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A unified method for generating test cases for both control flow and data flow aspects 
of a protocol represented as an Extended Finite State Machine (EFSM) is presented. 
Unlike most of the existing methods, the proposed method considers the feasibility 
of the test cases during their generation itself. In order to reduce the complexity of 
the feasibility problem without compromising the control flow coverage, a new type 
of state identification sequence, namely, the Context Independent Unique Sequence 
(CIUS) is defined. The trans-CIUS-set criterion used in the control flow test case 
generation is superior to the existing control flow coverage criteria for the EFSM. 
In order to provide observability, the "all-uses!! data flow coverage criterion is 
extended to what is called the def-use-ob criterion. A two-phase breadth-first search 
algorithm is designed for generating a set of executable test tours for covering the 
selected criteria. The approach is also illustrated on an EFSM module of a transport 
protocol. 

Automatic test case generation from protocol standards is a means of selecting high quality 
test cases efficiently. Recently, International Organization for Standards (ISO) has established 
a working group for studying the application of Formal Methods in Conformance Testing 
(FMCT) [5]. One of the primary aims of this group is to enable computer-aided test case 
generation from protocol standards specified in Formal Description Techniques (FDT) such as 
Estelle [2], SDL [3], and LOTOS [4]. In this paper, we present a new method for automati­
cally generating test cases for both control flow and data flow aspects of a protocol which is 
represented as an Extended Finite State Machine (EFSM) as defined in [21]. 

In order to have better fault coverage [7], some of the test sequence generation methods 
proposed recently [11, 13, 14] for the EFSM model apply state identification sequences for 
confirming the states. However, the state identification sequences defined for the FSM model 
are inadequate for the EFSM model. In this paper, we define a general Unique Input Sequence 
(UIS) for an EFSM state. We then consider a special type of UIS, called Context Independent 
Unique Sequence (cruS) in order to reduce the complexity of the well known feasibility prob­
lem associated with the EFSM model that arises during the application of UISs for confirming 
states. 

The test case generation method proposed in this paper addresses both control and data 
flow aspects of an EFSM. It is known from Finite State Machine (FSM) testing methods that 
those which use state identification sequences for confirming the tail state of a transition under 
test have better fault coverage [16, 10, 8]. In particular, the Uv-method has the capability of 
detecting both label faults and tail state faults in transitions [8]. The control flow fault coverage 
criterion established in this paper is called trans-CIUS-set criterion (defined later) and it 
is based on the Uv-method. For the data flow coverage, we extend the "all-uses" criterion [17] 
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to what is called a def-use-ob criterion. We shall see that this new criterion is required 
due to the so called black-box approach of protocol testing and it enhances the observability 
of the def-use associations. Thus our aim is to generate a set of feasible test cases for the 
trans-CIUS-set criterion and the def-use-ob criterion. Each test case in the proposed approach 
corresponds to a test tour which starts and ends at the initial state of the protocol. In the 
worst case, the cardinality of the set of tours generated is only quadratic in terms of the 
number of transitions in the protocol. 

Most of the existing methods first generate a set of test tours which satisfy the coverage 
criteria and then check if the generated test tours are feasible [12, 21, 11, 20]. This strategy 
results in discarding infeasible tours, which in turn affects the coverage criteria. Therefore, an 
important requirement of our method is to consider the feasibility of the tours during their 
generation itself. We present a two-phase breadth-first search algorithm which generates a set 
of feasible test tours which adequately covers the required control flow and data flow criteria. 
The combined testing method by Miller and Paul [14] addresses the feasibility problem while 
selecting the test tours. This method does not however handle the feasibility issue effectively 
while joining different types of test subsequences into a single feasible sequence. Moreover, the 
trans-CIUS-set criterion and the def-use-ob criterion established in this paper are superior to 
the respective criterion in [14]. 

1 The EFSM Model 
The EFSM model presented in this paper is inspired from [21]. An EFSM M is a 6-tuple 
M = (S, S1> I, 0, T, V), where S, I, 0, T, V are a nonempty set of states, a nonempty set of 
input interactions, a nonempty set of formal output interactions, a nonempty set of transi­
tions, and a set of variables, respectively. Let S = {Sj I 1 ~ j ~ n}j S1 is called the initial 
state of the EFSM. Each member of I is expressed as ip?i(parlist), where ip denotes an 
interaction point where the interaction of type i occurs with a list of input interaction pa­
rameters parlist, which is disjoint from V. Each member of ° is expressed as ip!o(outlist), 
where ip denotes an interaction point where the interaction of type 0 occurs with a formal 
list of parameters, outlist. Each parameter in outlist can be replaced by a suitable variable 
from V, an input interaction parameter, or a constant. The interaction thus obtained from 
a formal output interaction is referred to as an output interaction or an output state­
ment. We will assume that the variables in V and the input interaction parameters can be 
of types integer, real, boolean, character, and character string only. Each element t E T is a 
5-tuple t = (source, dest, input,pred,compute_block). Here, source and dest are the states in 
S representing the starting state and the tail state oft, respectively. input is either an input in­
teraction from I or empty. pred is a Pascal-like predicate expressed in terms of the variables in 
V, the parameters of the input interaction input and some constants. The compute_block is a 
computation block which consists of Pascal-like assignment statements and output statements. 

A component of a transition can also be represented by postfixing the transition with a 
period followed by the name of the component. For example t.pred represents the predicate 
component of the transition t. Note that, unlike a variable, the scope of a parameter in an 
input interaction of a transition is restricted to the transition only. Let m denote the number 
of transitions in M. We will assume that m 2: n. A closed walk which starts and ends at the 
initial state is referred to as a tour. A transition in M with empty input interaction is called 
a spontaneous transition. 

A context of M is the set {(var, val) I var E V and val is a value of var from its domain}. 
A valid context of a state in M is a context which is established when M's execution proceeds 
along a walk from the initial state to the given state. 

