
18
A Unified Test Case Generation Method for the EFSM Model Using
Context Independent Unique Sequences!

T. Ramalingoma Anindya Dasb and K.Thulasiramanc

aBell-Northern Research Ltd., Ottawa, Canada K1 Y 4H7 Tel: (613) 765-5377
E-mail: ramaling@bnr.ca Fax: (613) 763-5782
bD.I.R.O., University of Montreal, Montreal, Canada H3C 3J7
cSchool of Computer Science, University of Oklahoma, Norman, OK 73019, U.S.A. On leave
from Dept. of Electrical Engineering, Concordia University, Montreal, Canada

A unified method for generating test cases for both control flow and data flow aspects
of a protocol represented as an Extended Finite State Machine (EFSM) is presented.
Unlike most of the existing methods, the proposed method considers the feasibility
of the test cases during their generation itself. In order to reduce the complexity of
the feasibility problem without compromising the control flow coverage, a new type
of state identification sequence, namely, the Context Independent Unique Sequence
(CIUS) is defined. The trans-CIUS-set criterion used in the control flow test case
generation is superior to the existing control flow coverage criteria for the EFSM.
In order to provide observability, the "all-uses!! data flow coverage criterion is
extended to what is called the def-use-ob criterion. A two-phase breadth-first search
algorithm is designed for generating a set of executable test tours for covering the
selected criteria. The approach is also illustrated on an EFSM module of a transport
protocol.

Automatic test case generation from protocol standards is a means of selecting high quality
test cases efficiently. Recently, International Organization for Standards (ISO) has established
a working group for studying the application of Formal Methods in Conformance Testing
(FMCT) [5]. One of the primary aims of this group is to enable computer-aided test case
generation from protocol standards specified in Formal Description Techniques (FDT) such as
Estelle [2], SDL [3], and LOTOS [4]. In this paper, we present a new method for automati­
cally generating test cases for both control flow and data flow aspects of a protocol which is
represented as an Extended Finite State Machine (EFSM) as defined in [21].

In order to have better fault coverage [7], some of the test sequence generation methods
proposed recently [11, 13, 14] for the EFSM model apply state identification sequences for
confirming the states. However, the state identification sequences defined for the FSM model
are inadequate for the EFSM model. In this paper, we define a general Unique Input Sequence
(UIS) for an EFSM state. We then consider a special type of UIS, called Context Independent
Unique Sequence (cruS) in order to reduce the complexity of the well known feasibility prob­
lem associated with the EFSM model that arises during the application of UISs for confirming
states.

The test case generation method proposed in this paper addresses both control and data
flow aspects of an EFSM. It is known from Finite State Machine (FSM) testing methods that
those which use state identification sequences for confirming the tail state of a transition under
test have better fault coverage [16, 10, 8]. In particular, the Uv-method has the capability of
detecting both label faults and tail state faults in transitions [8]. The control flow fault coverage
criterion established in this paper is called trans-CIUS-set criterion (defined later) and it
is based on the Uv-method. For the data flow coverage, we extend the "all-uses" criterion [17]

'This work was done at Concordia University, Montreal, prior to T. Ramalingom joining Bell-Northern
Research Ltd., and represents the views of the authors and not necessarily those of BNR Ltd.

A. Cavalli et al. (eds.), Protocol Test Systems VIII
© Springer Science+Business Media Dordrecht 1996

284 Part Seven Test Generation 2

to what is called a def-use-ob criterion. We shall see that this new criterion is required
due to the so called black-box approach of protocol testing and it enhances the observability
of the def-use associations. Thus our aim is to generate a set of feasible test cases for the
trans-CIUS-set criterion and the def-use-ob criterion. Each test case in the proposed approach
corresponds to a test tour which starts and ends at the initial state of the protocol. In the
worst case, the cardinality of the set of tours generated is only quadratic in terms of the
number of transitions in the protocol.

Most of the existing methods first generate a set of test tours which satisfy the coverage
criteria and then check if the generated test tours are feasible [12, 21, 11, 20]. This strategy
results in discarding infeasible tours, which in turn affects the coverage criteria. Therefore, an
important requirement of our method is to consider the feasibility of the tours during their
generation itself. We present a two-phase breadth-first search algorithm which generates a set
of feasible test tours which adequately covers the required control flow and data flow criteria.
The combined testing method by Miller and Paul [14] addresses the feasibility problem while
selecting the test tours. This method does not however handle the feasibility issue effectively
while joining different types of test subsequences into a single feasible sequence. Moreover, the
trans-CIUS-set criterion and the def-use-ob criterion established in this paper are superior to
the respective criterion in [14].

1 The EFSM Model
The EFSM model presented in this paper is inspired from [21]. An EFSM M is a 6-tuple
M = (S, S1> I, 0, T, V), where S, I, 0, T, V are a nonempty set of states, a nonempty set of
input interactions, a nonempty set of formal output interactions, a nonempty set of transi­
tions, and a set of variables, respectively. Let S = {Sj I 1 ~ j ~ n}j S1 is called the initial
state of the EFSM. Each member of I is expressed as ip?i(parlist), where ip denotes an
interaction point where the interaction of type i occurs with a list of input interaction pa­
rameters parlist, which is disjoint from V. Each member of ° is expressed as ip!o(outlist),
where ip denotes an interaction point where the interaction of type 0 occurs with a formal
list of parameters, outlist. Each parameter in outlist can be replaced by a suitable variable
from V, an input interaction parameter, or a constant. The interaction thus obtained from
a formal output interaction is referred to as an output interaction or an output state­
ment. We will assume that the variables in V and the input interaction parameters can be
of types integer, real, boolean, character, and character string only. Each element t E T is a
5-tuple t = (source, dest, input,pred,compute_block). Here, source and dest are the states in
S representing the starting state and the tail state oft, respectively. input is either an input in­
teraction from I or empty. pred is a Pascal-like predicate expressed in terms of the variables in
V, the parameters of the input interaction input and some constants. The compute_block is a
computation block which consists of Pascal-like assignment statements and output statements.

A component of a transition can also be represented by postfixing the transition with a
period followed by the name of the component. For example t.pred represents the predicate
component of the transition t. Note that, unlike a variable, the scope of a parameter in an
input interaction of a transition is restricted to the transition only. Let m denote the number
of transitions in M. We will assume that m 2: n. A closed walk which starts and ends at the
initial state is referred to as a tour. A transition in M with empty input interaction is called
a spontaneous transition.

A context of M is the set {(var, val) I var E V and val is a value of var from its domain}.
A valid context of a state in M is a context which is established when M's execution proceeds
along a walk from the initial state to the given state.

