
11

Domain and Task Modeling in MIKE

J. Angele, D. Fensel, and R. Studer
Institute AIFB, University of Karlsruhe
76128 Karlsruhe, Germany,
tel. [049] (0)721 608 3923,fax [049] (0)721 693717
e-mail: {angele I fensel I studer}@aijb.uni-karlsruhe.de

Abstract
The paper describes the MIKE (Model-based and Incremental Knowledge Engineering) ap­
proach for the development of knowledge-based systems (kbs). It integrates semifonnal spe­
cification techniques, formal specification techniques, and prototyping into a coherent
framework. This allows the domain and task model of a kbs to be described on different for­
malization levels. All activities in the building process are embedded in a cyclic life cycle
model. For the semiformal representation we use a hypermedia-based fonnalism which ser­
ves as a communication basis between expert and knowledge engineer during knowledge ac­
quisition. The semiformal knowledge representation is also the basis for formalization,
resulting in a formal and executable model of expertise specified in the Knowledge Acquisi­
tion and Representation Language (KARL). Since KARL is executable the model of exper­
tise can be developed and validated by prototyping. A smooth transition from a semiformal
to a formal specification and further on to design is achieved as all the description techniques
rely on the same conceptual model to describe the functional and non-functional aspects of
the system. Thus, the system is thoroughly documented at different description levels, each
of which focuses on a distinct aspect of the entire development effort. Traceability of requi­
rements is supported by linking the different models to each other. Though the MIKE ap­
proach aims at supporting the building process of kbs, its principles and methods apply also
to the development of non-knowledge-based software systems, e.g. information systems.

Keywords
Knowledge Engineering, Knowledge Acquisition, Domain Modeling, Task Modeling, Pro­
blem-Solving Method, MIKE, KARL

1 INTRODUCTION

In earlier days the development of a kbs has been seen as a transfer process of knowledge
from the head of the expert into the computer system. As a consequence it was assumed (i)

A. Sutcliffe et al. (eds.), Domain Knowledge for Interactive System Design
© IFIP International Federation for Information Processing 1996

150 Part Three Role of Domains in Knowledge Engineering

that interviewing the expert brings all necessary knowledge to day, (ii) that the knowledge
in the kbs is best structured in the same way as the expert structures it, (iii) that the existing
representation formalisms, which were formalisms for the realization of the final kbs, are
adequate to capture this knowledge, and (iv) that the kbs might be developed using the rapid
prototyping approach, i.e. that the acquired knowledge may be implemented immediately
and that the running prototype may be used to validate the acquired knowledge.

In contrast to the expectations this paradigm failed in building large expert systems for
commercial use in many cases, due to the following reasons:
• Typically kbs are developed to solve very complex problems or even problems which

are not entirely understood (Shaw,Gaines, 1992). So the functionality of the system is not
completely available in advance. Instead such a specification must be developed itera­
tively in cooperation with expert(s) and the user(s) of the system.

• While the expert may consciously articulate some parts of his or her knowledge, he or
she will not be aware of a significant part of this knowledge since it is hidden in his or
her skills. This knowledge is not directly accessible by interviews but only by observing
the expert and interpreting these observations.

• Even if the functionality of a kbs is entirely specifiable the complexity of every compu­
tational mechanism might be so high, that the problem in its entire generality may only
be solved for small instances. Many AI-problems in their general formulation are at least
NP-hard problems (Nebel,1995). Experts solve such problems by using a large amount
of domain specific knowledge, which allows to restrict the problem, to approximate the
problem or to reformulate the problem in order to solve a simpler problem efficiently or
to use domain specific heuristics which reduce the average complexity (Nebel,1995). It
is often exactly this knowledge which distinguishes an expert from a novice and moreo­
ver its exactly this knowledge which is only partially conscious to the expert.

Due to these reasons it is not sufficient to give a detailed functional specification of a kbs
and to build a solution using 'normal' computer science know-how. Instead task and doma­
in specific knowledge and task and domain specific heuristics are necessary in order to be
able to build a solution which allows to solve larger instances of the problem in a reasonable
time. Thus the process of building a kbs is nowadays seen as a modeling activity, i.e. as the
construction of several models capturing different types of knowledge (Clancey,1989).
Building a kbs means building a computer model with the aim of imitating an expert's ap­
proach. It is not intended to create a cognitive adequate model, i.e. to simulate the cognitive
processes of an expert in general, but to create a model which offers similar results in pro­
blem-solving for problems in the area of concern.

The models resulting from this modeling process must contain different kinds of know­
ledge necessary to solve the task at hand:
• Domain specific static knowledge about terminology, relationships and facts. This do­

main knowledge comprises all knowledge to solve the task in principle. These domain
models may partially be reused for solving other problems in the same domain. Domain
ontologies are reusable model components which provide a conceptualization of a spe­
cific domain and are shareable and reusable across different tasks (Gruber,1993).

• Due to the failure of the general problem solver approach in AI, it is not possible to mo­
del all relevant knowledge and to solve every problem in a given domain using a general
deduction mechanism. Instead task specific problem-solving methods (psm) must be
used in order to solve the given task. These problem-solving methods may be kept gene­
ric, i.e. independent of the concrete domain, but specific for the given task. Therefore
these problem-solving methods constitute building blocks which may be reused for si­
milar tasks in another domain (Breuker,Velde,l994).

Domain and task modelling in MIKE 151

• Task-specific heuristics formulated in domain-specific terms which allow to reduce the
average complexity of the used problem solving method.