Let t be a non-spontaneous transition in M. t is said to be executable if (i) M is in 
the state t.source, (ii) there is an input interaction of type i at the interaction point ip, 
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where t.input = ip?i(parlist), and (iii) the valid context of the state and the values of the 
input interaction parameters in parlist are such that the predicate t.pred evaluates to true. 
A spontaneous transition t is executable if (i) M is in the state t.source and (ii) the valid 
context of the state is such that t.pred evaluates to true. When a transition is executed, all 
the statements in its computation block get executed sequentially and the machine goes to the 
destination state of the transition. 

A walk W in M is said to be executable if all the transitions in Ware executable 
sequentially, starting from the beginning of the walk. A walk W in M can be interpreted 
symbolically by assuming distinct symbolic values for the local variables at the beginning of 
W as well as distinct symbolic values for the input interaction parameters along W. Let W 
be a symbolically interpreted walk. Clearly the conjunction of the predicates along W is also 
interpreted and is expressed in terms of the initial symbolic values for the local variables and 
the symbolic values for the input interaction parameters. W is said to be satisfiable if the 
conjunction of the interpreted predicates is satisfiable. Note that a walk which is executable 
is always satisfiable. However, its converse is not true. This is because none of the possible 
values for the variables which made W satisfiable may be a valid context at the starting state 
of the walk. That is, these values are not 'settable' by any of the executable walks from the 
initial state to the starting state of W. 

An EFSM is deterministic if for a given valid context of any state in the EFSM, there 
exists at most one executable outgoing transition from that state. 

An EFSM M is said to be completely specified if it always accepts any input interaction 
defined for the EFSM. An arbitrary EFSM M can be transformed into a completely specified 
one using what is called a completeness transformation described next. Given a valid 
context of a state and an instantiated input interaction, suppose that M does not have an 
executable outgoing non-spontaneous transition at the state for the given valid context and 
the input interaction, and that M does not have an outgoing spontaneous transition at the 
state such that it is executable for the given valid context, then a self-loop transition is added 
at the state such that it is executable for the given context and the input interaction. The 
newly added transitions are called non-core transitions and they do not have computation 
blocks. 

We assume that the EFSM representation of the specification is deterministic and com­
pletely specified. It is assumed that for every transition in the EFSM, it has at least one 
executable walk from the initial state to the starting state of the transition such that the 
transition is executable for the resulting valid context. Similarly, we assume that the initial 
state is always reachable from any state with a given valid context. 

1.1 An Example 

As an example of an EFSM , let us consider a major module ( AP-module in [6]) of a sim­
plified version of a class 2 transport protocol [lJ. This module participates in connection 
establishment, data transfer, end-to-end flow control, and segmentation. It has the inter­
action point labeled U connected to the transport service access point and another inter­
action point labeled N connected to a mapping module. Here, we represent the EFSM by 
(S, S1,I, 0, T, V). We would like to note that the EFSM is obtained from the AP-module by 
eliminating a few non-determinisms in certain transitions starting from the data transfer state. 
Let S = {S1, S2, S3, S4, S5, S6}' The set of input interactions and the set of output interactions 
are given below. 

I = {U?TCONreq(dest_add, prop_opt), U?TCONresp(acept_opt), 
U?TDISreq, U?TDATreq(Udata, EoSDU), U?U_READY(er), 

N?TrCR(peeLadd, opt_ind, er), N?TrCC(opLind, er), 
N?TrDR(dise..reason, switch), N?TrDT(send..Bq, Ndata, EoTSDU), 

N?TrAK(XpSsq, er), N?ready, N?terminated, N?TrDC } 
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Figure 1: An EFSM for the AP-module in the Class 2 transport protocol 

0= {U!TCONconf(opt), U!TCONind(peer_add, opt), U!TDISind(msg), 
U!TDATAind(data, EoTSDU), U!error, U!READY, U!TDISconf, 

N!TrCR(dest_add, opt, credit), N!TrDR(reason, switch), 
N!terminated, N!TrCC(opt, credit), N!TrDT(sq-Ilo, data, EoSDU), 

N!TrAK(sq_no, credit), N!error, N!TrDC} 

v={ opt, R_credit, S_credit, TRsq, TSsq}. All the variables in V are of integer type. The 
transitions as described in Table 1 and Table 2 are shown in Figure 1. The state Sl is repeated 
in the figure merely for convenience. 

1.2 Unique Input Sequence 
An input sequence, a sequence of input interactions, is said to be instantiated if all the 
parameters in the sequence are properly instantiated with values. Given an instantiated input 
sequence X, a state Si and a valid context C at Si, Ewalk( i, X, C) denotes the unique walk 
traversed when X is applied to the EFSM which is currently at Si with the context C. 

A test sequence is a sequence of input and output interactions. A sequence of zero or 
more output interactions between two successive input interactions in a test sequence is the 
sequence to be observed after applying the preceding input interaction to an EFSM and before 
applying the succeeding one. 

The sequence of input and output interactions along a satisfiable walk W is denoted as 
Trace(W), known as the trace of the walk W. The sequence of input (output) interactions 
along a walk W is denoted by Inseq(W) (Outseq(W». Trace(W) and Outseq(W) are 
actually obtained by symbolically interpreting W. Suppose that the actual value of a symbol 
is known, then the corresponding sequences can be obtained from the above sequences by 
replacing the symbol by the value throughout the sequences. 