Let t be a non-spontaneous transition in M. t is said to be executable if (i) M is in
the state t.source, (ii) there is an input interaction of type i at the interaction point ip,

A unified test case generation method for the EFSM model 285

where t.input = ip?i(parlist), and (iii) the valid context of the state and the values of the
input interaction parameters in parlist are such that the predicate t.pred evaluates to true.
A spontaneous transition t is executable if (i) M is in the state t.source and (ii) the valid
context of the state is such that t.pred evaluates to true. When a transition is executed, all
the statements in its computation block get executed sequentially and the machine goes to the
destination state of the transition.

A walk W in M is said to be executable if all the transitions in Ware executable
sequentially, starting from the beginning of the walk. A walk W in M can be interpreted
symbolically by assuming distinct symbolic values for the local variables at the beginning of
W as well as distinct symbolic values for the input interaction parameters along W. Let W
be a symbolically interpreted walk. Clearly the conjunction of the predicates along W is also
interpreted and is expressed in terms of the initial symbolic values for the local variables and
the symbolic values for the input interaction parameters. W is said to be satisfiable if the
conjunction of the interpreted predicates is satisfiable. Note that a walk which is executable
is always satisfiable. However, its converse is not true. This is because none of the possible
values for the variables which made W satisfiable may be a valid context at the starting state
of the walk. That is, these values are not 'settable' by any of the executable walks from the
initial state to the starting state of W.

An EFSM is deterministic if for a given valid context of any state in the EFSM, there
exists at most one executable outgoing transition from that state.

An EFSM M is said to be completely specified if it always accepts any input interaction
defined for the EFSM. An arbitrary EFSM M can be transformed into a completely specified
one using what is called a completeness transformation described next. Given a valid
context of a state and an instantiated input interaction, suppose that M does not have an
executable outgoing non-spontaneous transition at the state for the given valid context and
the input interaction, and that M does not have an outgoing spontaneous transition at the
state such that it is executable for the given valid context, then a self-loop transition is added
at the state such that it is executable for the given context and the input interaction. The
newly added transitions are called non-core transitions and they do not have computation
blocks.

We assume that the EFSM representation of the specification is deterministic and com­
pletely specified. It is assumed that for every transition in the EFSM, it has at least one
executable walk from the initial state to the starting state of the transition such that the
transition is executable for the resulting valid context. Similarly, we assume that the initial
state is always reachable from any state with a given valid context.

1.1 An Example

As an example of an EFSM , let us consider a major module (AP-module in [6]) of a sim­
plified version of a class 2 transport protocol [lJ. This module participates in connection
establishment, data transfer, end-to-end flow control, and segmentation. It has the inter­
action point labeled U connected to the transport service access point and another inter­
action point labeled N connected to a mapping module. Here, we represent the EFSM by
(S, S1,I, 0, T, V). We would like to note that the EFSM is obtained from the AP-module by
eliminating a few non-determinisms in certain transitions starting from the data transfer state.
Let S = {S1, S2, S3, S4, S5, S6}' The set of input interactions and the set of output interactions
are given below.

I = {U?TCONreq(dest_add, prop_opt), U?TCONresp(acept_opt),
U?TDISreq, U?TDATreq(Udata, EoSDU), U?U_READY(er),

N?TrCR(peeLadd, opt_ind, er), N?TrCC(opLind, er),
N?TrDR(dise..reason, switch), N?TrDT(send..Bq, Ndata, EoTSDU),

N?TrAK(XpSsq, er), N?ready, N?terminated, N?TrDC }

286 Part Seven Test Generation 2

IlS, 1l6, 127 133, t34, t35

14

13
t17

122, 1l3, 114

~
U8

" IS Ibrougb tlS U9
116, 131, 132

t7

1l8, 1l9, 130 136,137,138

Figure 1: An EFSM for the AP-module in the Class 2 transport protocol

0= {U!TCONconf(opt), U!TCONind(peer_add, opt), U!TDISind(msg),
U!TDATAind(data, EoTSDU), U!error, U!READY, U!TDISconf,

N!TrCR(dest_add, opt, credit), N!TrDR(reason, switch),
N!terminated, N!TrCC(opt, credit), N!TrDT(sq-Ilo, data, EoSDU),

N!TrAK(sq_no, credit), N!error, N!TrDC}

v={ opt, R_credit, S_credit, TRsq, TSsq}. All the variables in V are of integer type. The
transitions as described in Table 1 and Table 2 are shown in Figure 1. The state Sl is repeated
in the figure merely for convenience.

1.2 Unique Input Sequence
An input sequence, a sequence of input interactions, is said to be instantiated if all the
parameters in the sequence are properly instantiated with values. Given an instantiated input
sequence X, a state Si and a valid context C at Si, Ewalk(i, X, C) denotes the unique walk
traversed when X is applied to the EFSM which is currently at Si with the context C.

A test sequence is a sequence of input and output interactions. A sequence of zero or
more output interactions between two successive input interactions in a test sequence is the
sequence to be observed after applying the preceding input interaction to an EFSM and before
applying the succeeding one.

The sequence of input and output interactions along a satisfiable walk W is denoted as
Trace(W), known as the trace of the walk W. The sequence of input (output) interactions
along a walk W is denoted by Inseq(W) (Outseq(W». Trace(W) and Outseq(W) are
actually obtained by symbolically interpreting W. Suppose that the actual value of a symbol
is known, then the corresponding sequences can be obtained from the above sequences by
replacing the symbol by the value throughout the sequences.

Two input interactions are said to be distinguishable if: (i) they occur at two different
interaction points or (ii) their interaction types are different. We say that two output inter­
actions are distinguishable if at least one of the following is true: (i) they occur at two

A unified test case generation methodfor the EFSM model 287

Tr. Input Predicate Compute-block
tl U. TGUNreq(dst_add, opt:_ prop_opt;

prop_opt) ILcredit .= O·
N!TrCR(dsL~d,opt,ILcreditl

t2 N. TrCR(peeLadd, opt :- opt_md; ~_credit :- cr;
opLind, cr) R credit .= O·

U!TCON;nd(~eeLadd, opt)
t3 N . TrGG(opLmd,cr) opLmd S; opt TRsq:_O;T:-isq:_O;

opt := opLind; S_credit := cr;
U!TCONconf(opt)

t4 N?TrCC(optjnd, cr) opLind > opt U!TDISind(' procedure error');
NITrDR('procedure error', false)

t5 N. TrDR(discreason, U.TDISin~(disc-reason);
switch) N!terminated

t6 U. TCONresp(accpLopt) accpLopt S; opt opt :_ accpt_opt;
TRsq := 0; TSsq := 0;
NITrCC(opt, ILcredit)

t7 U.TDISreq N.TrDR('User lmtlated' , true)
t8 U . TDA Tre'l(Udata, :-i_credit> 0 :-i_credit :_ S_credit I;

