
26 
Efficient Estimation of Cell Loss 
Probability in ATM multiplexers 
with a Fuzzy Logic System* 

Shirley T. C. Lam) Brahim Bensaou and Danny H. K. Tsang 
Hong Kong University of Science and Technology 
Department of Electrical and Electronic Engineering 
Clear Water Bay) Kowloon) Hong Kong. 
E-mail: { lamtc) eebben) eetsang} @ee. ust. hk 
fax: (852)-2358-1485 

Abstract 
An important parameter in ATM-based network design and management is the cell loss 
probability in ATM multiplexers. However, it depends on many unknown and unpre­
dictable traffic parameters such as burst length distribution, mean rate, etc. In this paper, 
we propose a simple and robust fuzzy-based algorithm to predict the cell loss probability 
in large-sized systems based only on both a small amount of information from small-sized 
systems, and the asymptotic behavior for very large systems. Numerical results show that 
the value predicted by this algorithm is quite accurate. The application of the proposed 
algorithm to call admission control is also presented. 
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1 INTRODUCTION 

An ATM-based Broadband Integrated Services Digital Network (B-ISDN) is a single high 
speed network designed to support all known and unknown services with different qual­
ity of service (QoS) requirements. It transfers the information through fixed size packets 
called cells. The network takes advantage of the statistical behavior of the sources with 
different traffic characteristics to efficiently share transmission resources through statisti­
cal multiplexing. An ATM multiplexer consists of a buffer of size f{ (cells) and a single 
output link with a transmission capacity of C cells per second. When the input rate is 
greater than the transmission capacity and the buffer is full, cell loss occurs. Cell loss has 
a harmful effect on the QoS. Therefore, an accurate estimation of the cell loss probability 
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( CLR t) not only gives a good estimation of this QoS but also provides an important pa­
rameter needed for network design and management (e.g., buffer dimensioning, congestion 
control, call admission control and routing). 

Many approaches for evaluating the CLR at the so-called burst-scale congestion for 
multiplexers loaded with a superposition of on/off sources have been proposed in the 
literature. The first approach approximates the actual arrival process by fluid flow (FF) 
(see Arrick eta!. (1982) and Bensaou eta!. (1994)). In this approximation, the fluctuation 
of cell arrival rates can accurately be represented by assuming that the information arrives 
in a continuous flow rather than in discrete cells. The CLR is accurately approximated 
by the overflow probability which is obtained by solving an adequate eigensystem (Arrick 
eta!. (1982)). Another approach, very similar to the fluid flow method, approximates the 
actual arrival process by a Markov modulated deterministic process (MMDP) in which 
cells arrive according to a deterministic renewal process whose rate is controlled by a 
Markov process as discussed by Yang and Tsang (1995). In this approach, the exact cell 
loss probability is obtained by solving a set of linear equations through the Gauss-Seidel 
algorithm. 

These approaches are efficient in predicting the CLR in an ATM multiplexer. How­
ever, when the system size becomes large, computation complexity increases in the FF 
approximation and memory problems arise in the MMDP approximation. It is also shown 
in Bensaou et a!. (1994) that the CLR depends on many unknown and unpredictable 
traffic parameters (e.g., burst length distribution, ... ). To avoid these problems, the goal 
is to derive a model-independent algorithm to predict the CLR in large-sized systems by 
relying only on information from some small-sized systems. 

In this spirit, the Global Rational Approximation (GRA) algorithm is proposed by 
Yang et a!. (1995) to approximate the CLR. In this method, the CLR as a function 
of buffer size (or of number of users) is approximated by a rational function, R( x) = 

Pm(x)/Qn(x) where Pm and Qn are polynomial functions of degree m and n respectively. 
The coefficients of Pm and Qn are determined by solving the system of linear equations: 
R(x;) = Pr(x;), i = 1, · · ·, m + n; where the pairs (Pr(x;); x;) represents the small-sized 
system information (e.g., (CLR; buffer size), (CLR; number of users)). 