Two input interactions are said to be distinguishable if: (i) they occur at two different 
interaction points or (ii) their interaction types are different. We say that two output inter­
actions are distinguishable if at least one of the following is true: (i) they occur at two 
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Tr. Input Predicate Compute-block 
tl U. TGUNreq( dst_add, opt:_ prop_opt; 

prop_opt) ILcredit .= O· 
N!TrCR(dsL~d,opt,ILcreditl 

t2 N. TrCR(peeLadd, opt :- opt_md; ~_credit :- cr; 
opLind, cr) R credit .= O· 

U!TCON;nd(~eeLadd, opt) 
t3 N . TrGG( opLmd,cr) opLmd S; opt TRsq:_O;T:-isq:_O; 

opt := opLind; S_credit := cr; 
U!TCONconf(opt) 

t4 N?TrCC(optjnd, cr) opLind > opt U!TDISind(' procedure error'); 
NITrDR('procedure error', false) 

t5 N. TrDR(discreason, U.TDISin~( disc-reason); 
switch) N!terminated 

t6 U. TCONresp( accpLopt) accpLopt S; opt opt :_ accpt_opt; 
TRsq := 0; TSsq := 0; 
NITrCC(opt, ILcredit) 

t7 U.TDISreq N.TrDR('User lmtlated' , true) 
t8 U . TDA Tre'l( Udata, :-i_credit> 0 :-i_credit :_ S_credit I; 

EoSDU) N!TrDT(TSsq, Udata, EoSDU); 
TSsq := '(TSsq + l)modI28; 

t9 N. TrDT(send-sq, Ndata, ILcredi t t~ 0 /\ TRsq :- (TRsq + IJmod 128; 
EoTSDU) send_sq = TRsq R_credi t : = ILcredi t - I; 

U!TDATAind(Ndata, EoTSDU); 
N!TrAK(TRsq, ILcredit) 

tlO N. TrDT(send-sq, Ndata, ILcredit - 0 V N.error; 
EoTSDU) send_sq # T Rsq U!error 

til U.U_READY(cr) ILcredit :- R_credit+cr; 
NITrAK(TRsq, R_credit) 

t12 N?TrAK(XpSsq, cr) TSsq2: XpSsq /\ S_credit :-
cr + XpSsq - TSsq 2: 0 /\ cr + XpSsq - TSsq 
cr + XpSsq - TSsq < 15 

tl3 N. TrAK(XpSsq, cr) TSsq2:XpSsq /\ V.error; 
(cr + XpSsq - TSsq < 0 V N'error 
cr + XpSsq - TSsq > 15) 

t14 N.TrAKlXp~sq, cr) T~sq<Xp~sq /\ ~_credlt :-
cr+XpSsq -TSsq -128 2: 0 /\ cr+XpSsq -TSsq -128 
cr + XpSsq - TSsq - 128 < 15 

tl5 N. TrAK(XpSsq, cr) T:-isq<Xp:-isq /\ U.error; 
(er + XpSsq - TSsq - 128 < 0 V N'error 
cr + XpSsq - TSsq - 128> 15) 

t16 N?rea y S_credit > 0 U.READY 
t17 U?TDISreq N!TrDR\'User initiated', 

false) 
tl8 N. TrDRldisc-reason, U.TDr::,ind\dISc_reason); 

switch) N!TrDC 
tl9 N . termmated U.TDISconf 
t20 N'TrDC N!termmated; 

UlTDISconf 
t21 N. TrDR(disc..!'eason, N.termmated 

switch) 

Table 1: Core transitions in the transport protocol 
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TransitIOns Input 
t25, t28, t31, t33, t36 U?TCONreq(desLadd, prop_opt) 

t23, t26, t34, t38 U?TDISreq 
t22, t29, t37 N?TrDR(discreason, switch) 

t24, t27, t30, t32, t35 N?terminated 

Table 2: Non-core transitions in the transport protocol 

different interaction points, (ii) their interaction types are different, and (iii) if the parameters 
in a given position in both interactions are constants then they are different. 

For example, the output interactions N!TrDR('procedure error', false) and 
N!TrDR('procedure error', true) are distinguishable. However, N!TrDT(TSsq, 
Udata, EoSDU) and N!TrDT(TRsq, Udata, EoSDU) are not distinguishable. 

An input interaction is obviously distinguishable from an output interaction. The total 
number of input and output interactions - each occurrence of an interaction is counted - in 
a sequence is called the length of the sequence. Let SI and S2 be two sequences of input 
and/or output interactions. Assume that they are of the same length. In order to check for 
distinguishability of the two sequences, starting from the first position the interactions in SI 
and S2 are checked position-wise. SI and S2 are said to be distinguishable if the interactions 
in at least one position in SI and S2 are distinguishable. Otherwise, they are said to be 
indistinguishable. Two sequences of different lengths are always distinguishable. 

Let W be an executable walk at Sj. Let U be an instantiation of Inseq(W). We define U 
as a Unique Input Sequence (UIS) of Sj if Trace(W) is distinguishable from Trace(W'), 
for any satisfiable walk W' at state Sk, for 1 ::; k ::; n, k # j. In this case, W is called an UIS 
walk for U. 

2 Test Case Selection Criteria 

2.1 Control Flow Coverage Criterion 
We would like to apply an UIS of every state at the tail state of the transition under test. 
As indicated in [13], automatic test case generation for an EFSM is difficult when a general 
UIS is used. For example, let U be an VIS for sj, and let W be the UIS walk of U. Let t be 
an incoming transition at Sj and Si be the starting state of t. In order to test t, one needs 
to compute an executable preamble walk P, from SI to Si and associate values for the input 
interaction parameters along P, and t such that P, t W is executable. For a given W, it is in 
general difficult to find a P, so that the walk P, t W is executable. Moreover, if the general 
VISs are considered, then multiple UISs may be required for a state in order to test all the 
incoming transitions at that state. Hence a careful selection of the UISs is required. 

A walk from a state is said to be context independent if the predicate of every transition 
along the walk, duly interpreted symbolically, is independent of the symbolic values of the local 
variables at the starting of the walk. Observe that every context independent satisfiable walk 
is executable. 

We introduce a special type of UIS, called Context Independent Unique Sequence 
(CIUS). Let Ui be an instantiated UIS of Si and let U(i) be the corresponding UIS walk at 
Si. Ui is said to be a CIUS of Si if U(i) is context independent and executable. 

Note that all the local variables used in the predicate of each transition in U(i) are defined 
within U(i) prior to their use. In other words, the predicates along U(i) are independent of any 
valid context at Si. Therefore, U(i) can be postfixed to any executable walk from the initial 
state to Si and the resulting walk is also executable. This property is very useful in computing 
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::itate \jlU::i 'nanSlt!on ::ieq, 
8, lr!'~~~NreqldsLadd, prop_opt) tl 
82 N?TrDR(disCJeason, switch) t5 
83 U?TDISreq t7 
84 U?TDISreq t17 
$5 N?TrDR( discJeason, switch) t21 
$6 N?terminated t19 

Table 3: ClUSs for the states in the EFSM of Figure 1 

feasible test cases for the control flow coverage. Also, one CIUS of a state is sufficient for 
testing all the incoming transitions at that state. 