EoSDU) N!TrDT(TSsq, Udata, EoSDU);
TSsq := '(TSsq + l)modI28;

t9 N. TrDT(send-sq, Ndata, ILcredi t t~ 0 /\ TRsq :- (TRsq + IJmod 128;
EoTSDU) send_sq = TRsq R_credi t : = ILcredi t - I;

U!TDATAind(Ndata, EoTSDU);
N!TrAK(TRsq, ILcredit)

tlO N. TrDT(send-sq, Ndata, ILcredit - 0 V N.error;
EoTSDU) send_sq # T Rsq U!error

til U.U_READY(cr) ILcredit :- R_credit+cr;
NITrAK(TRsq, R_credit)

t12 N?TrAK(XpSsq, cr) TSsq2: XpSsq /\ S_credit :-
cr + XpSsq - TSsq 2: 0 /\ cr + XpSsq - TSsq
cr + XpSsq - TSsq < 15

tl3 N. TrAK(XpSsq, cr) TSsq2:XpSsq /\ V.error;
(cr + XpSsq - TSsq < 0 V N'error
cr + XpSsq - TSsq > 15)

t14 N.TrAKlXp~sq, cr) T~sq<Xp~sq /\ ~_credlt :-
cr+XpSsq -TSsq -128 2: 0 /\ cr+XpSsq -TSsq -128
cr + XpSsq - TSsq - 128 < 15

tl5 N. TrAK(XpSsq, cr) T:-isq<Xp:-isq /\ U.error;
(er + XpSsq - TSsq - 128 < 0 V N'error
cr + XpSsq - TSsq - 128> 15)

t16 N?rea y S_credit > 0 U.READY
t17 U?TDISreq N!TrDR\'User initiated',

false)
tl8 N. TrDRldisc-reason, U.TDr::,ind\dISc_reason);

switch) N!TrDC
tl9 N . termmated U.TDISconf
t20 N'TrDC N!termmated;

UlTDISconf
t21 N. TrDR(disc..!'eason, N.termmated

switch)

Table 1: Core transitions in the transport protocol

288 Part Seven Test Generation 2

TransitIOns Input
t25, t28, t31, t33, t36 U?TCONreq(desLadd, prop_opt)

t23, t26, t34, t38 U?TDISreq
t22, t29, t37 N?TrDR(discreason, switch)

t24, t27, t30, t32, t35 N?terminated

Table 2: Non-core transitions in the transport protocol

different interaction points, (ii) their interaction types are different, and (iii) if the parameters
in a given position in both interactions are constants then they are different.

For example, the output interactions N!TrDR('procedure error', false) and
N!TrDR('procedure error', true) are distinguishable. However, N!TrDT(TSsq,
Udata, EoSDU) and N!TrDT(TRsq, Udata, EoSDU) are not distinguishable.

An input interaction is obviously distinguishable from an output interaction. The total
number of input and output interactions - each occurrence of an interaction is counted - in
a sequence is called the length of the sequence. Let SI and S2 be two sequences of input
and/or output interactions. Assume that they are of the same length. In order to check for
distinguishability of the two sequences, starting from the first position the interactions in SI
and S2 are checked position-wise. SI and S2 are said to be distinguishable if the interactions
in at least one position in SI and S2 are distinguishable. Otherwise, they are said to be
indistinguishable. Two sequences of different lengths are always distinguishable.

Let W be an executable walk at Sj. Let U be an instantiation of Inseq(W). We define U
as a Unique Input Sequence (UIS) of Sj if Trace(W) is distinguishable from Trace(W'),
for any satisfiable walk W' at state Sk, for 1 ::; k ::; n, k # j. In this case, W is called an UIS
walk for U.

2 Test Case Selection Criteria

2.1 Control Flow Coverage Criterion
We would like to apply an UIS of every state at the tail state of the transition under test.
As indicated in [13], automatic test case generation for an EFSM is difficult when a general
UIS is used. For example, let U be an VIS for sj, and let W be the UIS walk of U. Let t be
an incoming transition at Sj and Si be the starting state of t. In order to test t, one needs
to compute an executable preamble walk P, from SI to Si and associate values for the input
interaction parameters along P, and t such that P, t W is executable. For a given W, it is in
general difficult to find a P, so that the walk P, t W is executable. Moreover, if the general
VISs are considered, then multiple UISs may be required for a state in order to test all the
incoming transitions at that state. Hence a careful selection of the UISs is required.

A walk from a state is said to be context independent if the predicate of every transition
along the walk, duly interpreted symbolically, is independent of the symbolic values of the local
variables at the starting of the walk. Observe that every context independent satisfiable walk
is executable.

We introduce a special type of UIS, called Context Independent Unique Sequence
(CIUS). Let Ui be an instantiated UIS of Si and let U(i) be the corresponding UIS walk at
Si. Ui is said to be a CIUS of Si if U(i) is context independent and executable.

Note that all the local variables used in the predicate of each transition in U(i) are defined
within U(i) prior to their use. In other words, the predicates along U(i) are independent of any
valid context at Si. Therefore, U(i) can be postfixed to any executable walk from the initial
state to Si and the resulting walk is also executable. This property is very useful in computing

A unified test case generation method for the EFSM model 289

::itate \jlU::i 'nanSlt!on ::ieq,
8, lr!'~~~NreqldsLadd, prop_opt) tl
82 N?TrDR(disCJeason, switch) t5
83 U?TDISreq t7
84 U?TDISreq t17
$5 N?TrDR(discJeason, switch) t21
$6 N?terminated t19

Table 3: ClUSs for the states in the EFSM of Figure 1

feasible test cases for the control flow coverage. Also, one CIUS of a state is sufficient for
testing all the incoming transitions at that state.

In [15], we have developed an algorithm for computing a ClUS for a given state. Table 3
shows the ClUSs for all the states of the EFSM of Figure 1 computed using the algorithm.
Note that the parameters in the CIUSs have to be instantiated with certain valid values. We
have also found that a few other protocols such as a class 0 transport protocol as specified
in [21J and the abracadabra protocol [19J have a ClUS for every state. The maximum length
of the CIUSs computed for these protocols is only 2. It should also be noted that there are
protocols which may not have a CIUS for every state. For example, the initiator module of
the INRES protocol as modeled in [9J does not have a ClUS for one state.