Even though the GRA approximation is efficient and accurate in many cases, it still 
has some major problems: 

• the accuracy of the approximation is closely related to the degrees m and n, which in 
tPrn determine the number of pairs (R(x;); x;) required (i.e., m + n pairs). When the 
degrees are not large enough, the accuracy of GRA can be poor; 

• computation time can sometimes be quite long since the fitting process is based on 
an iterative algorithm to determine the suitable values of m and n for the required 
accuracy. In addition, depending on the values of the pairs (R(xi); x;), the system 
of equations to solve sometimes can encounter singularity problems, which make the 
fitting process difficult. This problem occurs mainly when the known values of CLR 
do not fit on a smooth curve. This fact restricts the practical use of GRA when the 
known values of CLR are obtained from measurements that normally contain a small 
amount of error. 

tin the sequel we use the generic term cell loss probability or CLR to designate either the cell loss 
probability, the overflow probability or the cell loss ratio 
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Fuzzy logic technique has been proposed to efficiently solve several ATM problems (e.g. 
Chang and Cheng (1994) and Cheung et a!. (1994)). Thus, in view of the shortcomings 
encountered in the above mentioned approaches, we propose to use an adaptive fuzzy 
system to efficiently predict the CLR in large-sized systems based on only a small amount 
of information from small-sized systems. This information can be obtained by either real­
time measurement when the traffic characteristics are unknown or from any analytic model 
when the traffic characteristics are known. This predicted CLR is then refined, by taking 
advantage of the knowledge of the asymptotic behavior of the performance curve (CLR). 
The advantages of using our proposed fuzzy logic based algorithm include robustness, 
simplicity in implementation, computational efficiency, and good accuracy. 

In Section 2, we present a brief introduction to an adaptive fuzzy system and then 
describe our proposed fuzzy approximation (FA) algorithm. In Section 3, we give some 
numerical results to validate our algorithm. The FA algorithm is used to predict the 
CLR as a function of buffer size. The results are compared to those obtained from other 
alternative methods. In Section 4, we show through a simple example how this algorithm 
can be used to develop a call admission control solution in ATM networks. The algorithm 
is used to predict the CLR as a function of the number of connected users for both 
homogeneous and heterogeneous traffic. We finally draw our conclusion in Section 5. 

2 FUZZY APPROXIMATION 

In this section, we briefly introduce an adaptive fuzzy system and show how it can be 
used to represent an unknown mathematical model. We will then show how this system 
is applied to predict the CLR in a large-sized system by taking information from both 
the small-sized systems and the asymptotic behavior of the performance curve for the 
large-sized system. 

2.1 Fuzzy Rule-based System 

Suppose we have a system which is almost impossible to be represented accurately by 
any analytical model. And suppose we know N sets of input-output pairs (~; !fo), Xi = 
(xi1 , ... , x&n)T E Rn,j = 1, 2, ... , N, where N is a small number. A general method is 
provided by Wang (1994) to design a fuzzy system which can match all theN input-output 
pairs to any given accuracy (i.e., for any given £ > 0, we require that lf(x&)- yf;l < £ for 
all j = 1, 2, ... , N). This optimal fuzzy system is constructed as 

(1) 

where A{ are fuzzy sets defined by their membership functions {I A', i 
j = 1. .. ,N. • 

1, ... ,n and 



Efficient estimation of cell loss probability in ATM multiplexer 309 

The above fuzzy system is constructed from N IF-THEN rules which have the following 
form: 

IF x1 is A{ and ... and Xn is A~ THEN y is Bj, (2) 

where A{ and Bj are fuzzy sets in R, and X= (x 1,x2 , ••• ,xn)T ERn andy E Rare 
respectively the input and output variables of the fuzzy system. The membership function 
of A{ is defined as J.LA;(xi) = exp{-(xi- x~YJ(a{)2} where a{ is used to control the 

accuracy of the matching and the center of Bi equals to y{ By appropriately choosing 
the parameters af, the fuzzy system in (1) can match all theN input-output pairs to any 
given accuracy L 

As mentioned by Wang ( 1994), the fuzzy system defined in ( 1) is exactly the same as 
the probabilistic general regression formula. 

