m

ok
es

, 
be

ca
us

e 
sm

ok
e

rs
 d

o
 

no
t 

fit
 to

 n
on

-s
m

ok
e

rs
. 

o
rd

e
ri

n
g

 
co

n
te

xt
 

C
he

ck
 

IN
F

E
R

E
N

C
E

 A
C

T
IO

N
 C

he
ck

 
P

R
E

M
IS

E
S

 S
ta

te
s

; 
C

O
N

C
LU

S
IO

N
S

 S
ol

ut
io

n;
 

I 
( 

~·
':~

 
)
-

' 
~~

~~ 
( 

C
he

ck
 
)
-
I
 

~
~'<

!X 
~
 

~
 

(X
 E

 s
o

lu
tio

n
<

-
X

 E
st

at
es

 A
 

ch
ec

k(
X

) 
).

 

P
a

ir
s 

~
~
 

~
~
 

E
N

D
; 

M
o

d
e

l o
f 

E
xp

e
rt

is
e

 

E
m

pl
oy

ee
 

C
LA

S
S

 E
m

pl
oy

ee
 

na
m

e
: {

S
T

R
IN

G
};

 
sm

ok
es

: {
B

O
O

L
E

A
N

} 

E
N

D
; 

F
ig

ur
e 

1 
St

ru
ct

ur
e 

m
od

el
 a

t t
he

 l
ef

t (
no

de
s 

ha
ve

 in
fo

rm
al

 c
on

te
nt

 e
xp

re
ss

ed
 in

 d
om

ai
n 

sp
ec

if
ic

 t
er

m
s)

 a
nd

 a
 m

od
el

 o
f e

xp
er

ti
se

 
at

 th
e 

ri
gh

t 
(n

od
es

 w
ith

 f
or

m
al

 c
on

te
nt

 e
xp

re
ss

ed
 in

 g
en

er
ic

 t
er

m
s)

 f
or

 t
he

 S
is

yp
hu

s 
of

fi
ce

 a
ss

ig
nm

en
t t

as
k.

 

~ ~ ;;·
 

~
 

;:,
 

l:l
.. s "' ..,. ;: <::>
 

1
} ~ ;:;·
 [5 ~ .....
. 

U
l 

U
l 



156 Part Three Role of Domains in Knowledge Engineering 

brief overview of KARL and its use to describe the different types of knowledge at the dif­
ferent layers of the KARL model of expertise. 

Logical-KARL (L·KARL 
L-KARL enriches the modelling primitives of first-order logic by epistemological primiti­
ves but preserves its model-theoretical semantics. These additional primitives allow to de­
scribe static aspects more adequately than pure first-order logic. By this way, ideas of 
semantical and object-oriented data models are integrated into a logical framework enab­
ling the declarative description of terminological as well as assertional knowledge. L­
KARL distinguishes classes, objects, and values. Classes which are arranged in an is-a hier­
archy with multiple attribute inheritance are used to describe terminological knowledge. In­
tentional and factual knowledge is described by logical formulae over classes, instances of 
classes, and values. L-KARL is used to describe the following parts of the model of exper­
tise: 
• The domain knowledge at the domain layer is defined by a class hierarchy with attribute 

inheritance and by additional logical formulae describing sufficient and necessary con­
ditions. This knowledge is described in a domain-specific terminology. 

• The static generic knowledge of the roles at the inference layer, i.e. generic concepts to­
gether with their attributes are described in L-KARL. This knowledge is described in a 
problem-solving-method-specific terminology. 

• The input-/ output specification of an elementary inference action is specified by L­
KARL formulae. 

• The mapping of the domain knowledge to the generic inference knowledge is described 
in the views using L-KARL formulae. 

The logical language to describe conditions between classes, objects, and values and to spe­
cify the views and elementary inference actions is restricted to Horn logic with equality ex­
tended by stratified negation. Using a logical language enriched by additional primitives 
allows to describe the respective parts of the model on an adequate abstraction level and the 
restriction to Horn logic allows to execute a KARL model of expertise and thus supports 
the construction process by prototyping. 

Procedural-KARL (P-KARL) 
In KARL knowledge about the control flow is explicitly described by the logical language 
P-KARL. The control flow at the control layer, i.e. the sequence of the activation of infe­
rence actions, is specified by the modeling primitives sequence, loop, and alternative which 
are similar to the control flow statements of procedural programming languages. 