In [15], we have developed an algorithm for computing a ClUS for a given state. Table 3 
shows the ClUSs for all the states of the EFSM of Figure 1 computed using the algorithm. 
Note that the parameters in the CIUSs have to be instantiated with certain valid values. We 
have also found that a few other protocols such as a class 0 transport protocol as specified 
in [21J and the abracadabra protocol [19J have a ClUS for every state. The maximum length 
of the CIUSs computed for these protocols is only 2. It should also be noted that there are 
protocols which may not have a CIUS for every state. For example, the initiator module of 
the INRES protocol as modeled in [9J does not have a ClUS for one state. 

Let Ui be a ClUS for the state Si, 1 SiS n. Let U = {Ui 11 SiS n}. We call U 
as a CIUS set. Our control flow coverage criterion, namely, the trans-CIUS-set criterion 
is to select a set r of executable tours such that for each transition t in the EFSM and for 
each Ui E U, r has a tour which traverses t followed by Ui . An executable walk from the 
initial state to the starting state of a transition t is called a preamble walk for t if W t is 
also executable. Due to the requirement of applying the entire UIS set at the tail state of 
a transition under test, the trans-CIUS-set criterion is superior to the existing control flow 
coverage criteria for the EFSM. 

2.2 Data Flow Coverage Criterion 

A hierarchy of data flow coverage criteria has been proposed in [17]. It is interesting to know 
that the "all-uses" is the best criterion among those which can be satisfied by a set of test 
cases with polynomial order cardinality [17]. Ural and Williams [20] have recently used the 
all-uses criterion for generating test cases for protocols specified in SD L. Due to the black­
box approach of protocol testing, the set of test cases which satisfy the all-uses criterion may 
not be observable. Therefore, we extend the all-uses criterion to what is called a def-use­
ob criterion. This criterion facilitates the tester to observe every def-use association in the 
protocol. 

We introduce some definitions before presenting the def-iIse-ob criterion. A parameter v 
occurring in the input interaction of a transition t is referred to as a def and is denoted by 
t.I.v. Similarly, a variable v in the left side of an assignment statement at the location c in 
the computation block of a transition t is also said to be a def and it is denoted by t.c.v. 
The use of a variable or input interaction parameter v in the predicate of a transition t is 
called a p-use and is denoted by t.P.v. The variable/input interaction parameter v used on 
the right side of an assignment statement at the location cl in the computation block of a 
transition t is referred to as a c-use and is denoted by t.cl.v. Similarly, the variable/input 
interaction parameter v appearing as a parameter in the output interaction at the location c2 
in the computation block of a transition t is referred to as a a-use and it is denoted by t.c2.v. 
By an use, we refer to a p-use, a c-use or a o-use. 

A def-use pair D with respect to a variable/parameter v is an ordered pair of def and 
use of v such that there exists a walk in the EFSM which satisfies the following: (i) the first 
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transition in the walk is the one where v is defined and the last transition of the walk is the 
one where v is used and (ii) v is not redefined in the walk between the location where it is 
originally defined and the location where it is used. Such a walk is called a def-clear walk 
for D. Note that a def-clear walk could be a single transition. A def-use pair is said to be 
feasible if the EFSM has at least one executable tour which contains a def-clear walk for this 
pair. The def-use pairs can be classified into five types as follows. 

type 1: An input parameter v is defined in the input interaction of a transition tl and is used 
in the predicate of the same transition. Such a pair is denoted by (tl.I, tl.P)v. 

type 2: An input parameter v is defined in the input interaction of a transition tl and is used 
in an output statement C2 in the computation block of the same transition. Such a pair 
is denoted by (tl.I, tl .C2)V. 

type 3: An input parameter v is defined in the input interaction of a transition tl and is used 
in an assignment statement C3 in the computation block of the same transition. Such a 
pair is denoted by (tl.I, tl.C3)V. 

type 4: A variable v is defined in an assignment statement CI in the computation block of a 
transition tl and is used in the predicate of another transition t2• Such a pair is denoted 
by (tl.CI, t2 .P)v. 

type 5: A variable v is defined in statement CI in the computation block of a transition tl 
and is used in statement C2 in the computation block of a transition t 2 • Such a pair is 
denoted by (tl.CI, t2.C2)V. 

Let 1 (l') be a location in transition t (i') where a variable/parameter v (Vi) is defined 
(used). Suppose that X = D I D2 ••• Dk , where k ~ 1, is a sequence of def-use pairs such that 
(i) D; is a def-use pair for variable v;, i = 1,2, ... , k, (ii) VI = v and Vk = Vi and the source 
of DI is t.l and the destination of Dk is t'.l', (iii) the use part of D; is for defining V;+I, where 
i = 1,2, ... , k - 1 and (iv) if k = 1, then v = Vi. Then, X is called an information flow 
chain from the definition of v at the location 1 of transition t to the use of Vi at the location l' 
of transition t'. Further, if a walk W has a subwalk W' with t and t' as the first and the last 
transition such that W' can be expressed as W' = W I @W2@ ... @Wk , where W; is a def-clear 
walk for D;, for i = 1,2, ... , k, then, we say that X is an information flow chain along W. 
In this case, we also say that W has an information flow chain from the definition of v at the 
location 1 of transition t to the use of Vi at the location l' of transition t'. We would like to 
note that the information flow chain is somewhat similar to the IO-def-chain proposed in [21]. 

Let V be the set of all def-use pairs for all the variables and input interaction parameters 
in the EFSM. A minor modification of the algorithm presented in [9] would suffice to obtain 
V. This modification is to consider the def-use pairs within a transition. Our def-use-ob 
criterion requires the selection of a set of executable tours such that for each feasible def-use 
pair D E V, the set has at least one tour, say T, satisfying the following conditions. 