Thus it is even indispensable for building a kbs to perform a detailed domain analysis and
domain modeling as well as an analysis and modeling of the task in an early stage of this buil­
ding process. The distinction of symbol level and knowledge level (Newell,1982) gives rise
to an abstract description of the task solved by the system and the knowledge, which is requi­
red to solve the task. This knowledge level description is built independently of the design
and implementation activity. The separation of analysis and design/Implementation is an ana­
logue to the separation of analysis or requirement engineering on the one hand and design
and implem~ntation on the other hand in software engineering.

In this paper we present some aspects of the MIKE approach (Model-based and Incremen­
tal Knowledge Engineering) (Angele et al, 1993)*, which aims at a development method for
kbs covering all steps from the initial specification to design and implementation. MIKE pro­
poses the integration of life cycle models, prototyping, semiformal, and formal specification
techniques into a coherent framework:
• Informal and semiformal models of the knowledge provide a high and mformallevel for

description. Graphical means similar to entity-relationship diagrams, data flow diagrams,
flow charts, and state-transition diagrams are used. This type of information is easy to und­
erstand and very useful as a mediating representation for the communication between the
domain expert, the user and the system developer. These models also contain non-functio­
nal requirements which have to be met by the system.

• The formal specification of the domain and problem-solving knowledge (knowledge how
to solve the task) in the language KARL allows to describe the functionality of a system
in an unambiguous and precise way.

• Making this formal model executable adds the flavour of prototyping to the specification
process. The model may be evaluated by a running prototype. Often, this is nearly the only
way to arrive at realistic descriptions of the desired functionality of the systems.

• Additional representations document modelling decisions made during the various phases
of the life-cycle (Landes,Studer,1995). This enables requirements traceability, i.e. it is re­
corded which parts of the implementation are addressing a particular requirement.

• All different activities of the building process itself are embedded in a cyclic life cycle mo­
del (Boehm, 1988).

This paper presents the models and the description formalisms used in MIKE, namely the
structure model described by the semiformal hypennedia-ba'Sed formalism MEMO (Neu­
bert,l993) and the model of expertise formulated in the formal and executable Knowledge
Acquisition and Representation Language KARL (Fensel et al,1995), (Fensel,1995a), (Ange­
le,1993). An extension to KARL, namely DesignKARL (Landes,l994) has been developed to
describe the design model. The description of the models at different abstraction and forma­
lization levels and the strong conceptual model all models are based on enables a smooth
transition from a semiformal to a formal specification and further on to the design of the sy­
stem. This conceptual model enables a clear separation of domain specific knowledge and
knowledge to describe the problem-solving method (task related knowledge). The clear se­
paration of different knowledge types allows to describe the problem-solving method gene­
rically and thus to reuse it in another domain, and it allows to reuse parts of the domain model
for another task. Due to the executability of all formal models (the formal specification and
the design model) and due to the cycles described in the life cycle model the different models
may be constructed and validated by prototyping.

Though the MIKE approach addresses the building process of kbs, these principles and

• ·This paper presents an update to earlier descriptions of the MIKE approach.

152 Part Three Role of Domains in Knowledge Engineering

methods apply to requirements analysis and specification for information systems and
'conventional' software systems as well. For instance in (Fensel et al, 1993) it is shown
how KARL may be used to formalize the system model of Structured Analysis.

The paper is organized as follows. In section two, the semiformal models and their des­
cription formalisms are described. Then the model of expertise which is specified in the for­
mal specification language KARL is discussed in section three. Section four addresses the
embedding of the different activities in a cyclic life cycle model. Section five gives a short
overview of some of the tools that support the know ledge acquisition process in MIKE and
some applications of the MIKE approach. Finally, related work is described and a conclu­
sion is given.

2 THE SEMIFORMAL MODELS

In this section we describe the models which describe the domain and task specific know­
ledge serniformally, i.e. in natural language already structured according to the underlying
conceptual model.

Developing a formal specification directly from informal knowledge protocols gained
from interviews with experts or by observing experts is rather difficult. Therefore, media­
ting representations are constructed in MIKE before starting the formalization process
(Neubert,I993).

The development of mediating representations provides different advantages: Semifor­
mal representations can be used as a communication level between the knowledge engineer
and the expert. The expert can be integrated in the process of structuring the complex know­
ledge such that the knowledge engineer is able to interpret and formalize it more easily.
Thus, the cooperation between expert and knowledge engineer is improved and the forma­
lization process is simplified. An early evaluation process is possible in which the expert
himself is integrated. In addition, a mediating representation is a basis for documentation
and explanation. The maintenance of the system is also simplified.

For our mediating representations we propose a semiformal, hypermedia-based forma­
lism called MEMO (MEdiating Model Organization) (Neubert,l993). This formalism ena­
bles to describe two semiformal models (the elicitation model and the structure model)
which are defined as sets of special node and link types grouped into so-called contexts. A
node is a hypermedia document with a content using text, graphics, audio or video to des­
cribe the meaning of the node. A link describes a relationship between two nodes. A link is
directed and is defined by a source node, a destination node, a link name, a link type, and
an explanation field. Contexts establish a specific view on a set of nodes and links. A model
is defined as a set of nodes, links, and contexts.

The first model, the elicitation model, documents the elicitation process. Thus, it inclu­
des knowledge protocols which are stored in so-called protocol nodes. Additionally, date
links between protocol nodes are included to describe the elicitation ordering.

The structure model, which is developed based on the elicitation model gives a more
structured description of the knowledge. In Figure 1 at the left the structure model is sket­
ched for the Sisyphus office assignment task. The Sisyphus office assignment task is con­
cerned with assigning a set of employees to a set of office places. Both, employees and
places are described by a set of properties. A valid assignment must assign a place to each
employee and must fulfil several constraints like 'smokers must not be placed with non­
smokers in the same room', 'the boss must have a central, large single-room', etc. This task
was used to compare different knowledge engineering approaches (Linster,1994).