2.2 Application to CLR estimation 

The fuzzy approximation (FA) we propose to estimate the cell loss probability in ATM 
multiplexers is based on the above fuzzy system. We view the CLR as an unknown function 
of a variable which can be the multiplexer's buffer size, the number of connected users, 
or the service capacity. 

The algorithm we propose to predict the CLR does not assume anything about the 
traffic parameters but requires only the knowledge of 

• the CLR of the multiplexer when the system size is small (e.g., small buffer size). In 
this case, the CLR is relatively large and can be calculated or measured quickly and 
easily; 

• the asymptotic behavior of the CLR when the system size is very large (e.g., infinitely 
large buffer size or number of users). 

Let I be the number of known values from the small-sized system. Let P( m) be the cell 
loss probability when the system is in state Sm, where Sm can be the buffer size Bm or the 
number of users Nm. The set of states (Sm) should define a linearly increasing function of 
the form: Sm = mo + S0 , where o > 0 is the step size and S0 is the initial state. Denote 
by k the index of the current state sk. 

Based on the above informations, the FA algorithm is constructed as follows: 
Step 1: Input-Output Pairs Definition 
The (i- 2) sets of input-output pairs are chosen as follows: 

{(P(k- 2), P(k- 1)); P(k)- P(k- 1)}, 
{(P(k- 3), P(k- 2)); P(k- 1)- P(k- 2)}, 

{(P(k- (I- 1)), P(k- (I- 2))); P(k- (I- 3))- P(k- (I- 2))}, 

(3) 

where (P(k- (j + 1)), P(k- j)) is the input vector and P(k- (j -1))- P(k- j) is the 
output for j = 1, ... , I- 2. 

By taking advantage of the monotonicity of the parameterized curve, representing the 
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CLR as function of the buffer size or the number of users, the fuzzy system can be 
constructed from only a few input-output pairs. The inputs are represented by the CLR 
values from the previous and the current states and the output is the difference between 
the next and the current CLR values. The input-output pairs are updated in real time. 

Step 2: Rule Base Generation 
For each input-output pair, one fuzzy rule base is generated according to (2). The rules 

in the fuzzy rule base become 

IF P(k- 1) is A: and P(k) is A~ THEN (P(k + 1)- P(k)) is B\ 
IF P(k- 1) is A~ and P(k) is A~ THEN (P(k + 1)- P(k)) is B 2, 

IF P(k- 1) is A{-2 and P(k) is A~-2 THEN (P(k + 1)- P(k)) is B1- 2 , 

where the membership functions of the input fuzzy sets are given by 

with 

1 
(P(k-1)-P(k-j-1))2 } 

exp - ( 3 )2 , 
=ex _(P(k)-P(ku:_j))2} j=1, ... ,I-2, 

p (~)2 ' 

maxi (P(k- j- 1))- mini(P(k- j- 1)) 
I-2 

maxi (P(k- j))- mini(P(k- j)) 
I-2 

j=l, ... ,I-2, 

and the center of the fuzzy set Bi is P(k- j + 1)- P(k- j), j = 1, ... , i- 2. 

(4) 

(5) 

(6) 

Note that uf and u4, j = 1, ... , i-2, are free parameters that determine the accuracy of 
the approximation. The above choice of u{ and u4, j = 1, ... , I -2, makes the membership 
functions uniformly cover the range of the inputs vectors. 