(a) If the use part in D is an o-use, then T contains a def-clear walk for D. 

(b) If the use part in D is a p-use, then T contains a def-clear walk WI for D followed by the 
ems walk U(j), where Sj is the tail state of WI. 

(c) If the use part in D is a c-use, then T contains a walk W2 followed by a walk W3 such that 
W2 is a def-clear walk for D and W3 has an information flow chain from the variable 
which is defined at the location where the variable for D is c-used to a location where 
a variable is either o-used or p-used. Moreover, if the information flow chain terminates 
in a p-use variable, then, in T, W3 is followed by the ems walk U(p), where sp is the 
tail state of W3. 
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Condition (a) takes care of the def-use association for all the def-use pairs in which the use part 
is an o-use. If the use part of D is a p-use, then apart from meeting the def-use association, 
by applying the cms of Sj, condition (b) enables the tester to check if the predicate of the 
transition where the p-use occurs evaluates to true as expected. On the other hand, if the 
use part of D is a c-use, then condition (c) enables the tester to observe the effect of the 
value computed. Actually, this value flows through other intermediate variables along T until 
it is used in an output statement or in a predicate of a transition. In addition, the correct 
evaluation of the predicate is ensured by T as in condition (b). 

An executable walk W starting from the initial state is called a preamble walk for D if 
it satisfies conditions (a), (b) and (c) where T is replaced by W. 

We know that, as per the trans-CIUS-set criterion, each transition followed by the cms 
of the tail state of the transition will be covered by at least one tour. Clearly, this tour also 
covers all the def-use pairs of types 1 and 2 for the def-use-ob criterion. Henceforth, we assume 
that D consists of types 3 4 and 5 only. 

We define a new type of Data Flow Graph (DFG) to represent the data flow information on 
a particular executable walk starting from the initial state. This graph is useful in computing 
the subset of D, for which this walk is a preamble walk, except possibly for the cms walk 
extension. The data flow graph has four types of nodes: i-node, c-node, p-node and o-node. 

• An i-node is labeled as (t, I, v) and it corresponds to the definition of the parameter v 
in the input interaction of the transition t. 

• A c-node is labeled as (t,c,v) and it corresponds to the definition of the variable v in 
the assignment statement c of the transition t. 

• A p-node is labeled as (t, P) and it indicates that the node corresponds to the predicate 
of the transition t. 

• A o-node is labeled as (t, c) and it simply denotes that it corresponds to the output 
statement c in the computation block of the transition t. 

The data flow graph for the transition t with respect to the walk W which contains t 
is denoted by DFG[t, W). It contains the data flow information along W for all the input 
interaction parameters and local variables defined in t. It has one connected directed subgraph, 
say G, for each definition of a variable or an input interaction parameter, say v, in t. G has a 
designated node, called the root node which identifies the definition of v. A given node in G 
is considered to be in one of three different levels. The root node is the unique node in the first 
level. Nodes in level 2 correspond to the direct use of v in statements/predicates in Wand 
W contains a def-clear walk for every def-use pair consisting of the root node and a node in 
level 2. The root node is connected to all the nodes of level 2. A node is in level 3 if there exists 
a data flow along W from at least one assignment statement which corresponds to a c-node 
in level 2 to a predicate, assignment statement, or an output statement corresponding to this 
level 3 node. A c-node in level 2 is connected to a level 3 node if there exists an information 
flow chain along W from the level 2 node to the level 3 node. 

Figure 2 shows the data flow graph DFG[t3, tlt3tS), for the transition t3 in the walk tlt3tS 
of the EFSM given in Figure 1. In Figure 2, rectangles represent i-nodes as well as o-nodes, 
whereas the circles and diamonds represent c-nodes and p-nodes, respectively. The second 
subgraph in this data flow graph, for instance, corresponds to the definition of the input 
interaction parameter cr. Observe that the edges from (t3, c4, S_credit) to the level 3 nodes 
(tS, P) and (tS, el, S_credit) indicate that the variable S_credit defined in t3.c4 is p-used at 
the predicate of transition tS and c-used in the definition of S_credit at the first statement in 
the computation block of tS, respectively. 

The size of the test cases required for satisfying the coverage criteria is summarized in the 
following theorem. 
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Figure 2: A data flow graph for t3 with respect to the walk tlt3t8 

Theorem 1 The order of the set of test tours required to satisfy the trans-ClUS-set and the 
def-use-ob criteria together is quadratic in the number of transitions in the EFSM. 

3 Data Flow Graph Manipulation 

In this section, we briefly describe the procedures for constructing and manipulating the data 
flow graph DFG[t, W] for a given transition t which is a part of a given executable walk 
W starting from the initial state of an EFSM. These procedures are used in our test case 
generation algorithm for checking if a walk is a preamble walk for some def-use pairs. 

Our first procedure PredExtendGraph is for processing a predicate in a given transition. 
The procedure accepts a walk W2, a transition t2, where t2 is the last transition in W2, and 
a partial subgraph G of DFG[t3, W2], for some transition t3 in W2. Let G correspond to a 
variable/parameter u defined at t3. G is partial since it does not have the data flow information 
corresponding to the transitive use of u in t2. As described below, PredExtendGraph extends 
the graph G if the value of u is eventually used in the predicate of t2. The variable iniel)el2 
(inlevel3) is used to ensure that the p-node (t2, P) is created atmost once in level 2 (level 3) 
of G. This procedure also checks if W2 is a preamble walk for a def-use pair along W2 where 
the definition corresponds to the root node of G. For notational convenience, we denote a 
node at a given level by attaching the level number as a subscript to the label of the node. 
For example, a c-node (t, c, 1)) at level 3 is also denoted by (t, c, v h. Comments are enclosed 
in braces. 

procedure PredExtendGraph(G:graph; t2:transition; W2:walk); 
begin 

inlevel2 := false; inlevel3 := false; 
Let (tl,xl,u) be the root node of G; { xl = 'I' or assignment stmt. no. } 
for each variable v used in t2. pred do begin 