The structure model is composed of the following contexts:

Domain and task modelling in MIKE 153

• The activity context includes all activity nodes each describing a step of the problem-sol­
ving process. Additionally, refinement links are integrated. This context enables a view on
the complete activity hierarchy. Every activity node has to be a refinement of another ac­
tivity node except for the global activity node which characterizes the whole problem-sol­
ving process. Looking at the example of Figure 1, the global Sisyphus activity node is
divided into three subactivities, to create pairs of employees and places, to prune faulty
pairs and to check whether a solution has been found (i.e., whether a placement is complete
and correct). Each activity node is informally described in the node content.

• An ordering context provides a view on activity nodes which are embedded in a control
flow description. These activity nodes are elements on one hierarchy level of the activity
refinement hierarchy. In Figure 1 the ordering context describes a loop of the three activi­
ties.

• The concept context comprises domain specific concept nodes which describe static doma­
in aspects. Moreover, concepts are related by Generalization links, Aggregation links and
Association links. Association links can be added by the user to describe an arbitrary rela­
tionship between concepts. The graphical notation has been adopted from OMT (Rum­
baugh et al,1991). In Figure I, one Generalization link and two Aggregation links are
shown, that is, it is modelled that an Employee and a Place are part of a Pair.

• A dataflow context is also a view on one hierarchy level of activity nodes. Here, activity
nodes are related with concept nodes by so-called dataflow links. A data flow context de­
scribes the flow of data during the problem-solving process. Figure 1 shows in the data
flow context section that e.g. Employee and Place are input for the activity Create Pairs.

• A further context of the structure model which is constructed from the information provi­
ded by the elicitation model is the NFR context (Non-Functional Requirements context)
which is used for describing the NFRs the system must fulfil. Node types like requirements
category or evaluation criterion as well as link types like correlation or conflict solution
are used to describe in a semi-formal way types of requirements as well as various relati­
onships which may exist between them (see (Landes,Studer,1995) for details). The non­
functional requirements modelled in the NFR context form the basis for the design process.

The structure model together with its nodes and links is constructed on the basis of the node
contents of the elicitation model. Its parts are related to the corresponding parts of the elici­
tation model via elicitation links. The graphical representation of the control flow, the data
flow and the static knowledge have been adopted from corresponding representations in soft­
ware engineering (program flow diagrams, data flow diagrams, OMT notation). So large
parts of this structuring process can be done by the expert himself, supported by the know­
ledge engineer. The resulting structure model is an adequate basis for the development of the
formal models by the knowledge engineer. This model comprises the knowledge about the
functional aspects as well as non-functional aspects. The domain knowledge is clearly sepa­
rated from the knowledge about the problem-solving method (task related knowledge). All
the different parts of the structure model are well-integrated and linked to the appropriate
parts of the elicitation model.

3 THE FORMAL MODEL

3.1 The KARL Model of Expertise

The conceptual model underlying KARL is derived from the KADS model of expertise
(Schreiber et al,l993). This model describes the functional specification of a kbs. It is struc-

154 Part Three Role of Domains in Knowledge Engineering

tured into different layers each containing a different type of knowledge. The KARL model
of expertise distinguishes three types of knowledge at three different layers. These types
establish a static view, a functional view, and a dynamic view to the kbs.

Domain knowledge at the domain layer consists of static knowledge about the applicati­
on domain. The domain knowledge should define a conceptualisation of the domain as well
as a declarative theory providing all the knowledge required to solve the given task.

Inference knowledge at the inference layer specifies the inferences that can be made
using the domain knowledge, and the knowledge roles, which model input and output of
the inferences. Three types of knowledge roles are distinguished. Roles which supply do­
main knowledge to an inference action are called views, roles which model the data flow
dependencies between inference actions are called stores, and roles which are used to write
final results back to the domain layer are called terminators. The inferences and roles toge­
ther with their data flow dependencies constitute a description of the problem-solving me­
thod applied. The roles and the inference actions are specified in a problem-solving­
method-specific terminology independently of the domain-specific terminology.

A domain view specifies the relationship between the knowledge used at the inference
layer and the domain-specific knowledge. It performs a transformation of the domain-spe­
cific terminology of the domain layer to the problem-solving-method-specific terminology
at the inference layer.

Dynamic control knowledge at the control layer is used to specify control over the exe­
cution of the inferences of the inference layer. It determines the sequence in which the in­
ferences are activated.

Inference and control knowledge are domain independent, i.e. they describe the pro­
blem-solving process in a generic way using a problem-solving-method-specific termino­
logy. Such a problem-solving method can be reused for different application problems.
Using the MIKE approach it has been started to build up a library of formally specified pro­
blem-solving methods: Hill Climbing, Chronological Backtracking, Beam Search, Cover­
and-Differentiate, Board-game Method, Propose-and-Exchange, and Propose-and-Revise.
In (Fensel,l995b) limitations and assumptions of the psm Propose-and-Revise have been
analysed which is a precondition to match features of a given task to appropriate psms.