KARL as a Formal And Executable Specification Language 
The KARL model of expertise contains the description of domain knowledge and know­
ledge about the problem-solving method (inference and control layer). The gist of the mat­
ter of the formal semantics of KARL is therefore the integration of static and procedural 
knowledge. For this purpose, two different types of logic have been used and integrated. 
The sublanguage L-KARL, which is based on object-oriented logics, combines frames and 
logic to define terminological as well as assertional knowledge. The sublanguage P-KARL, 
which is a variant of dynamic logic, is used to express knowledge about the control flow of 
a problem-solving method in a procedural manner. Both types of languages have been com­
bined to specify the semantics of KARL (see (Fensel,l995a)). Based on this semantics, a 
constructive semantics and an optimised evaluation strategy have been developed which 
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establish the foundation of an interpreter and debugger for KARL (Angele, 1993). By this 
way it becomes possible to validate a formal specification by executing it and to create this 
specification by a prototyping approach. 

4 MODEL DEVELOPMENT 

In this section we will describe the knowledge engineering process in which the models of 
MIKE are developed and related to each other. Moreover, we will describe the product of this 
knowledge engineering process, the entire model environment. 

4.1 The Process of Model Development 

The phases and subphases of kbs development according to the MIKE approach are shown 
in Figure 2. These steps are performed in a cyclic fashion (Angele et al, 1993), (Angele, 
1993) guided by a spiral model (Boehm, 1988) as process model (Figure 3). The steps which 
are of particular interest in the context of this paper are printed in italics in Figure 2. 

Knowledge Engineering 

TaskAnal~valuation De~valuation 
~ Requirements Model Model 

cl· . ~ / ~ Analysis Construction Evaluation 
"'' tcttatton Interpretation Formalization! 

Operationalization 

Figure 2 Phases in the MIKE life-cycle. 

After the task analysis which will not be treated here, the knowledge acquisition process 
starts with Elicitation, i.e. trying to get hold of the experts' knowledge. The resulting know­
ledge protocols are stored in protocol nodes of the elicitation model. 

Knowledge structures which may be identified in the knowledge protocols are modelled 
by the corresponding contexts of the structure model. The semiformal structure model is the 
result of the Interpretation phase. It provides a first structured description of the emerging 
knowledge structures and is thus a first valuable result on its own. 

The structure model is the foundation for the Formalization!Operationalization process 
which results in the model of expertise described in KARL. The construction of the domain 
layer of a model of expertise is in addition supported by a collection of formal, lexical, and 
graphical methods for reusing commonsense ontologies (Pirlein,Studer,1994). 

Model Evaluation is concerned with validating the operational model of expertise with re­
spect to functional requirements by means of test cases. 

The Design phase is performed on the basis of the model of expertise after it has been eva­
luated with respect to the required functionality. It results in the design model. Design deci­
sions are motivated by non-functional requirements and the constraints imposed by potential 
software and hardware target environments. 

In Figure 3 the process model of the entire knowledge engineering process in MIKE is 
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shown. The phases Knowledge Acquisition, Design, Implementation and Evaluation are 
performed cyclically until the desired system has been constructed (large spiral). During 

' ' 
' 

Design 

' ' Knowledge ' , 
Acquisition 

Figure 3 The cyclic process model. 

Implementation 

the Knowledge Acquisition phase its subphases are performed in a cycle until the desired 
functionality of the model of expertise is achieved. The subphases of the Design phase are 
also performed in a cyclic manner until the desired non-functional requirements are met 
The evaluation of the constructed models by prototyping within each main phase allows to 
separate these phases. In each phase the knowledge engineer may focus on different aspects 
(functional, non-functional, implementation) without considering other aspects: This divi­
de-and-conquer strategy reduces the complexity of the entire development process consi­
derably. 