Let Ui be a ClUS for the state Si, 1 SiS n. Let U = {Ui 11 SiS n}. We call U
as a CIUS set. Our control flow coverage criterion, namely, the trans-CIUS-set criterion
is to select a set r of executable tours such that for each transition t in the EFSM and for
each Ui E U, r has a tour which traverses t followed by Ui . An executable walk from the
initial state to the starting state of a transition t is called a preamble walk for t if W t is
also executable. Due to the requirement of applying the entire UIS set at the tail state of
a transition under test, the trans-CIUS-set criterion is superior to the existing control flow
coverage criteria for the EFSM.

2.2 Data Flow Coverage Criterion

A hierarchy of data flow coverage criteria has been proposed in [17]. It is interesting to know
that the "all-uses" is the best criterion among those which can be satisfied by a set of test
cases with polynomial order cardinality [17]. Ural and Williams [20] have recently used the
all-uses criterion for generating test cases for protocols specified in SD L. Due to the black­
box approach of protocol testing, the set of test cases which satisfy the all-uses criterion may
not be observable. Therefore, we extend the all-uses criterion to what is called a def-use­
ob criterion. This criterion facilitates the tester to observe every def-use association in the
protocol.

We introduce some definitions before presenting the def-iIse-ob criterion. A parameter v
occurring in the input interaction of a transition t is referred to as a def and is denoted by
t.I.v. Similarly, a variable v in the left side of an assignment statement at the location c in
the computation block of a transition t is also said to be a def and it is denoted by t.c.v.
The use of a variable or input interaction parameter v in the predicate of a transition t is
called a p-use and is denoted by t.P.v. The variable/input interaction parameter v used on
the right side of an assignment statement at the location cl in the computation block of a
transition t is referred to as a c-use and is denoted by t.cl.v. Similarly, the variable/input
interaction parameter v appearing as a parameter in the output interaction at the location c2
in the computation block of a transition t is referred to as a a-use and it is denoted by t.c2.v.
By an use, we refer to a p-use, a c-use or a o-use.

A def-use pair D with respect to a variable/parameter v is an ordered pair of def and
use of v such that there exists a walk in the EFSM which satisfies the following: (i) the first

290 Part Seven Test Generation 2

transition in the walk is the one where v is defined and the last transition of the walk is the
one where v is used and (ii) v is not redefined in the walk between the location where it is
originally defined and the location where it is used. Such a walk is called a def-clear walk
for D. Note that a def-clear walk could be a single transition. A def-use pair is said to be
feasible if the EFSM has at least one executable tour which contains a def-clear walk for this
pair. The def-use pairs can be classified into five types as follows.

type 1: An input parameter v is defined in the input interaction of a transition tl and is used
in the predicate of the same transition. Such a pair is denoted by (tl.I, tl.P)v.

type 2: An input parameter v is defined in the input interaction of a transition tl and is used
in an output statement C2 in the computation block of the same transition. Such a pair
is denoted by (tl.I, tl .C2)V.

type 3: An input parameter v is defined in the input interaction of a transition tl and is used
in an assignment statement C3 in the computation block of the same transition. Such a
pair is denoted by (tl.I, tl.C3)V.

type 4: A variable v is defined in an assignment statement CI in the computation block of a
transition tl and is used in the predicate of another transition t2• Such a pair is denoted
by (tl.CI, t2 .P)v.

type 5: A variable v is defined in statement CI in the computation block of a transition tl
and is used in statement C2 in the computation block of a transition t 2 • Such a pair is
denoted by (tl.CI, t2.C2)V.

Let 1 (l') be a location in transition t (i') where a variable/parameter v (Vi) is defined
(used). Suppose that X = D I D2 ••• Dk , where k ~ 1, is a sequence of def-use pairs such that
(i) D; is a def-use pair for variable v;, i = 1,2, ... , k, (ii) VI = v and Vk = Vi and the source
of DI is t.l and the destination of Dk is t'.l', (iii) the use part of D; is for defining V;+I, where
i = 1,2, ... , k - 1 and (iv) if k = 1, then v = Vi. Then, X is called an information flow
chain from the definition of v at the location 1 of transition t to the use of Vi at the location l'
of transition t'. Further, if a walk W has a subwalk W' with t and t' as the first and the last
transition such that W' can be expressed as W' = W I @W2@ ... @Wk , where W; is a def-clear
walk for D;, for i = 1,2, ... , k, then, we say that X is an information flow chain along W.
In this case, we also say that W has an information flow chain from the definition of v at the
location 1 of transition t to the use of Vi at the location l' of transition t'. We would like to
note that the information flow chain is somewhat similar to the IO-def-chain proposed in [21].

Let V be the set of all def-use pairs for all the variables and input interaction parameters
in the EFSM. A minor modification of the algorithm presented in [9] would suffice to obtain
V. This modification is to consider the def-use pairs within a transition. Our def-use-ob
criterion requires the selection of a set of executable tours such that for each feasible def-use
pair D E V, the set has at least one tour, say T, satisfying the following conditions.

(a) If the use part in D is an o-use, then T contains a def-clear walk for D.

(b) If the use part in D is a p-use, then T contains a def-clear walk WI for D followed by the
ems walk U(j), where Sj is the tail state of WI.

(c) If the use part in D is a c-use, then T contains a walk W2 followed by a walk W3 such that
W2 is a def-clear walk for D and W3 has an information flow chain from the variable
which is defined at the location where the variable for D is c-used to a location where
a variable is either o-used or p-used. Moreover, if the information flow chain terminates
in a p-use variable, then, in T, W3 is followed by the ems walk U(p), where sp is the
tail state of W3.

A unified test case generation method/or the EFSM model 291

Condition (a) takes care of the def-use association for all the def-use pairs in which the use part
is an o-use. If the use part of D is a p-use, then apart from meeting the def-use association,
by applying the cms of Sj, condition (b) enables the tester to check if the predicate of the
transition where the p-use occurs evaluates to true as expected. On the other hand, if the
use part of D is a c-use, then condition (c) enables the tester to observe the effect of the
value computed. Actually, this value flows through other intermediate variables along T until
it is used in an output statement or in a predicate of a transition. In addition, the correct
evaluation of the predicate is ensured by T as in condition (b).

An executable walk W starting from the initial state is called a preamble walk for D if
it satisfies conditions (a), (b) and (c) where T is replaced by W.