Figure 1 shows a model of expertise of a solution of the Sisyphus problem. The domain
terminology and the domain knowledge required by the problem-solving method is defined
at the domain layer. For instance the employees are described by their properties like their
name, whether they smoke etc. The inference layer contains the elementary inference steps
and knowledge roles. Components and slots are combined by the inference action Create.
Prune eliminates illegal states, and Check searches for valid solutions. The control flow
between these inferences is defined at the control layer. The inference actions Create, Pru­
ne, and Check are repeatedly activated in this sequence until a solution is found, i.e. the role
Solution at the inference layer is not empty. The inference layer is described in generic
terms such as Components and Slots. These generic terms are mapped to the domain speci­
fic terms Employees and Place at the domain layer.

All parts of the model of expertise are linked to the corresponding parts of the structure
model via formalization links and are thus in tum connected to the corresponding parts of
the elicitation model.

3.2 Knowledge Acquisition and Representation Language (KARL)

A description of KARL may be found in (Fensel,l995a), and (Fensel et al,l995). The
main characteristics of KARL is the combination of a conceptual description of a know­
ledge-based system with a formal and executable specification. In the following we give a

C
he

ck
 P

ai
rs

a

ct
iv

it
y

co
n

te
xt

p
vi

ew

c:
::

:>
 ac

tiv
ity

 I
pr

oc
es

s
G

en
er

al
iz

at
io

n
__

_

c:
:::

;J
te

rm
in

at
o

r
c
=

:J
 co

nc
ep

t/
 c

la
ss

,s
to

re

-
_

.
 d

o
m

ai
n

vi
ew

_

_
.
 o

rd
er

in
g

lin
k

C
he

ck
 P

ai
rs

 d
e

sc
ri

be
s

th
e
ac

ti
v~

y th
at

 a
 d

e­
fin

ed
 p

ai
r

of
 a

n
em

­
pl

oy
ee

 a
nd

 a
 p

la
ce

 is

.....
.....

.
.
.
.
.
 d

at
af

lo
w

 l
in

k
~

re
lin

e
m

e
n

tl
in

k

ey
a

lu
at

ed
 ~g

ai
ns
t t

he

IJ···

·····
·····

·\
P

a
irs

J

\
P

ai
rs

1
~p
.=
;}
 ll
r;
:=
==
==
::
;;
;;
:=
==

=
=
=
=
=
:
:
:
;
-
-
-
-
-
-
-
-
-
-
~

g
ov

en
 r

eq
u

ore
m

en
ts

.
fo

r
.

'-
._

..
..

.:
/
~
 ~
 .

ex
am

p
le

 w
he

th
er

 th
er

e
~

-
is

 a
 s

m
ok

e
r

an
d

a
no

n
-s

m
ok

er
 in

 t
he

sa

m
e

ro
om

 e
tc

.

S
tr

u
ct

u
re

 M
od

el

E
m

p
lo

ye
e

~
is

 im
po

rt
an

t
w

he
th

er

a
pe

rs
on

 s
m

ok
es

,
be

ca
us

e
sm

ok
e

rs
 d

o

no
t

fit
 to

 n
on

-s
m

ok
e

rs
.

o
rd

e
ri

n
g

co

n
te

xt

C
he

ck

IN
F

E
R

E
N

C
E

 A
C

T
IO

N
 C

he
ck

P

R
E

M
IS

E
S

 S
ta

te
s

;
C

O
N

C
LU

S
IO

N
S

 S
ol

ut
io

n;

I
(

~·
':~

)
-

'
~~

~~
(

C
he

ck

)
-
I

~
~'<

!X
~

~

(X
 E

 s
o

lu
tio

n
<

-
X

 E
st

at
es

 A

ch
ec

k(
X

)
).

P
a

ir
s

~
~

~
~

E
N

D
;

M
o

d
e

l o
f

E
xp

e
rt

is
e

E
m

pl
oy

ee

C
LA

S
S

 E
m

pl
oy

ee

na
m

e
: {

S
T

R
IN

G
};

sm

ok
es

: {
B

O
O

L
E

A
N

}

E
N

D
;

F
ig

ur
e

1
St

ru
ct

ur
e

m
od

el
 a

t t
he

 l
ef

t (
no

de
s

ha
ve

 in
fo

rm
al

 c
on

te
nt

 e
xp

re
ss

ed
 in

 d
om

ai
n

sp
ec

if
ic

 t
er

m
s)

 a
nd

 a
 m

od
el

 o
f e

xp
er

ti
se

at

 th
e

ri
gh

t
(n

od
es

 w
ith

 f
or

m
al

 c
on

te
nt

 e
xp

re
ss

ed
 in

 g
en

er
ic

 t
er

m
s)

 f
or

 t
he

 S
is

yp
hu

s
of

fi
ce

 a
ss

ig
nm

en
t t

as
k.

~ ~ ;;·

~

;:,

l:l
.. s "' ..,. ;: <::>

1
} ~ ;:;·
 [5 ~
.

U
l

U
l

156 Part Three Role of Domains in Knowledge Engineering

brief overview of KARL and its use to describe the different types of knowledge at the dif­
ferent layers of the KARL model of expertise.

Logical-KARL (L·KARL
L-KARL enriches the modelling primitives of first-order logic by epistemological primiti­
ves but preserves its model-theoretical semantics. These additional primitives allow to de­
scribe static aspects more adequately than pure first-order logic. By this way, ideas of
semantical and object-oriented data models are integrated into a logical framework enab­
ling the declarative description of terminological as well as assertional knowledge. L­
KARL distinguishes classes, objects, and values. Classes which are arranged in an is-a hier­
archy with multiple attribute inheritance are used to describe terminological knowledge. In­
tentional and factual knowledge is described by logical formulae over classes, instances of
classes, and values. L-KARL is used to describe the following parts of the model of exper­
tise:
• The domain knowledge at the domain layer is defined by a class hierarchy with attribute

inheritance and by additional logical formulae describing sufficient and necessary con­
ditions. This knowledge is described in a domain-specific terminology.