4.2 The Modelling Result 

The result of the different phases described in section 4.1 is a complex model environment 
including several interrelated models. Figure 1 shows a small section of the model environ­
ment developed for the Sisyphus example during knowledge acquisition. The knowledge 
within the structure model is related to the elicitation model via elicitation links. Concept 
nodes (e.g. Pair) and activity nodes (e.g. Check Pairs) are related to protocol nodes, in 
which they have been described using natural language. Between formally described know­
ledge elements (nodes of the model of expertise) and nodes of the structure model so-called 
formalization links are set. For example the knowledge element Employee of the domain 
layer, which includes a formal specification in KARL, is related to the knowledge element 
Employee of the concept context, where an informal explanation is given. In the same way 
inference steps are related to activity nodes of the structure model. The design model refi­
nes the model of expertise by refining inferences into algorithms and by introducing addi­
tional data structures. These parts of the design model are linked to the corresponding 
inferences of the model of expertise and are thus in tum linked to the structure model and 
to the elicitation model (Landes, 1994 ). 
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5 TOOL SUPPORT AND APPLICATIONS 

The hypermedia based MIKE-tool (Neubert,l993) supports the graphical construction of the 
elicitation model, the structure model and the formal model of expertise by different editors. 
Additionally it supports the management of a library of problem-solving methods. After the 
elicitation, the knowledge engineer enters the knowledge protocols into the elicitation model 
using the elicitation model editor. The protocol nodes are the basis for constructing the struc­
ture model using the structure model editor. Formalization, i.e. constructing the model of ex­
pertise, is done in the KARL editor. The editors cooperate with each other and links between 
models are constructed automatically by the editors. 

For executing the operational specification, the model of expertise, an interpreter for 
KARL exists (Angele, 1993). With the help of a graphical debugger the intermediate and fi­
nal results can be evaluated in a comfortable environment. 

During the last year the MIKE approach has been evaluated by conducting several case 
studies in cooperation with external partners. In one case study, expert knowledge for sup­
porting the recycling of building rubble has been modeled (Fichtner et al, 1995). It resulted in 
a prototypical kbs providing support in selecting the most appropriate technique for dismant­
ling a building. This case study exemplified among others that (i) the structure model is well 
suited for a first structuring of expert knowledge in a domain and that (ii) the structure model 
can be built up and evaluated in close cooperation with the domain expert. 

Another case study has been carried out in the area of online helpdesks. Objective of this 
case study was the development of a prototypical kbs supporting an online helpdesk in dia­
gnosing troubles in communication networks. Special emphasis has been put on exploiting 
the executability of a KARL model of expertise for an iterative and incremental development 
process. It has been shown that an incremental and intertwined construction of the structure 
model and the model of expertise can be supported by the MIKE tool rather well. 

As a second problem for comparing different knowledge engineering approaches an ele­
vator configuration task has been posed (Yost, 1992). For configuring an elevator values have 
to be assigned to a predefined set of parameters. The entire configuration has to fulfil various 
constraints. This complex task especially showed the adequacy of the language KARL for 
representing the knowledge on an abstract level. For validating the resulted complex model 
of expertise it was even indispensable to have a running prototype. 

On the other hand, all these case studies resulted in some modifications of the structure 
model and the model of expertise. A deficiency of the structure model was the very small col­
lection of offered modeling primitives. Therefore, additional modeling primitives have been 
included in the structure model, e.g. an alternative construct for the ordering context and ad­
ditional pre-defined relationships in the concept context. Furthermore, several experts com­
plained that the structure model and the KARL model of expertise used different graphical 
primitives. As a consequence, MIKE now offers as far as possible the same graphical primi­
tives for both models. In addition, the OMT notation has been adopted. Especially the eleva­
tor configuration task gave us various insights into some deficiencies of KARL which shall 
be eliminated in a future version. 

6 RELATEDWORK 

Since the MIKE approach took KADS-I (Schreiber et al,1993) as a starting point it is not sur­
prising that both approaches have a lot of common features. This holds especially for the 
structure of the model of expertise. Major differences between both approaches are: (i) The 
semi-formal representation within the structure model in MIKE. There exist some similarities 
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between the structure model and several CommonKADS models as e.g. the task model. (ii) 
The emphasis we put on the formalization of the model of expertise. This formal model pro­
vides a profound basiSt for the further development process. (iii) The smooth transition bet­
ween informal and formal descriptions using the same conceptual model for all descriptions 
in MIKE. (iv) The inherent integration ofprototyping into a life cycle oriented approach in 
MIKE. 

When compared e.g. to ARIES (Johnson et al,l992) a distinctive feature of MIKE is the 
semi-formal MEMO formalism supporting a mediating representation between informal na­
turallanguage description of requirements and the completely formal KARL specifications. 
A further distinction is the clear separation of generic knowledge from domain I task specific 
knowledge in the KARL model of expertise. Thus the reuse of domain models is supported 
as proposed in (Johnson et al,l992). In addition, the generic problem solving knowledge may 
be reused as well. In contrast to ARIES which puts emphasis on a highly expressive know­
ledge representation language the KARL language has a rather restrictive expressive power 
in order to be able to provide an adequate KARL prototyping environment. 