We know that, as per the trans-CIUS-set criterion, each transition followed by the cms
of the tail state of the transition will be covered by at least one tour. Clearly, this tour also
covers all the def-use pairs of types 1 and 2 for the def-use-ob criterion. Henceforth, we assume
that D consists of types 3 4 and 5 only.

We define a new type of Data Flow Graph (DFG) to represent the data flow information on
a particular executable walk starting from the initial state. This graph is useful in computing
the subset of D, for which this walk is a preamble walk, except possibly for the cms walk
extension. The data flow graph has four types of nodes: i-node, c-node, p-node and o-node.

• An i-node is labeled as (t, I, v) and it corresponds to the definition of the parameter v
in the input interaction of the transition t.

• A c-node is labeled as (t,c,v) and it corresponds to the definition of the variable v in
the assignment statement c of the transition t.

• A p-node is labeled as (t, P) and it indicates that the node corresponds to the predicate
of the transition t.

• A o-node is labeled as (t, c) and it simply denotes that it corresponds to the output
statement c in the computation block of the transition t.

The data flow graph for the transition t with respect to the walk W which contains t
is denoted by DFG[t, W). It contains the data flow information along W for all the input
interaction parameters and local variables defined in t. It has one connected directed subgraph,
say G, for each definition of a variable or an input interaction parameter, say v, in t. G has a
designated node, called the root node which identifies the definition of v. A given node in G
is considered to be in one of three different levels. The root node is the unique node in the first
level. Nodes in level 2 correspond to the direct use of v in statements/predicates in Wand
W contains a def-clear walk for every def-use pair consisting of the root node and a node in
level 2. The root node is connected to all the nodes of level 2. A node is in level 3 if there exists
a data flow along W from at least one assignment statement which corresponds to a c-node
in level 2 to a predicate, assignment statement, or an output statement corresponding to this
level 3 node. A c-node in level 2 is connected to a level 3 node if there exists an information
flow chain along W from the level 2 node to the level 3 node.

Figure 2 shows the data flow graph DFG[t3, tlt3tS), for the transition t3 in the walk tlt3tS
of the EFSM given in Figure 1. In Figure 2, rectangles represent i-nodes as well as o-nodes,
whereas the circles and diamonds represent c-nodes and p-nodes, respectively. The second
subgraph in this data flow graph, for instance, corresponds to the definition of the input
interaction parameter cr. Observe that the edges from (t3, c4, S_credit) to the level 3 nodes
(tS, P) and (tS, el, S_credit) indicate that the variable S_credit defined in t3.c4 is p-used at
the predicate of transition tS and c-used in the definition of S_credit at the first statement in
the computation block of tS, respectively.

The size of the test cases required for satisfying the coverage criteria is summarized in the
following theorem.

292 Part Seven Test Generation 2

.. ~~t
(t3 •• ~b

(t3, c4, S_credlt)

1\
(tB, d, S_credlt) (18, P)

(t8,P)

DFG(t3,t1t3t8]

Figure 2: A data flow graph for t3 with respect to the walk tlt3t8

Theorem 1 The order of the set of test tours required to satisfy the trans-ClUS-set and the
def-use-ob criteria together is quadratic in the number of transitions in the EFSM.

3 Data Flow Graph Manipulation

In this section, we briefly describe the procedures for constructing and manipulating the data
flow graph DFG[t, W] for a given transition t which is a part of a given executable walk
W starting from the initial state of an EFSM. These procedures are used in our test case
generation algorithm for checking if a walk is a preamble walk for some def-use pairs.

Our first procedure PredExtendGraph is for processing a predicate in a given transition.
The procedure accepts a walk W2, a transition t2, where t2 is the last transition in W2, and
a partial subgraph G of DFG[t3, W2], for some transition t3 in W2. Let G correspond to a
variable/parameter u defined at t3. G is partial since it does not have the data flow information
corresponding to the transitive use of u in t2. As described below, PredExtendGraph extends
the graph G if the value of u is eventually used in the predicate of t2. The variable iniel)el2
(inlevel3) is used to ensure that the p-node (t2, P) is created atmost once in level 2 (level 3)
of G. This procedure also checks if W2 is a preamble walk for a def-use pair along W2 where
the definition corresponds to the root node of G. For notational convenience, we denote a
node at a given level by attaching the level number as a subscript to the label of the node.
For example, a c-node (t, c, 1)) at level 3 is also denoted by (t, c, v h. Comments are enclosed
in braces.

procedure PredExtendGraph(G:graph; t2:transition; W2:walk);
begin

inlevel2 := false; inlevel3 := false;
Let (tl,xl,u) be the root node of G; { xl = 'I' or assignment stmt. no. }
for each variable v used in t2. pred do begin

Let (t, c) = W2.recentdef(v); {Recent definition of v in W2 is at t.c}
if ((t,c,v) is the root node of G) then begin { (t,c,v)= tl,xl,u) }

if (not inlevel2) then begin
Create a p-node (t2,P) at level 2 in G; inlevel2 := true;

end'
Add' an edge from (tl,xl,uh to (t2,Plz in G;
if (D = (tl.xl, t2.P)(U)E V is not yet covered) then begin

Mark D as covered;
Obtain a preamble walk for D by appending U(j) to W2,

where Sj= t2.dest & U(j) is the eIUS walk for Uj;
end

end'
if (((,c,v) is a node at level 2 in G) then begin

if (not inlevel3) then begin

A unified test case generation method for the EFSM model

Create a p-node (t2,P) at level 3 in G; inlevel3 := true;
end'
Add' an edge from (t,c,vh to (t2,P}a in G;
if (D = (tl.xl, t.c)(u}E 'D is not yet covered) then begin

Mark D as covered;
Obtain a preamble walk for D by appending U(j} to W2,

where Sj= t2.dest & U(j} is the CIUS walk for Uj;

end
end'
if ((t,c,v) is a node at level 3 in G) then begin

if (not inlevel3) then begin
Create a p-node (t2,P) at level 3 in G; inlevel3 := true;

end'
for ~ach incoming edge e to (t, c, v) do begin

Let (t',c',v'h be the starting node ofe;
Add an edge from (t', c', v'h to (t2,P}a in G;
if (D = (tl.xl, t'.c')(u}E 'D is not yet covered) then begin

Mark D as covered;
Obtain a preamble walk for D by appending U(j) to W2,
where Sj= t2.dest & U(j) is the CIUS walk for Uj;

end
end

end
end { for each variable v }

end { PredExtendGraph }

293

StmtExtendGraph and OutputExtendGraph are the other two procedures for extending a sub­
graph of a data flow graph with respect to an assignment statement and an output statement,
respectively. They are similar to PredExtendGraph [15].