• The static generic knowledge of the roles at the inference layer, i.e. generic concepts to­
gether with their attributes are described in L-KARL. This knowledge is described in a
problem-solving-method-specific terminology.

• The input-/ output specification of an elementary inference action is specified by L­
KARL formulae.

• The mapping of the domain knowledge to the generic inference knowledge is described
in the views using L-KARL formulae.

The logical language to describe conditions between classes, objects, and values and to spe­
cify the views and elementary inference actions is restricted to Horn logic with equality ex­
tended by stratified negation. Using a logical language enriched by additional primitives
allows to describe the respective parts of the model on an adequate abstraction level and the
restriction to Horn logic allows to execute a KARL model of expertise and thus supports
the construction process by prototyping.

Procedural-KARL (P-KARL)
In KARL knowledge about the control flow is explicitly described by the logical language
P-KARL. The control flow at the control layer, i.e. the sequence of the activation of infe­
rence actions, is specified by the modeling primitives sequence, loop, and alternative which
are similar to the control flow statements of procedural programming languages.

KARL as a Formal And Executable Specification Language
The KARL model of expertise contains the description of domain knowledge and know­
ledge about the problem-solving method (inference and control layer). The gist of the mat­
ter of the formal semantics of KARL is therefore the integration of static and procedural
knowledge. For this purpose, two different types of logic have been used and integrated.
The sublanguage L-KARL, which is based on object-oriented logics, combines frames and
logic to define terminological as well as assertional knowledge. The sublanguage P-KARL,
which is a variant of dynamic logic, is used to express knowledge about the control flow of
a problem-solving method in a procedural manner. Both types of languages have been com­
bined to specify the semantics of KARL (see (Fensel,l995a)). Based on this semantics, a
constructive semantics and an optimised evaluation strategy have been developed which

Domain and task modelling in MIKE 157

establish the foundation of an interpreter and debugger for KARL (Angele, 1993). By this
way it becomes possible to validate a formal specification by executing it and to create this
specification by a prototyping approach.

4 MODEL DEVELOPMENT

In this section we will describe the knowledge engineering process in which the models of
MIKE are developed and related to each other. Moreover, we will describe the product of this
knowledge engineering process, the entire model environment.

4.1 The Process of Model Development

The phases and subphases of kbs development according to the MIKE approach are shown
in Figure 2. These steps are performed in a cyclic fashion (Angele et al, 1993), (Angele,
1993) guided by a spiral model (Boehm, 1988) as process model (Figure 3). The steps which
are of particular interest in the context of this paper are printed in italics in Figure 2.

Knowledge Engineering

TaskAnal~valuation De~valuation
~ Requirements Model Model

cl· . ~ / ~ Analysis Construction Evaluation
"'' tcttatton Interpretation Formalization!

Operationalization

Figure 2 Phases in the MIKE life-cycle.

After the task analysis which will not be treated here, the knowledge acquisition process
starts with Elicitation, i.e. trying to get hold of the experts' knowledge. The resulting know­
ledge protocols are stored in protocol nodes of the elicitation model.

Knowledge structures which may be identified in the knowledge protocols are modelled
by the corresponding contexts of the structure model. The semiformal structure model is the
result of the Interpretation phase. It provides a first structured description of the emerging
knowledge structures and is thus a first valuable result on its own.

The structure model is the foundation for the Formalization!Operationalization process
which results in the model of expertise described in KARL. The construction of the domain
layer of a model of expertise is in addition supported by a collection of formal, lexical, and
graphical methods for reusing commonsense ontologies (Pirlein,Studer,1994).

Model Evaluation is concerned with validating the operational model of expertise with re­
spect to functional requirements by means of test cases.

The Design phase is performed on the basis of the model of expertise after it has been eva­
luated with respect to the required functionality. It results in the design model. Design deci­
sions are motivated by non-functional requirements and the constraints imposed by potential
software and hardware target environments.

In Figure 3 the process model of the entire knowledge engineering process in MIKE is

158 Part Three Role of Domains in Knowledge Engineering

shown. The phases Knowledge Acquisition, Design, Implementation and Evaluation are
performed cyclically until the desired system has been constructed (large spiral). During

' '
'

Design

' ' Knowledge ' ,
Acquisition

Figure 3 The cyclic process model.

Implementation

the Knowledge Acquisition phase its subphases are performed in a cycle until the desired
functionality of the model of expertise is achieved. The subphases of the Design phase are
also performed in a cyclic manner until the desired non-functional requirements are met
The evaluation of the constructed models by prototyping within each main phase allows to
separate these phases. In each phase the knowledge engineer may focus on different aspects
(functional, non-functional, implementation) without considering other aspects: This divi­
de-and-conquer strategy reduces the complexity of the entire development process consi­
derably.

4.2 The Modelling Result

The result of the different phases described in section 4.1 is a complex model environment
including several interrelated models. Figure 1 shows a small section of the model environ­
ment developed for the Sisyphus example during knowledge acquisition. The knowledge
within the structure model is related to the elicitation model via elicitation links. Concept
nodes (e.g. Pair) and activity nodes (e.g. Check Pairs) are related to protocol nodes, in
which they have been described using natural language. Between formally described know­
ledge elements (nodes of the model of expertise) and nodes of the structure model so-called
formalization links are set. For example the knowledge element Employee of the domain
layer, which includes a formal specification in KARL, is related to the knowledge element
Employee of the concept context, where an informal explanation is given. In the same way
inference steps are related to activity nodes of the structure model. The design model refi­
nes the model of expertise by refining inferences into algorithms and by introducing addi­
tional data structures. These parts of the design model are linked to the corresponding
inferences of the model of expertise and are thus in tum linked to the structure model and
to the elicitation model (Landes, 1994).