Step 3: Fuzzy system construction 
The fuzzy system given in (1), with n = 2 and N = I- 2, is chosen to estimate the 

increment (or decrement) of the CLR. The output of the fuzzy system will be added to (or 
subtracted from) P(k) to estimate P(k + 1). This predicted value of P(k + 1) is fed back 
into the fuzzy system as an input to estimate P(k+2) using P(m), m = k- N, ldots, k+ 1 
and the process continues until we get the CLR for the desired size of the system. 

Step 4: Use of the asymptotic information 
Generally, the FA algorithm provides an accurate prediction when the number of states 

to predict is not too large. Nevertheless, predicting CLR values of the order of 10-IO 

requires a large number of states, this makes the accuracy of the prediction poor because 
of the accumulation of small errors. In order to improve the estimation, we have to take 
into account the asymptotic behavior of the CLR as the system size Sm becomes infinitely 
large. 
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When Sm is the multiplexer's buffer size (Bm), we know that the CLR behaves like 
(Anick et al. (1982)) 

(7) 

where "' is given in Anick et al. (1982). In other words, we have log P( m + 1) -log P( m) "-J 

-ry(Bm+l- Bm) = -ryo, for Bm -+ oo, where o is the step increment in buffer size. 
When Sm is the number of users (Nm), we know that 

P(m + 1)- P(m) "-J 0, whenever the system load ~ 1. (8) 

By taking the advantage of this additional knowledge, the predicted CLR value becomes 

P(k + 1) = (1- >-.(k))P1(k + 1) + >-.(k)P2(k + 1), (9) 

where >-.(m) is a nonlinear increasing function of Sm taking its values in [0, 1], Pt(k + 1) 
is the predicted value in Step 3 above and P2(k + 1) is the predicted value based on the 
above asymptotic behavior. Finally, we feed this predicted value to the fuzzy system in 
Step 1 to predict the next value. 

The function >-.(m) we use is given by 

1 ( (Sm- So(Y) . 
>-.(m) = exp - (J2 tf Sm S Soc 

1 elsewhere, 
(10) 

where Soo is any state at which the asymptotic behavior begins to hold and (J is a param­
eter controlling the accuracy of the fuzzy approximation. The details of determining Soo 
and (J will be discussed later in Section 3.3. 

3 NUMERICAL RESULTS 

The implementation of the algorithm described above proves straightforward, and the 
CPU time needed to predict the CLR is quite small. To illustrate the accuracy and the 
robustness of the FA algorithm, we present in the following a sample of figures representing 
the CLR as a function of the buffer size. On this figures, our results are compared to the 
other alternative methods presented in the literature. The model we use to derive the 
"exact" results is based on the FF approximation with different burst length distributions 
as discussed in Bensaou et al. (1994). The characteristics of the input traffic are depicted 
in Table 1. 

3.1 Validation of the FA approximation 

To show the accuracy and the effectiveness of the FA algorithm, we use the minimum 
necessary set of input/output pairs. In Figure 1, this number is equal to five (I = 5). 
This means that the fuzzy rule base contains three IF-THEN rules. The figure shows 
the overflow probability as a function of the buffer size for voice calls (peak rate = 64 
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Table 1 Traffic Characteristics used. 

Traffic class Peak Rate (Mb/s) 

Data 10 
Image 2 
Voice 0.064 

-Enct 

-FA 

Mean Rate(Mb/s) 

1 
0.087 
0.022 

-SFF 

Burst length (cells) 

339 
2604 
58 

10-11 -. GRA 
-FA 

10-•a osmall--sizedsyslemdata 

10-130~-::,_';-5 ---c:-----:',_:o-5 ---:2,---;;-2_5;----!,--!:,_5:c--7-·--;';,_5~ 
Buffer size {bursts) 

a. Step size 8 = 0.1 

-.GRA 

o small sized system data 

10_,,!:-, ----:,7.5 -!---:-,_';-5 ---:2:---::2.:o-5 -:,:---:',_5;----:-----;':,_5~ 
Buffer size (bursts) 

b. Step size 8 = 0.05 

Figure 1 Voice calls (C = 1.5 Mb/s, N = 34). 