Within Structured Analysis (Yourdon,l989) or within the object oriented method OMT 
(Rumbaugh et al,l991) the system is considered from different points of view. The function 
oriented point of view considers the data flows between the processes. This point of view 
strongly resembles the data flow context in the structure model. The dynamic point of view 
resembles the ordering context. The object model in OMT corresponds to the concept con­
text. The description in SA or OMT is semi-formally only. In contrast to MIKE no formal 
description of the model is provided in addition. Furthermore there is no distinction between 
generic and domain specific models. 

Various approaches in software engineering and information systems engineering also 
provide means for describing application systems on different formalization levels. For ex­
ample, the INCOME approach (Oberweis et al,l994) for developing information systems 
uses glossaries and object flow diagrams for the semi-formal description of static and dyna­
mic aspects of an information system application. During the conceptual modelling phase 
this semi-formal description is formalized using an integration of high-level Petri nets and 
semantic data model concepts resulting in a conceptual schema description. When compared 
to the different models of MIKE, an object flow diagram corresponds to the structure model, 
a conceptual schema to the KARL model of expertise. However, a major difference between 
both approaches is the notion of generic layers as well as the clear separation of data and con­
trol flow aspects in the KARL model of expertise. 

The construction and reuse of models as part of requirements engineering has gained a lot 
of interests in recent years (see e.g.(Jarke et al,l993)). In (Sutcliff,Maiden,l994) the notion 
of object system models is introduced for describing types of applications like e.g. object 
composition (which can be instantiated to manufacturing systems) or agent-object control 
(which can be instantiated to command and control applications). Such object system models 
are embedded into a specialization hierarchy: each object type may be refined to further spe­
cialized object system models by using additional knowledge types for discrimination. These 
object system types provide a framework for reuse during requirements engineering since 
they can be used as initial generic descriptions of application types. When compared to the 
notion of reusable problem-solving methods object system models are used rather for descri­
bing problem spaces whereas problem-solving methods are used for specifying solution spa­
ces (compare (Sutcliff,Maiden,l994)). It should be furthermore noticed that the notion of 
domain model as used in (Sutcliff,Maiden, 1994) has a much broader meaning than the notion 
of domain model as used in the KADS or MIKE framework, since there behavioural aspects 
are not included in the domain model, rather these aspects are modeled at the inference and 
control layer of the model of expertise. 
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7 CONCLUSION 

MIKE integrates semiformal and formal description formalisms in an incremental develop­
ment process. The semiformal specification of the structure model is not only used to faci­
litate the formalization process, but is also seen as an important result itself. It structures the 
domain knowledge and the knowledge about the problem-solving process (task related 
knowledge) and due to its semi-formal description it can be used for documentation. The for­
mal specification describes the functionality of the system precisely, yet abstracting from im­
plementation details. Since the formal specification is operational, it is used as a prototype to 
validate the model of expertise. The clear separation of knowledge about the problem-solving 
method and domain knowledge allows the reuse of these parts. During design, the formal spe­
cification is extended with respect to aspects related to the realization of the system, taking 
non-functional requirements into particular account. 

Due to the common underlying conceptual model, the different representations can easily 
be linked to each other and there is a smooth transition from one representation to the other. 
By linking the models, we gain the advantage of using, e.g., the semiformal model as an ad­
ditional documentation of the formal specification. Furthermore, requirements traceability is 
supported by interrelating all the models. 

In that way MIKE addresses one of the main topics which have been put on the research 
agenda for requirements engineering in software engineering and information systems engi­
neering: combination of different representations (Pohl et al,l995) based on a strong concep­
tual model involving aspects like smooth coupling of different representations, traceability 
and consistency. 

For constructing the models and their relationships the MIKE tool environment provides 
different integrated graphical editors and a debugging tool which comprises the interpreter 
for the formal and executable specification language KARL. 

Current work addresses among others the reuse of problem-solving methods and domain 
models during the knowledge acquisition phase. This includes a detailed analysis of the cha­
racteristics of problem-solving methods and their mutual dependencies with domain models 
(see (Fensel,1995b), (Fensel,l995c)). 
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