We shall now describe procedure ExtendDFG. This procedure accepts a walk WI, a tran­
sition tl in WI, and a transition t2 which starts from the tail state of WI and it computes
DFG[tl, WI t2], the data flow graph for tl with respect to the walk WI t2. ExtendDFG
achieves this by extending the already known data flow graph DFG[tl, WI] as per the data
flows along WI t2 from the variables/parameters defined in tl to the variables used in the
predicates and the statements in t2. Let W2 = WI t2. Let us assume that the set of def-use
pairs in D which are yet to be covered for the def-use-ob criterion is known at the starting of
the procedure. After copying DFG[tl, Wl] into DFG[tl, W2], it manipulates each subgraph
in DFG[tl, W2] with respect to the variables used in the predicate of t2. It calls the proce­
dure PredExtendGraph for this purpose. It then sequentially selects every statement in the
computation block of t2, and updates every subgraph in DFG[tl, W2] by considering all the
variables/parameters used in the statement. If it is an assignment statement, then ExtendDFG
calls the procedure StmtExtendGraph; otherwise it invokes OutputExtendGraph for updating
a given subgraph. The formal description is given below.

procedure ExtendDFG(t I :transition;WI :walk;t2:transition);
begin

Let W2 be the walk obtained by appending t2 to the walk WI;
DFG[tl,WI] := DFG[tl,W2];
for each subgraph G in DFG[tl,W2] do

PredExtendGraph(G, t2, W2);
{ Sequentially process the statements in the compute-block of t2 }
for each statement c2 in the compute-block of t2 do

for each subgraph G in DFG[tl,W2] do
if (c2 is an assignment statement) then

StmtExtendGraph(G, t2, c2, W2)
else OutputExtendGraph(G, t2, c2, W2);

end; { ExtendDFG }

Our final procedure for DFG manipulation is ConstructDFG for constructing DFG[t, t] for
every transition t in an EFSM. It is very similar to ExtendDFG but for the fact that it starts

294 Part Seven Test Generation 2

with an empty data flow graph. It is easy to see that the data flow graph DFG[t, W] of a
transition t with respect to a walk W which contains t can be constructed using ConstructDFG
and ExtendDFG.

4 Automatic Test Case Generation

4.1 The Two-Phase Algorithm
We have already established the trans-CIUS-set criterion for the control flow testing and the
def-use-ob criterion for data flow testing. The next step is to generate a set of test cases
satisfying these criteria. The algorithm presented in this section systematically generates a set
of executable test tours for covering the above criteria. It has two phases and it traverses the
EFSM in a breadth-first fashion in both phases. The first phase constructs a preamble walk
for every transition in the EFSM and for the feasible def-use pairs in V. In the second phase,
all preambles computed in the first phase are completed into a set of executable tours.

The step-wise description of the first phase of the algorithm is given below. The salient
points in the algorithm are then discussed. For ease of understanding, each step is embedded
with comments.

Phase I
Input: An EFSM, CruS-set U = {Uj 11 S j S n}, Def-use pairs set 1). A positive integer K 1 .

Output: UFset: set of preamble walks for the coverage criteria.

Step 0 { Data How graphs initialization}

(i) Construct the data How graph of each transition with respect to itself.

Step 1 { null walk initialization}

(i) Let P be a null walk at 81; Let P = {Pl.

Step 2 { ith iteration of this step computes the set of all executable walks of length i starting
from 81. They are computed from the executable walks of length i-I computed in the
previous iteration. This step marks all transitions & def-use pairs covered by the new walks.}

(i) Let 7 = 0.
(ii) Do Step 2.1 for each PEP and for each outgoing transition t from the tail state of P.

(iii) If all the transitions in the EFSM are covered for control How and all the def-use pairs in 1)

are covered for data How or the number of iterations of Step 2 exceeds K 1 , a fixed positive
integer, then proceed to Step 3.

(iv) Consider 7 as P and repeat Step 2.

Step 3 { For every transition t, and for every crus, postfix t followed by the walk along the
crus to the preamble walk. Also collect the resulting walks for the transitions
as well as the preamble walks for the def-use pairs into UFset.}

(i) Let both CFset and DFset to be the empty set.

(ii) For each transition t covered by Step 2 and for each crus Uk, 1 S k S n, add W@t@
Ewalk(j, Uk, C) to CFset, where W is the preamble walk computed for t, Sj is the tail
state of t and C is the context after executing W@t.

(iii) For each def-use pair D E 1) covered by Step 2, add the preamble walk for D computed in
Step 2 to DFset.

(iv) Let UFset = CFset U DFset. Delete each walk W E UFset such that W is a prefix of some
other walk in UFset.

(v) Stop.

Step 2.1

A unified test case generation method for the EFSM model

(i) Let Q = P t. If Q is executable and t is not yet covered for control flow then mark t as
covered and take P as the preamble walk for t.

(ii) If Q is executable and either t is not a self-loop or t has at least one assignment statement
in its computation block then add Q to T.

(iii) If Q is executable then do Step 2.1.1.

Step 2.1.1

(i) For each tl E P, (a) Compute DFG[tl, QJ from DFG[tl, Pj, (b) Mark all the def-use pairs
covered by Q, and (c) Construct an appropriate preamble walk for each such pair.

(ii) Consider DFG[t, tJ to be DFG[t, QJ.

295

Observe that the first phase starts by constructing DFG[t, tJ, for every transition t in the given
EFSM. This can be done using the procedure ConstructDFG. Starting from the initial state,
Step 2 traverses the EFSM in a breadth-first fashion, in order to compute the preambles for
each transition and for each feasible def-use pair in V. At the starting of the kth iteration of
Step 2, k ::::: 1, P consists of the set of all executable walks of length k - 1 which start from
the initial state. The kth iteration of this step computes the set of all executable walks of
length k by extending the walks in P by single transitions. The executability of the extended
walk is checked only with respect to the last transition since the rest of the walk is known to
be executable at this point. This reduces the complexity of the feasibility problem to a great
extent.

For each walk PEP and for each transition t from the tail state of P, Step 2.1 checks if
the walk Q obtained by postfixing t to P is executable. When Q is executable, Step 2.1 uses
Step 2.1.1 for computing the data flow graphs pertaining to Q, for determining the def-use
pairs in V covered by Q, and for selecting a preamble walk for every def-use pair covered by
Q. Step 2.1.1 can be achieved using the procedure ExtendDFG which extends DFG[t', Pj to
DFG[t', QJ, for all t' in P.