kbjs, mean rate= 22 kb/s, mean burst duration = 350 ms). The system load is 0.5 and 
the number of multiplexed sources is equal to 34. In Figure l.a and Figure l.b, the five 
input/ output pairs are obtained from the FF approximation with a step size ( 8) of 0.1 
and 0.05 (mean burst length) respectively, beginning at 0. As shown in the figures, our 
fuzzy algorithm gives a very good approximation compared to the exact results and to 
those provided by GRA. The CPU time (10ms) needed by the FA algorithm is, however, 
10 times smaller than that (lOOms) needed by the GRA algorithm and about 20 times 
less than that (200ms) needed by the exact algorithm. We mention however that the CPU 
time needed by the FF approach is not representative of the CPU time needed by analytic 
models. The above value is obtained from the only known closed-form result. For the other 
algorithmic solutions, this can be much larger. 

3.2 Independence from a model 

The fuzzy approach used to predict the CLR is to some extent independent of any analyt­
ical modelling of the actual input process. To illustrate this independence, in this section 
we show two kinds of figures. 

The first kind (Figure 2.a) shows the overflow probability against the buffer size for 
generally distributed burst lengths, as discussed by Bensaou et al. (1994). To simplify the 
exact model, the number of sources is assumed to be infinitely large. The burst arrival 
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-·---FA 
-.GRA 

• small-sized system data 

10--~~o~-;:0.5;:---;--,;';;.5-::-2 --::2.';-5 ---::,:--::,.5:--7---:,'o-.s ---c5:--' 
Bllferalze(c;ella) x104 

a. Erlang-2 burst length distribution. 
Image calls ( C = 30Mb/s, load = 0.6) 

-&act 
,.~ -FA 

-.GRA 
o smalht.ized system data 

1o-:~o~0!:--~--:c---:----c,:--:,--:,-~---:--;--?1 .0 
Buffer size (bursts) 

b. Corrupted input data. 
Voice calls (C = 1.5 Mb/s, N = 34) 

Figure 2 Independence of the FA approximation from the model. 

process thus becomes Poissonian and the individual mean rate is infinitely small. This as­
sumption does not restrict the generality of our algorithm. In Figure 2.a the burst lengths 
are 2-phase Erlang distributed with a mean value of 2604 cells and the peak rate is equal 
to 2Mbitsj s. As shown by the curves, the FA algorithm gives a very reasonable approx­
imation. The error is always within one order of magnitude. More numerical examples 
with other burst length distributions have shown the same accuracy. This shows that our 
approach is independent of any assumption on the traffic parameters such as the burst 
length distributions, etc. 

The second kind (Figure 2.b) shows the prediction of the overflow probability from a 
measured set of input/output pairs with some random measurement errors. To simulate 
this measured set, we take the exact (FF) curve for a superposition of voice sources 
from Figure l.a, and introduce a small perturbation to the first 5 points by adding (or 
subtracting) a value ranging from 0% to 50% respectively to (or from) these points. The 
smaller is the overflow probability, the larger is the introduced error. In other words, 
the first point has no error while the last point can have relative error as large as 50%. 
This simulates the situation of on-line measurement of real traffic when the measurement 
time is not very large. Figure 2.b shows the accuracy of the FA algorithm in predicting 
the overflow probability. It is clear that the refinement based on the knowledge of the 
asymptotic slope is very valuable in this kind of situations. 

These two figures have shown the robustness and the independence of our algorithm 
from any specific traffic model. Moreover, the algorithm can be easily extended to the case 
of a superposition of heterogeneous classes of traffic without increasing the complexity. 
This makes it very appealing for real-time applications. 