Domain and task modelling in MIKE 159

5 TOOL SUPPORT AND APPLICATIONS

The hypermedia based MIKE-tool (Neubert,l993) supports the graphical construction of the
elicitation model, the structure model and the formal model of expertise by different editors.
Additionally it supports the management of a library of problem-solving methods. After the
elicitation, the knowledge engineer enters the knowledge protocols into the elicitation model
using the elicitation model editor. The protocol nodes are the basis for constructing the struc­
ture model using the structure model editor. Formalization, i.e. constructing the model of ex­
pertise, is done in the KARL editor. The editors cooperate with each other and links between
models are constructed automatically by the editors.

For executing the operational specification, the model of expertise, an interpreter for
KARL exists (Angele, 1993). With the help of a graphical debugger the intermediate and fi­
nal results can be evaluated in a comfortable environment.

During the last year the MIKE approach has been evaluated by conducting several case
studies in cooperation with external partners. In one case study, expert knowledge for sup­
porting the recycling of building rubble has been modeled (Fichtner et al, 1995). It resulted in
a prototypical kbs providing support in selecting the most appropriate technique for dismant­
ling a building. This case study exemplified among others that (i) the structure model is well
suited for a first structuring of expert knowledge in a domain and that (ii) the structure model
can be built up and evaluated in close cooperation with the domain expert.

Another case study has been carried out in the area of online helpdesks. Objective of this
case study was the development of a prototypical kbs supporting an online helpdesk in dia­
gnosing troubles in communication networks. Special emphasis has been put on exploiting
the executability of a KARL model of expertise for an iterative and incremental development
process. It has been shown that an incremental and intertwined construction of the structure
model and the model of expertise can be supported by the MIKE tool rather well.

As a second problem for comparing different knowledge engineering approaches an ele­
vator configuration task has been posed (Yost, 1992). For configuring an elevator values have
to be assigned to a predefined set of parameters. The entire configuration has to fulfil various
constraints. This complex task especially showed the adequacy of the language KARL for
representing the knowledge on an abstract level. For validating the resulted complex model
of expertise it was even indispensable to have a running prototype.

On the other hand, all these case studies resulted in some modifications of the structure
model and the model of expertise. A deficiency of the structure model was the very small col­
lection of offered modeling primitives. Therefore, additional modeling primitives have been
included in the structure model, e.g. an alternative construct for the ordering context and ad­
ditional pre-defined relationships in the concept context. Furthermore, several experts com­
plained that the structure model and the KARL model of expertise used different graphical
primitives. As a consequence, MIKE now offers as far as possible the same graphical primi­
tives for both models. In addition, the OMT notation has been adopted. Especially the eleva­
tor configuration task gave us various insights into some deficiencies of KARL which shall
be eliminated in a future version.

6 RELATEDWORK

Since the MIKE approach took KADS-I (Schreiber et al,1993) as a starting point it is not sur­
prising that both approaches have a lot of common features. This holds especially for the
structure of the model of expertise. Major differences between both approaches are: (i) The
semi-formal representation within the structure model in MIKE. There exist some similarities

160 Part Three Role of Domains in Knowledge Engineering

between the structure model and several CommonKADS models as e.g. the task model. (ii)
The emphasis we put on the formalization of the model of expertise. This formal model pro­
vides a profound basiSt for the further development process. (iii) The smooth transition bet­
ween informal and formal descriptions using the same conceptual model for all descriptions
in MIKE. (iv) The inherent integration ofprototyping into a life cycle oriented approach in
MIKE.

When compared e.g. to ARIES (Johnson et al,l992) a distinctive feature of MIKE is the
semi-formal MEMO formalism supporting a mediating representation between informal na­
turallanguage description of requirements and the completely formal KARL specifications.
A further distinction is the clear separation of generic knowledge from domain I task specific
knowledge in the KARL model of expertise. Thus the reuse of domain models is supported
as proposed in (Johnson et al,l992). In addition, the generic problem solving knowledge may
be reused as well. In contrast to ARIES which puts emphasis on a highly expressive know­
ledge representation language the KARL language has a rather restrictive expressive power
in order to be able to provide an adequate KARL prototyping environment.

Within Structured Analysis (Yourdon,l989) or within the object oriented method OMT
(Rumbaugh et al,l991) the system is considered from different points of view. The function
oriented point of view considers the data flows between the processes. This point of view
strongly resembles the data flow context in the structure model. The dynamic point of view
resembles the ordering context. The object model in OMT corresponds to the concept con­
text. The description in SA or OMT is semi-formally only. In contrast to MIKE no formal
description of the model is provided in addition. Furthermore there is no distinction between
generic and domain specific models.

Various approaches in software engineering and information systems engineering also
provide means for describing application systems on different formalization levels. For ex­
ample, the INCOME approach (Oberweis et al,l994) for developing information systems
uses glossaries and object flow diagrams for the semi-formal description of static and dyna­
mic aspects of an information system application. During the conceptual modelling phase
this semi-formal description is formalized using an integration of high-level Petri nets and
semantic data model concepts resulting in a conceptual schema description. When compared
to the different models of MIKE, an object flow diagram corresponds to the structure model,
a conceptual schema to the KARL model of expertise. However, a major difference between
both approaches is the notion of generic layers as well as the clear separation of data and con­
trol flow aspects in the KARL model of expertise.