Step 2 is repeated until the preambles for all the transitions are computed and all def-use
pairs in V are covered or the number of iterations of Step 2 exceeds a fixed positive integer K 1 •

Kl depends on the given EFSM. It has to be chosen in such a way that the preambles for all the
transitions are computed in Kl iterations of Step 2. Recall that, for every transition, the EFSM
is assumed to have at least one feasible walk from the initial state such that the transition
is executable for the resulting context. Therefore, the preambles for all the transitions are
computable in a finite number of iterations of Step 2. Observe that some of the def-use pairs
in V may not be feasible. Also, the problem of finding whether a given pair is feasible or not
is undecidable. If V has some infeasible pairs, then this phase terminates after Kl iterations
of Step 2.

Phase II described below is essentially for completing each walk in UFset, computed in
Phase I, into an executable tour. These tours are in fact the ones required for the trans-CIUS­
set and the def-use-ob criteria. The algorithm is self-explanatory and further description is
omitted.

Phase II

Input: The EFSM considered in Phase I and the UFset returned by Phase I
Output: UFTourset, a set of tours for the selection criteria

Step 1 { Initialization}

(i) Let P be a null walk at 81; Let P = {Pl.

296 Part Seven Test Generation 2

(ii) Let UFTourset be the empty set.

Step 2 { ith iteration of this step computes the set T of all satisfiable walks of length i
ending at 81. The set of all preambles in UF8et, which are executable in conjunction
with a walk in T which starts at the tail state of the preambles, are declared to be
covered by the tour obtained by prefixing the preamble to the walk. }

(i) Let T be the empty set.

(ii) Do Step 2.1 for each PEP and for each transition t starting from a state other than 81 and
ending at the starting state of P.

(iii) If all the walks in UFset are covered, then stop.

(iv) Consider T as P and repeat Step 2.

Step 2.1

(i) Let Q = t P. If Q is satisfiable, then add Q to T.
(ii) Do Step 2.1.1 for each walk W in UFset such that W Q is a tour provided Q is satisfiable.

Step 2.1.1

(i) If W Q is executable then Add W Q to UFTour8et and mark W as covered.

The time and space complexities and correctness of the algorithm are summarized below. The
proof of the theorem and a detailed refinement of the above algorithm is presented in [15].

Theorem 2 Let K2 (Kl) be the number of times (maximum number of times) Step 2 of
Phase II (Phase I) is executed. The time complexity of the algorithm is O((d:,!,,)K.+1 +
(1i';:.,,)K2+1) steps, where Ii';:." (d:'!,,) denotes the maximum number of incoming (outgoing)
transitions including the self-loops at any state in the EFSM. The algorithm also requires
O((d:'!,,)K. + (d!::.,,)K2) units of memory. It successfully computes an executable tour for those
transitions which have at least one preamble walk of length at most K1. The algorithm computes
an executable tour for every feasible def-use pair in V which have at least one preamble walk
of length at most Kl excluding their CIUS subwalk extension.

o

Corollary 1 For a suitable value of K I , 1 :::; KI < 00, the algorithm successfully computes a
set of tours such that (i) the set satisfies the trans-CIUS-set criterion, and (ii) the set satisfies
the def-use-ob criterion if V has only feasible def-use pairs.

4.2 Fault Coverage

Let us assume that the Implementation Under Test (IUT) is represented as a deterministic,
completely specified EFSM having the same set of input interactions and states as the spec­
ification EFSM. It is known that some of the FSM-based test sequence generation methods
achieve complete fault coverage capability by including the verification of the state identifi­
cation sequences in the IUT [7, 10, 8]. In the EFSM model, in order to establish that an
input sequence is an UIS of a state in the IUT, one has to show that for any valid context
of the IUT at that state, the output sequence produced by the IUT while applying the input
sequence is different from the output sequence obtained by applying the input sequence at
any other state with every valid context. Due to the black-box approacll of testing, it is, in
general, difficult to acllieve this UIS verification requirement. For each incoming transition at
a state Si, our test case generation method generates one feasible tour for applying the CIUS
Ui at Si to see if it provides the expected output, and a tour for applying the CIUS Uj of the

A unified test case generation method/or the EFSM model

t2 t6 t12t17t20
t2 t6 t12 t8t17t20
t2 t6 t13t17t20

Table 4: Sample data flow test tours for EFSM given in Figure 1

Table 5: Sample control flow test tours for the EFSM given in Figure 1

297

state Sj, j = 1,2, ... , n,j #- i at Si to check if it produces the output different from the one
obtained when Uj is applied at Sj. Further, these tours can be exercised for different data in
their feasible domain. Thus our method establishes the CIUS verification requirement at least
partially, while the existing EFSM based test generation methods do not consider this issue.
In addition, the test tours selected are all feasible and for a suitable value for K1, they satisfy
the control flow criterion. Therefore, the control flow fault coverage of this method is the
same or better than those guaranteed by the existing EFSM based test sequence generation
methods.

5 Transport Protocol Test Case Generation

In [15] we have illustrated our test case generation algorithm on the transport protocol given
in Figure 1. We shall summarize the results here. Only core transitions are considered for the
coverage criteria. There are 80 def-use pairs satisfying the all-uses criterion. Among them 7
are infeasible. Some of the def-use pairs are shown in the first column of Table 4. Phase I
computes the preamble walks for all the transitions by the fourth iteration of Step 2. The
preamble walks selected for some of the transitions are shown in the second column in Table 5.
Note that the walks in the third columns in this table are obtained by appending the preamble
walk with the transition followed by a CIUS walk. By the fifth iteration pramble walks for
all the feasible def-use pairs have been computed. The second column in Table 4 shows the
preamble walks for the selected def-use pairs. Observe that the bold faced transition appended
to a walk in the table is for confirming the tail state of the last transition whose predicate
transitively uses the value of the variable in the corresponding def-use pair. After deleting
the duplicate walks, Phase I produces 128 walks. Phase II for completing these walks in to
feasible tours is fairly straight forward for the EFSM in Figure 1. For instance, since none of
the incoming transitions (t5,tl9,t20 and t21) at state SI has predicate, in the first iteration,
all the walks output by Phase I which terminate at the starting states (S2, S5 and S6) of these
transitions are completed into executable tours by concatenating the appropriate transitions
from {t5, tl9, t20, t21}. With in two iterations of Step 2, Phase II successfully finds a set of
executable tours for all the walks selected in the first phase. The last columns of Table 4 and
Table 5 show some of the selected tours. This set of tours satisfies both the trans-CIUS-set

298 Part Seven Test Generation 2

and the def-use-ob criteria.
Let us examine the fault detection capability of the generated test tours through examples.