3.3 Determination of S00 and r7 

We would like to draw the attention of the reader to the fact that the performance of the 
FA approximation is largely determined by the choice of the values of the parameters Soo 
and (J. In this section, the state Sm has been chosen to be the buffer size Bm· The value 
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for Sao(= Boo) must be chosen such that for a buffer of size Boo the asymptotic behavior 
holds. A heuristic approach is to set Boo equal to ten times the mean burst length when 
the traffic intensity is light ( < 0.85), while a value of a few times the mean burst lengths is 
sufficient in heavy traffic conditions. In the figures above, the value of Boo was equal to 10 
mean burst lengths. In addition, extensive calculations have shown that a value of u equal 
to 60% of the value of Boo is quite reasonable. Furthermore, we can combine our fuzzy 
system with other adaptive learning algorithm such as neural networks to determine the 
optimal values of Boo and u. Therefore, one can first train the fuzzy system with off-line 
simulation and then use it with on-line traffic measurement. 

4 APPLICATION TO CALL ADMISSION CONTROL 

One of the most important procedures to control congestion in the network is the admis­
sion control process, which restricts the number of calls within the network to provide 
and ensure QoS guarantees to all users in progress. To allow the network to decide quickly 
whether a new call can be accepted or not, a fast algorithm is required to estimate ei­
ther the CLR or the required bandwidth. Most of the proposed call admission control 
(CAC) algorithms (e.g., Guerin et al. (1991)) are based on the effective bandwidth (the 
asymptotic upper bound or the stationary Gaussian approximation) without taking into 
account of statistical multiplexing among sources. However, both algorithms overestimate 
the required aggregate bandwidth, resulting in an under-utilization of expensive network 
resources such as bandwidth and memory. 

In this section, we present a simple admission control algorithm based on our FA al­
gorithm. This CAC algorithm should just be taken as a simple example to illustrate the 
application of the FA algorithm to real ATM problems. The algorithm we present below 
is effective only when the traffic model can be known. It considers the CLR, as a function 
of the number of users. A more practically interesting measurement-based CAC algorithm 
using our FA algorithm to predict the required aggregate bandwidth is presented in the 
work of Chu et al. (1996). 

4.1 Homogeneous traffic sources 

Without loss of generality, we consider an ATM multiplexer with a high speed channel 
serving homogeneous sources and a buffer of finite size to bound the delay requirements. 
To provide QoS guarantees such as the cell loss probability (e.g., CLR < t), we need to be 
able to estimate the CLR with different number of users. Let P( N) denote the CLR when 
the number of users is N. When N is small, we can use any proposed analytic model (such 
as FF, MMDP, etc.) to calculate the values of the CLR. Nevertheless, the computational 
complexity increases dramatically for large number of sources. As discussed in Section 2, 
we can easily apply our FA algorithm to predict the CLR as a function of the number of 
users. Therefore, we can implement our CAC according to the followircg steps. 

1. We first obtain four initial values of the CLR {P(N0 ), P(No+ 1), P(N0 +2) and P(No+ 
3)} with some analytic model, where N0 is chosen large enough to ensure that the CLR 
is not equal to zero. For instance, the number N0 can be chosen such that N0 - 1 is 
the maximum number of admissible users with peak bandwidth allocation. 
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200 220 240 
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Figure 3 Cell loss probability vs. number of users (Data source, C = 350 Mb/s). 

Table 2 Mixed traffic sources. 

Traffic class Peak Rate (Mb / s) 

Class 1 0.1 
Class 2 0.2 

Mean Rate(Mb/s) 

0.01 
0.02 

Burst duration ( s) 

0.35 
0.175 

2. Using {P(N0 ), P(N0 +1), P(N0 +2) and P(N0 +3)}, the FA algorithm is used to predict 
P( N0 + 4) and then P( No+ k) for k > 4 successively. The asymptotic behavior is given 
in (8). 

3. We obtain the curve of CLR as a function of the number of users from Step 2. When a 
new user requests a connection, the call admission controller will decide to accept the 
new call if the resulting CLR is smaller than t: or to reject it if the value is greater. 