Let (t, c) = W2.recentdef(v); {Recent definition of v in W2 is at t.c} 
if ((t,c,v) is the root node of G) then begin { (t,c,v)= tl,xl,u) } 

if (not inlevel2) then begin 
Create a p-node (t2,P) at level 2 in G; inlevel2 := true; 

end' 
Add' an edge from (tl,xl,uh to (t2,Plz in G; 
if (D = (tl.xl, t2.P)(U)E V is not yet covered) then begin 

Mark D as covered; 
Obtain a preamble walk for D by appending U(j) to W2, 

where Sj= t2.dest & U(j) is the eIUS walk for Uj; 
end 

end' 
if (((,c,v) is a node at level 2 in G) then begin 

if (not inlevel3) then begin 
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Create a p-node (t2,P) at level 3 in G; inlevel3 := true; 
end' 
Add' an edge from (t,c,vh to (t2,P}a in G; 
if (D = (tl.xl, t.c)(u}E 'D is not yet covered) then begin 

Mark D as covered; 
Obtain a preamble walk for D by appending U(j} to W2, 

where Sj= t2.dest & U(j} is the CIUS walk for Uj; 

end 
end' 
if ((t,c,v) is a node at level 3 in G) then begin 

if (not inlevel3) then begin 
Create a p-node (t2,P) at level 3 in G; inlevel3 := true; 

end' 
for ~ach incoming edge e to (t, c, v) do begin 

Let (t',c',v'h be the starting node ofe; 
Add an edge from (t', c', v'h to (t2,P}a in G; 
if (D = (tl.xl, t'.c')(u}E 'D is not yet covered) then begin 

Mark D as covered; 
Obtain a preamble walk for D by appending U(j) to W2, 
where Sj= t2.dest & U(j) is the CIUS walk for Uj; 

end 
end 

end 
end { for each variable v } 

end { PredExtendGraph } 
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StmtExtendGraph and OutputExtendGraph are the other two procedures for extending a sub­
graph of a data flow graph with respect to an assignment statement and an output statement, 
respectively. They are similar to PredExtendGraph [15]. 

We shall now describe procedure ExtendDFG. This procedure accepts a walk WI, a tran­
sition tl in WI, and a transition t2 which starts from the tail state of WI and it computes 
DFG[tl, WI t2], the data flow graph for tl with respect to the walk WI t2. ExtendDFG 
achieves this by extending the already known data flow graph DFG[tl, WI] as per the data 
flows along WI t2 from the variables/parameters defined in tl to the variables used in the 
predicates and the statements in t2. Let W2 = WI t2. Let us assume that the set of def-use 
pairs in D which are yet to be covered for the def-use-ob criterion is known at the starting of 
the procedure. After copying DFG[tl, Wl] into DFG[tl, W2], it manipulates each subgraph 
in DFG[tl, W2] with respect to the variables used in the predicate of t2. It calls the proce­
dure PredExtendGraph for this purpose. It then sequentially selects every statement in the 
computation block of t2, and updates every subgraph in DFG[tl, W2] by considering all the 
variables/parameters used in the statement. If it is an assignment statement, then ExtendDFG 
calls the procedure StmtExtendGraph; otherwise it invokes OutputExtendGraph for updating 
a given subgraph. The formal description is given below. 

procedure ExtendDFG(t I :transition;WI :walk;t2:transition); 
begin 

Let W2 be the walk obtained by appending t2 to the walk WI; 
DFG[tl,WI] := DFG[tl,W2]; 
for each subgraph G in DFG[tl,W2] do 

PredExtendGraph(G, t2, W2); 
{ Sequentially process the statements in the compute-block of t2 } 
for each statement c2 in the compute-block of t2 do 

for each subgraph G in DFG[tl,W2] do 
if (c2 is an assignment statement) then 

StmtExtendGraph(G, t2, c2, W2) 
else OutputExtendGraph(G, t2, c2, W2); 

end; { ExtendDFG } 

Our final procedure for DFG manipulation is ConstructDFG for constructing DFG[t, t] for 
every transition t in an EFSM. It is very similar to ExtendDFG but for the fact that it starts 
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with an empty data flow graph. It is easy to see that the data flow graph DFG[t, W] of a 
transition t with respect to a walk W which contains t can be constructed using ConstructDFG 
and ExtendDFG. 

4 Automatic Test Case Generation 

4.1 The Two-Phase Algorithm 
We have already established the trans-CIUS-set criterion for the control flow testing and the 
def-use-ob criterion for data flow testing. The next step is to generate a set of test cases 
satisfying these criteria. The algorithm presented in this section systematically generates a set 
of executable test tours for covering the above criteria. It has two phases and it traverses the 
EFSM in a breadth-first fashion in both phases. The first phase constructs a preamble walk 
for every transition in the EFSM and for the feasible def-use pairs in V. In the second phase, 
all preambles computed in the first phase are completed into a set of executable tours. 

The step-wise description of the first phase of the algorithm is given below. The salient 
points in the algorithm are then discussed. For ease of understanding, each step is embedded 
with comments. 

Phase I 
Input: An EFSM, CruS-set U = {Uj 11 S j S n}, Def-use pairs set 1). A positive integer K 1 . 

Output: UFset: set of preamble walks for the coverage criteria. 

Step 0 { Data How graphs initialization} 

(i) Construct the data How graph of each transition with respect to itself. 

Step 1 { null walk initialization} 

(i) Let P be a null walk at 81; Let P = {Pl. 

Step 2 { ith iteration of this step computes the set of all executable walks of length i starting 
from 81. They are computed from the executable walks of length i-I computed in the 
previous iteration. This step marks all transitions & def-use pairs covered by the new walks.} 

(i) Let 7 = 0. 
(ii) Do Step 2.1 for each PEP and for each outgoing transition t from the tail state of P. 

(iii) If all the transitions in the EFSM are covered for control How and all the def-use pairs in 1) 

are covered for data How or the number of iterations of Step 2 exceeds K 1 , a fixed positive 
integer, then proceed to Step 3. 