The construction and reuse of models as part of requirements engineering has gained a lot
of interests in recent years (see e.g.(Jarke et al,l993)). In (Sutcliff,Maiden,l994) the notion
of object system models is introduced for describing types of applications like e.g. object
composition (which can be instantiated to manufacturing systems) or agent-object control
(which can be instantiated to command and control applications). Such object system models
are embedded into a specialization hierarchy: each object type may be refined to further spe­
cialized object system models by using additional knowledge types for discrimination. These
object system types provide a framework for reuse during requirements engineering since
they can be used as initial generic descriptions of application types. When compared to the
notion of reusable problem-solving methods object system models are used rather for descri­
bing problem spaces whereas problem-solving methods are used for specifying solution spa­
ces (compare (Sutcliff,Maiden,l994)). It should be furthermore noticed that the notion of
domain model as used in (Sutcliff,Maiden, 1994) has a much broader meaning than the notion
of domain model as used in the KADS or MIKE framework, since there behavioural aspects
are not included in the domain model, rather these aspects are modeled at the inference and
control layer of the model of expertise.

Domain and task modelling in MIKE 161

7 CONCLUSION

MIKE integrates semiformal and formal description formalisms in an incremental develop­
ment process. The semiformal specification of the structure model is not only used to faci­
litate the formalization process, but is also seen as an important result itself. It structures the
domain knowledge and the knowledge about the problem-solving process (task related
knowledge) and due to its semi-formal description it can be used for documentation. The for­
mal specification describes the functionality of the system precisely, yet abstracting from im­
plementation details. Since the formal specification is operational, it is used as a prototype to
validate the model of expertise. The clear separation of knowledge about the problem-solving
method and domain knowledge allows the reuse of these parts. During design, the formal spe­
cification is extended with respect to aspects related to the realization of the system, taking
non-functional requirements into particular account.

Due to the common underlying conceptual model, the different representations can easily
be linked to each other and there is a smooth transition from one representation to the other.
By linking the models, we gain the advantage of using, e.g., the semiformal model as an ad­
ditional documentation of the formal specification. Furthermore, requirements traceability is
supported by interrelating all the models.

In that way MIKE addresses one of the main topics which have been put on the research
agenda for requirements engineering in software engineering and information systems engi­
neering: combination of different representations (Pohl et al,l995) based on a strong concep­
tual model involving aspects like smooth coupling of different representations, traceability
and consistency.

For constructing the models and their relationships the MIKE tool environment provides
different integrated graphical editors and a debugging tool which comprises the interpreter
for the formal and executable specification language KARL.

Current work addresses among others the reuse of problem-solving methods and domain
models during the knowledge acquisition phase. This includes a detailed analysis of the cha­
racteristics of problem-solving methods and their mutual dependencies with domain models
(see (Fensel,1995b), (Fensel,l995c)).

Acknowledgements
We thank Susanne Neubert and Dieter Landes who provided valuable contributions to many
of the ideas addressed in this paper.

8 REFERENCES

J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer (1993): Model-Based and Incre­
mental Knowledge Engineering: The MIKE Approach. In J. Cuena (ed.), Knowledge
Oriented Software Design, /F/P Transactions A-27, North Holland, Amsterdam, 1993.

J. Angele (1993): Operationalisierung des Mod ells der Expertise mit KARL (Operationaliza­
tion of the Model of Expertise with KARL), Ph.D. Theses in Artificial Intelligence, No.
53, infix, St. Augustin, 1993 (in German).

B.W. Boehm (1988): A Spiral Model of Software Development and Enhancement. In IEEE
Computer, May 1988, pp. 61-72.

J.A. Breuker and W. Van de Velde (eds.) (1994). The CommonKADS Library for Expertise
Modeling. lOS Press, Amsterdam, 1994.

162 Part Three Role of Domains in Knowledge Engineering

W.J. Clancey (1989): The Knowledge Level Reinterpreted: Modeling How Systems Interact.
In: Machine Learning 4, 1989, 285-291.

D. Fensel, J. Angele, D. Landes, and R. Studer (1993): Giving Structured Analysis Tech­
niques a Formal and Operational Semantics with KARL. In Proceedings of Require­
ments Engineering '93 - Prototyping -, Bonn, April 25- 27, 1993, Teubner Verlag,
Stuttgart, 1993.

D. Fense1, J. Angele, R. Studer (1995): The Knowledge Acquisition and Representation Lan­
guage KARL. Research report, no 316, Institute AIFB, University of Karlsruhe, Mai
1995.

D. Fensel (1995a): The Knowledge Acquisition and Representatio(l Language KARL. Kluwer
Academic Publisher, Boston, 1995.

D. Fensel (1995b): A Case Study on Assumptions and Limitations of a Problem Solving Me­
thod. In: Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-Based Sy­
stem Workshop (KAW'95), Banff, Canada, 1995.

D. Fensel (1995c): The Mincer Metaphor: A New View on Problem-Solving Methods for
Knowledge-Based Systems? Department SWI, University of Amsterdam, 1995.

W. Fichtner, D. Landes, Th. Spengler, M. Ruch, 0. Rentz, and R. Studer (1995): Der MIKE
Ansatz zur Modellierung von Expertenwissen im Umweltbereich- dargestellt am Bei­
spiel des Bauschuttrecyclings. In: H. Kremers eta!. (eds.): Space and Time in Environ­
mental Information Systems, Proc. 9th Int. Symposium on Computer Science for
Environmental Protection, Berlin, September 1995, Metropolis Verlag (in German).