In order to test the performance of the FA algorithm, Figure 3 shows the FA prediction 
of the CLR against the number of users. The exact model we used is based on the MMDP 
approximation developed by Yang and Tsang (1995). The sources are data sources with 
traffic characteristics given in Table 1. The service capacity is equal to 350Mbitsj s and 
the buffer can accomodate upto 50 cells. From the figure, the accuracy of this algorithm 
is much better than the results obtained from the effective bandwidth approach using 
the asymptotic FF upper bound (see Guerin (1991)). We omit this latter curve from the 
figure, the CLR being always close to 1. The CPU time needed is independent of the 
number of sources and is linearly dependent on the number of initial values. 

4.2 Two heterogeneous classes of traffic sources 

The simplicity of this algorithm and its speed make it very easy to extend to the hetero­
geneous case, for which the functions to estimate become multidimensional. To illustrate 
this, Figure 4 shows the relative error for the mix of two generic classes of traffic, each 
one contributing 50% of the total load. The channel capacity is 1.5Mb/ s and the buffer 
can accommodate up to 2358 cells. The traffic characteristics are given in Table 2. 
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Figure 4 Prediction error of the aggregate overflow probability for 2 classes. 
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X first point to predict 
Y next point to predict 

Nl 

Figure 5 Prediction path for 2 classes of traffic sources. 

In this case, the FA algorithm relies on the knowledge of 16 initial points (the 16 empty 
circles in Figure 5). From these values and knowing that the CLR converges to 1 when 
the number of sources is very large, we can predict the CLR surface. Since the predicted 
surface and the exact one are too close, we show the relative prediction error instead. 
The figure shows that the relative error is reasonably small (less than 30%). Extensive 
numerical tests have shown that the accuracy of prediction is independent of the followed 
path: fix the number of class 1 sources and predict towards the increasing number of 
class 2 sources, or vice versa. The complexity in this heterogeneous case is unfortunately 
dependent on the number of sources in M - 1 classes, where M is the total number of 
traffic classes. As shown in Figure 5, assume the first user to arrive is from class 2. By 
using the four points in column 4, the first point to predict in Figure 5 is then X. Assume 
the next user to request a connection is from class 1, from Figure 5 we see that in either 
direction (row or column), there is a lack of points to predict the pointY. We therefore 
need to predict at most 4 points preceding Y in either direction (3 points in row 5 or 
4 points in column 5). Nevertheless, since the algorithm is intended for on-line use for 
which only one point is predicted when a new connection arrives, the prediction of the 
future lacking points can be done off-line after a call is accepted. This dependence on the 
number of sources then becomes unimportant. 
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The values of N00 and u are very important. To obtain tight predictions, we have noticed 
from numerical tests that the suitable value of N00 is equal to 10 times the ratio of the 
channel capacity to the mean rate, and u is approximately 48% of the value of N00 • 

5 CONCLUSIONS 

A new approximation algorithm is proposed to estimate the CLR for large sized systems 
by using a small amount of information from small-sized systems. In this algorithm, we 
use an adaptive fuzzy system to predict the CLR of the actual system. This prediction 
combined with the knowledge of the asymptotic behavior allows us to obtain a good 
approximation of the CLR. 

To illustrate the efficiency and the practical utility of our algorithm, we have proposed 
one possible implementation of a CAC mechanism using the predicted CLR from the pro­
posed FA algorithm. The numerical results have shown that the FA-based CAC algorithm 
outperforms the traditional approaches such as effective bandwidth without requiring ex­
cessively more CPU time than these approaches. 

Currently, we are extending our work to other types of traffic such as self-similar traffic. 
Since our approach is independent of any traffic model, the FA algorithm is expected to 
predict accurately the CLR for this kind of traffic sources as well. The extension of the 
FA algorithm towards CAC in more complex networks composed of multiple multiplexing 
stages is also under examination. 
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