(iv) Consider 7 as P and repeat Step 2. 

Step 3 { For every transition t, and for every crus, postfix t followed by the walk along the 
crus to the preamble walk. Also collect the resulting walks for the transitions 
as well as the preamble walks for the def-use pairs into UFset.} 

(i) Let both CFset and DFset to be the empty set. 

(ii) For each transition t covered by Step 2 and for each crus Uk, 1 S k S n, add W@t@ 
Ewalk(j, Uk, C) to CFset, where W is the preamble walk computed for t, Sj is the tail 
state of t and C is the context after executing W@t. 

(iii) For each def-use pair D E 1) covered by Step 2, add the preamble walk for D computed in 
Step 2 to DFset. 

(iv) Let UFset = CFset U DFset. Delete each walk W E UFset such that W is a prefix of some 
other walk in UFset. 



(v) Stop. 

Step 2.1 
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(i) Let Q = P t. If Q is executable and t is not yet covered for control flow then mark t as 
covered and take P as the preamble walk for t. 

(ii) If Q is executable and either t is not a self-loop or t has at least one assignment statement 
in its computation block then add Q to T. 

(iii) If Q is executable then do Step 2.1.1. 

Step 2.1.1 

(i) For each tl E P, (a) Compute DFG[tl, QJ from DFG[tl, Pj, (b) Mark all the def-use pairs 
covered by Q, and (c) Construct an appropriate preamble walk for each such pair. 

(ii) Consider DFG[t, tJ to be DFG[t, QJ. 
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Observe that the first phase starts by constructing DFG[t, tJ, for every transition t in the given 
EFSM. This can be done using the procedure ConstructDFG. Starting from the initial state, 
Step 2 traverses the EFSM in a breadth-first fashion, in order to compute the preambles for 
each transition and for each feasible def-use pair in V. At the starting of the kth iteration of 
Step 2, k ::::: 1, P consists of the set of all executable walks of length k - 1 which start from 
the initial state. The kth iteration of this step computes the set of all executable walks of 
length k by extending the walks in P by single transitions. The executability of the extended 
walk is checked only with respect to the last transition since the rest of the walk is known to 
be executable at this point. This reduces the complexity of the feasibility problem to a great 
extent. 

For each walk PEP and for each transition t from the tail state of P, Step 2.1 checks if 
the walk Q obtained by postfixing t to P is executable. When Q is executable, Step 2.1 uses 
Step 2.1.1 for computing the data flow graphs pertaining to Q, for determining the def-use 
pairs in V covered by Q, and for selecting a preamble walk for every def-use pair covered by 
Q. Step 2.1.1 can be achieved using the procedure ExtendDFG which extends DFG[t', Pj to 
DFG[t', QJ, for all t' in P. 

Step 2 is repeated until the preambles for all the transitions are computed and all def-use 
pairs in V are covered or the number of iterations of Step 2 exceeds a fixed positive integer K 1 • 

Kl depends on the given EFSM. It has to be chosen in such a way that the preambles for all the 
transitions are computed in Kl iterations of Step 2. Recall that, for every transition, the EFSM 
is assumed to have at least one feasible walk from the initial state such that the transition 
is executable for the resulting context. Therefore, the preambles for all the transitions are 
computable in a finite number of iterations of Step 2. Observe that some of the def-use pairs 
in V may not be feasible. Also, the problem of finding whether a given pair is feasible or not 
is undecidable. If V has some infeasible pairs, then this phase terminates after Kl iterations 
of Step 2. 

Phase II described below is essentially for completing each walk in UFset, computed in 
Phase I, into an executable tour. These tours are in fact the ones required for the trans-CIUS­
set and the def-use-ob criteria. The algorithm is self-explanatory and further description is 
omitted. 

Phase II 

Input: The EFSM considered in Phase I and the UFset returned by Phase I 
Output: UFTourset, a set of tours for the selection criteria 

Step 1 { Initialization} 

(i) Let P be a null walk at 81; Let P = {Pl. 
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(ii) Let UFTourset be the empty set. 

Step 2 { ith iteration of this step computes the set T of all satisfiable walks of length i 
ending at 81. The set of all preambles in UF8et, which are executable in conjunction 
with a walk in T which starts at the tail state of the preambles, are declared to be 
covered by the tour obtained by prefixing the preamble to the walk. } 

(i) Let T be the empty set. 

(ii) Do Step 2.1 for each PEP and for each transition t starting from a state other than 81 and 
ending at the starting state of P. 

(iii) If all the walks in UFset are covered, then stop. 

(iv) Consider T as P and repeat Step 2. 

Step 2.1 

(i) Let Q = t P. If Q is satisfiable, then add Q to T. 
(ii) Do Step 2.1.1 for each walk W in UFset such that W Q is a tour provided Q is satisfiable. 

Step 2.1.1 

(i) If W Q is executable then Add W Q to UFTour8et and mark W as covered. 

The time and space complexities and correctness of the algorithm are summarized below. The 
proof of the theorem and a detailed refinement of the above algorithm is presented in [15]. 

Theorem 2 Let K2 (Kl) be the number of times (maximum number of times) Step 2 of 
Phase II (Phase I) is executed. The time complexity of the algorithm is O((d:,!,,)K.+1 + 
(1i';:.,,)K2+1) steps, where Ii';:." (d:'!,,) denotes the maximum number of incoming (outgoing) 
transitions including the self-loops at any state in the EFSM. The algorithm also requires 
O((d:'!,,)K. + (d!::.,,)K2) units of memory. It successfully computes an executable tour for those 
transitions which have at least one preamble walk of length at most K1. The algorithm computes 
an executable tour for every feasible def-use pair in V which have at least one preamble walk 
of length at most Kl excluding their CIUS subwalk extension. 

o 

Corollary 1 For a suitable value of K I , 1 :::; KI < 00, the algorithm successfully computes a 
set of tours such that (i) the set satisfies the trans-CIUS-set criterion, and (ii) the set satisfies 
the def-use-ob criterion if V has only feasible def-use pairs. 