T.R. Gruber (1993): A Translation Approach to Portable Ontology Specifications. In: Know­
ledge Acquisition 5, 2, 1993, 199-221.

M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, andY. Vassiliou (1993): Theories Underlying
Requirements Engineering: An Overview of NATURE at Genesis. In: Proc.IEEE Sym­
posium on Requirements Engineering, San Diego, 1993.

D. W.L. Johnson, M.S. Feather, and D.R. Harris (1992): Representation and Presentation of
Requirements Knowledge. In IEEE Trans. of Software Engineering 18, 10 (October
1992), 853-869.

D. Landes (1994): DesignKARL- A Language for the Design of Knowledge-Based Systems.
In Proceedings of the 6th International Conference on Software Engineering and Know­
ledge Engineering SEKE'94, Jurmala, Latvia, June 20-23, 1994.

D. Landes and R. Studer (1995): The Treatment of Non-Functional Requirements in MIKE.
In: Proc. of the 5th European Software Engineering Conference (ESEC95), Sitges,
1995, Springer LNCS, Vol. 989, 1995.

M. Linster (ed.) (1994): Sisyphus: Models of Problem Solving. In: Int. Journal of Human­
Computer Studies 40, 2, special issue, February 1994.

B. Nebel (1995): Artificial Intelligence: A Computational Perspective. To appear in: G.
Brewka (ed.): Essentials in Knowledge Representation.

S. Neubert (1993): Model Construction in MIKE (Model Based and Incremental Knowledge
Engineering). In Knowledge Acquisition for Knowledge-Based Systems, Proceedings of
the 7th European Workshop EKA W'93, Toulouse, France, September 6-10, Lecture No­
tes in AI, no 723, Springer-Verlag, Berlin, 1993.

A. Newell (1982): The Knowledge Level, Artificial Intelligence, voll8, 1982.
A. Oberweis, G. Scherrer, and W. Stucky (1994): INCOME/STAR: Methodology and Tools

for the Development of Distributed Information Systems. In: Information Systems 19,
8, 1994, 643-660.

T. Pirlein and R. Studer (1994): KARO: An Integrated Environment for Reusing Ontologies.
In: Steels eta!. (eds): A Future of Knowledge Acquisition, Proc. 8th European Know­
ledge Acquisition Workshop (EKA W'94), Hoegaarden, LNCS 867, Springer, 1994.

Domain and task modelling in MIKE 163

K. Pohl, G. Starke, and P. Peters (1995): Workshop Summary First Int. Workshop on Requi­
rements Engineering: Foundation of Software Quality (REFSQ'94). In: ACM SIGSOFT
20, 1, pp. 39-45, January 1995.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy und W. Lorensen (1991): Object-Oriented
Modeling and Design. Prentice Hall, 1991

A.G. Sutcliff and N.A.M. Maiden (1994): Domain Modeling for Reuse. In: Proc. 3rd Int.
Conf. on Software Reuse, Rio de Janeiro, 1994.

G. Schreiber, B. Wielinga, and J. Breuker (eds.) (1993): KADS- A Principled Approach to
Knowledge-Based System Development, Academic Press, London, 1993.

A.Th. Schreiber, B.J. Wielinga, R. de Hoog, H. Akkermans, and W. van de Velde (1994):
CommonKADS: A Comprehensive Methodology for KBS Development. In: IEEE Ex­
pert, December 1994,28-37.

M.L.G. Shaw and B.R. Gaines (1992): The Synthesis of Knowledge Engineering and Soft­
ware Engineering. In: P. Loucopoulos (ed.): Advanced Information Systems Enginee­
ring, LNCS 593, 1992,208-220.

G.R. Yost (1992): Configuring Elevator Systems. Technical report, Digital Equipment Co.,
Marlboro, Massachusetts, 1992.

E. Yourdon (1989): Modern Structured Analysis, Prentice-Hall, Englewood Cliffs, 1989.

9 BIOGRAPHY

Juergen Angele received the diploma degree in computer science in 1985 from the University
of Karlsruhe, Karlsruhe, Germany. From 1985 to 1989 he worked for the companies AEG in
Konstanz, Germany and SEMA GROUP in Ulm, Germany. From 1989 to 1994 he was aRe­
search and Teaching Assistant at the University of Karlsruhe. He received the Ph.D. from the
University of Karlsruhe in 1993 on the subject of the operationalization of the language
KARL. In 1994 he became Associate Professor of Applied Computer Science at the Fach­
hochschule of Braunschweig, Germany. His current research interests include knowledge en­
gineering, software engineering, formal specification techniques, and problem-solving
methods.

Dieter Fensel received the diploma degree in sociology and the diploma degree in compu­
terscience in 1989 from the Technical University of Berlin, Germany. From 1989 to 1994 he
was a Research and Teaching Assistant at the University of Karlsruhe. He received the Ph.D.
from the University of Karlsruhe in 1993 on the subject of the specification language KARL.
At the moment he is a guest researcher at the University of Amsterdam, department SWI. His
current research interests include knowledge engineering, formal specification languages,
problem-solving methods, and machine learning techniques.

Rudi Studer received the diploma degree in computer science and the doctoral degree, in
1975 and 1982, respectively, from the University of Stuttgart, Stuttgart, Germany. He)Vas as
a Research Assistant with the Institute of Computer Science of the University of Stuttgart
from 1975 to 1985. In 1985 he joined the Scientific Center of IBM Germany as a Project Lea­
der and Manager, respectively. In 1989 he became Full Professor of Applied Computer Sci­
ence at the University of Karlsruhe. His research interests include knowledge engineering,
formal specification techniques, and knowledge discovery in databases.