Suppose that an IUT has a simple control flow fault at the transition t6, which originally ends
at 84' Let the tail state of this transition in the IUT be 82. While applying a test data along
the tour t2t6t 17t20 which is one of the tours for covering the trans-CIUS-criterion for t6 (refer
to Table 5), it shows an output mismatch. Therefore the fault is detected.

Suppose that the IUT has a variable definition fault at t3.c4 where the variable S_credit
is defined. That is , in t3.c4, S_credit is replaced by some other variable, say R_credit. Let
us assume that the default value for all the integer variables is zero. Take the def-use pair
D =' (t3.c4, t8.cl)S_credit. From Table 4, we see that T =' t1t3t8t8t17t20 is the required tour
for covering D with respect to the def-use-ob criterion. Observe that for any feasible test data
for T, the expected sequence along the tour is different from the one observed in the IUT.
Thus, the presence of the fault is detected.

6 Conclusion

The Context Independent Unique Sequence defined in this paper is very useful in generating
executable test cases for both control and data flow in an EFSM. The trans-CIUS-set criterion
is superior to the existing control flow coverage criteria for the EFSM. In order to provide
observability, the "all-uses" data flow coverage criterion is extended to what is called the def­
use-ob criterion. Finally, a two-phase breadth-first search algorithm is designed for generating
a set of executable test tours for covering the selected criteria.

In order to generate the control flow test cases for EFSM model with only integer variables,
Li et at have recently defined an Extended UIO-sequence (EUIO-sequence, in short)[13J. We
observe that if an UIO-sequence is also an EUIO-sequence, then the input part of this sequence
becomes a CIUS. While a number of EUIO-sequences are required to test all the incoming
transitions at a given state one CIUS is sufficient for this purpose. Also, there is no algorithm
presently available for computing EUIO-sequences.

The problem of finding a set of test data for executing each tour selected by a test case
generation algorithm such that the data-oriented faults are detected is certainly an interesting
research problem. We believe that the set of tours generated by our approach is a good
candidate for the test data selection problem, since (i) all the tours generated are executable
and (ii) it provides observability of the data flow. The fault based techniques as described in
[18J would be helpful to gain more insight on this problem.

Since the EFSM model considered in this paper is similar to a module in Estelle or SDL,
an interesting area for future study is to integrate our test case generation method with the
existing tools for these FDTs. Such an integrated tool will be useful to automatically generate
test cases for real-life protocols specified in Estelle and SDL.

Extending our work to EFSMs which may not have CIUSs for certain states is another
direction for further research.

References

[1 J ISO TC97/SC6 8073: Information Processing Systems - Open Systems Interconnection -
Connection Oriented Transport Protocol Specification.

[2J ISO/IEC 9074: Information Processing Systems - Open Systems Interconnection - Estelle
- A Formal Description Technique Based on an Extended State Transition Model, 1987.

[3J CCITT/SGx/WP3-1, Specification and Description Language, SDL. CCITT Recommen­
dations Z.lOO, 1988.

A unified test case generation method for the EFSM model 299

[4J ISO/IEC 8807: Information Processing Systems - Open Systems Interconnection - LO­
TOS - a Formal Description Technique Based on the Temporal Ordering of Observational
Behavior, June 1988.

[5J ISO SC21 WGI P54: Information Processing Systems - Open Systems Interconnection -
Formal Methods in Conformance Testing, Working Document, June 1993.

[6J G. v. Bochmann. Specifications of a simplified transport protocol using different formal
description techniques. Computer Networks and ISDN systems, 18:335-377, 1989/1990.

[7J G. v. Bochmann, A. Petrenko, and M. Yao. Fault coverage of tests based on finite
state models. In 7th International Workshop on Protocol Test Systems, Tokyo, Japan,
November 1994.

[8J W. Y. L. Chan, S. T. Vuong, and M. R. Ito. An improved protocol test generation
procedure based on VIOs. In ACM SIGCOMM, pages 283-294, 1989.

[9J S. T. Chanson and J. Zhu. A unified approach to protocol test sequence generation. In
Proc. IEEE INFO COM, pages 106-114, 1993.

[IOJ T. S. Chow. Testing software design modeled by finite state machine. IEEE Tr. Soft.
Engg., SE-4(3):178-187, March 1978.

[I1J W. Chun and P. D. Amer. Test case generation for protocols specified in Estelle. In
J. Quemada, J. Manas, and E. Vazquez, editors, Formal Description Techniques, 111,
pages 191-206. Elsevier Science Publishers B. V. (North-Holland), 1991.

[12J B. Forghani and B. Sarikaya. Semi-automatic test suite generation from Estelle. IEE/BCS
Software Engineering Journal, 7(4):295-307, July 1992.

[13J X. Li, T. Higashino, M. Higuchi, and K. Taniguchi. Automatic generation of extended
UIO sequences for communication protocols in an EFSM model. In 7th International
Workshop on Protocol Test Systems, Tokyo, Japan, November 1994.

[14J R. E. Miller and S. Paul. Generating conformance test sequences for combined control
and data flow of communication protocols. In Proc. 12th International Symposium of
Protocol Specification, Testing and Verification, 1992.

[15J T Ramalingam. Test case generation and fault diagnosis methods for communication
protocols based on FSM and EFSM models. PhD thesis, Concordia University, Montreal,
Canada, 1994.

[16J T. Ramalingam, A. Das, and K. Thulasiraman. Fault detection and diagnosis capabilities
of test sequence selection methods based on the FSM model. Computer Communications,
18(2): 113-122, February 1995.

[17J S. Rapps and E. J. Weyuker. Selecting software test data using data flow information.
IEEE Tr. Soft. Engg., SE-ll(4):367-375, April 1985.

[18J M. C. Thompson, D. J. Richardson, and L. A. Clarke. An information flow model of fault
detection. In Proc. International Symposium on Software Testing and Analysis, pages
182-192, Cambridge, USA, June 1993. ACM press.

[19J K. J. Turner, editor. Using formal description techniques. John Wiley & Sons, Chichester,
England, 1993.

[20J H. Ural and A. Williams. Test generation by exposing control and data dependencies
within system specifications in SDL. In ProG. FORTE'93, October 1993.

[21J H. Ural and B. Yang. A test sequence selection method for protocol testing. IEEE Tr.
Comm., 39(4):514-523, April 1991.