4.2 Fault Coverage 

Let us assume that the Implementation Under Test (IUT) is represented as a deterministic, 
completely specified EFSM having the same set of input interactions and states as the spec­
ification EFSM. It is known that some of the FSM-based test sequence generation methods 
achieve complete fault coverage capability by including the verification of the state identifi­
cation sequences in the IUT [7, 10, 8]. In the EFSM model, in order to establish that an 
input sequence is an UIS of a state in the IUT, one has to show that for any valid context 
of the IUT at that state, the output sequence produced by the IUT while applying the input 
sequence is different from the output sequence obtained by applying the input sequence at 
any other state with every valid context. Due to the black-box approacll of testing, it is, in 
general, difficult to acllieve this UIS verification requirement. For each incoming transition at 
a state Si, our test case generation method generates one feasible tour for applying the CIUS 
Ui at Si to see if it provides the expected output, and a tour for applying the CIUS Uj of the 
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t2 t6 t12t17t20 
t2 t6 t12 t8t17t20 
t2 t6 t13t17t20 

Table 4: Sample data flow test tours for EFSM given in Figure 1 

Table 5: Sample control flow test tours for the EFSM given in Figure 1 
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state Sj, j = 1,2, ... , n,j #- i at Si to check if it produces the output different from the one 
obtained when Uj is applied at Sj. Further, these tours can be exercised for different data in 
their feasible domain. Thus our method establishes the CIUS verification requirement at least 
partially, while the existing EFSM based test generation methods do not consider this issue. 
In addition, the test tours selected are all feasible and for a suitable value for K1, they satisfy 
the control flow criterion. Therefore, the control flow fault coverage of this method is the 
same or better than those guaranteed by the existing EFSM based test sequence generation 
methods. 

5 Transport Protocol Test Case Generation 

In [15] we have illustrated our test case generation algorithm on the transport protocol given 
in Figure 1. We shall summarize the results here. Only core transitions are considered for the 
coverage criteria. There are 80 def-use pairs satisfying the all-uses criterion. Among them 7 
are infeasible. Some of the def-use pairs are shown in the first column of Table 4. Phase I 
computes the preamble walks for all the transitions by the fourth iteration of Step 2. The 
preamble walks selected for some of the transitions are shown in the second column in Table 5. 
Note that the walks in the third columns in this table are obtained by appending the preamble 
walk with the transition followed by a CIUS walk. By the fifth iteration pramble walks for 
all the feasible def-use pairs have been computed. The second column in Table 4 shows the 
preamble walks for the selected def-use pairs. Observe that the bold faced transition appended 
to a walk in the table is for confirming the tail state of the last transition whose predicate 
transitively uses the value of the variable in the corresponding def-use pair. After deleting 
the duplicate walks, Phase I produces 128 walks. Phase II for completing these walks in to 
feasible tours is fairly straight forward for the EFSM in Figure 1. For instance, since none of 
the incoming transitions (t5,tl9,t20 and t21) at state SI has predicate, in the first iteration, 
all the walks output by Phase I which terminate at the starting states (S2, S5 and S6) of these 
transitions are completed into executable tours by concatenating the appropriate transitions 
from {t5, tl9, t20, t21}. With in two iterations of Step 2, Phase II successfully finds a set of 
executable tours for all the walks selected in the first phase. The last columns of Table 4 and 
Table 5 show some of the selected tours. This set of tours satisfies both the trans-CIUS-set 
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and the def-use-ob criteria. 
Let us examine the fault detection capability of the generated test tours through examples. 

Suppose that an IUT has a simple control flow fault at the transition t6, which originally ends 
at 84' Let the tail state of this transition in the IUT be 82. While applying a test data along 
the tour t2t6t 17t20 which is one of the tours for covering the trans-CIUS-criterion for t6 (refer 
to Table 5 ), it shows an output mismatch. Therefore the fault is detected. 

Suppose that the IUT has a variable definition fault at t3.c4 where the variable S_credit 
is defined. That is , in t3.c4, S_credit is replaced by some other variable, say R_credit. Let 
us assume that the default value for all the integer variables is zero. Take the def-use pair 
D =' (t3.c4, t8.cl )S_credit. From Table 4, we see that T =' t1t3t8t8t17t20 is the required tour 
for covering D with respect to the def-use-ob criterion. Observe that for any feasible test data 
for T, the expected sequence along the tour is different from the one observed in the IUT. 
Thus, the presence of the fault is detected. 

6 Conclusion 

The Context Independent Unique Sequence defined in this paper is very useful in generating 
executable test cases for both control and data flow in an EFSM. The trans-CIUS-set criterion 
is superior to the existing control flow coverage criteria for the EFSM. In order to provide 
observability, the "all-uses" data flow coverage criterion is extended to what is called the def­
use-ob criterion. Finally, a two-phase breadth-first search algorithm is designed for generating 
a set of executable test tours for covering the selected criteria. 

In order to generate the control flow test cases for EFSM model with only integer variables, 
Li et at have recently defined an Extended UIO-sequence (EUIO-sequence, in short)[13J. We 
observe that if an UIO-sequence is also an EUIO-sequence, then the input part of this sequence 
becomes a CIUS. While a number of EUIO-sequences are required to test all the incoming 
transitions at a given state one CIUS is sufficient for this purpose. Also, there is no algorithm 
presently available for computing EUIO-sequences. 

The problem of finding a set of test data for executing each tour selected by a test case 
generation algorithm such that the data-oriented faults are detected is certainly an interesting 
research problem. We believe that the set of tours generated by our approach is a good 
candidate for the test data selection problem, since (i) all the tours generated are executable 
and (ii) it provides observability of the data flow. The fault based techniques as described in 
[18J would be helpful to gain more insight on this problem. 

Since the EFSM model considered in this paper is similar to a module in Estelle or SDL, 
an interesting area for future study is to integrate our test case generation method with the 
existing tools for these FDTs. Such an integrated tool will be useful to automatically generate 
test cases for real-life protocols specified in Estelle and SDL. 

Extending our work to EFSMs which may not have CIUSs for certain states is another 
direction for further research. 
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