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Abstract 
This paper deals with the analysis of the throughput performance of various logical topologies 
for Multihop Networks. In particular, ShuffleNets, De Bruijn graphs and Kautz graphs are 
analyzed. For the comparison, routing algorithms adopting minimum path length are 
considered. A hot-spot traffic scenario is adopted, modeling the presence of a centralized 
network resource to which a quota of the internal traffic is directed or originated from. The 
analysis is carried out by varying the traffic unbalance degree, from a uniform traffic 
distribution to a completely unbalanced one (all the traffic is concentrated in the hot-spot node). 

For ShuffleNets, simple analytical expressions of the actual throughput limits are utilized. In 
the case of De Bruijn and Kautz graphs, instead, a lower bound of the throughput is utilized, 
which coincides with the actual throughput in a wide range of values of the network size. 

The results obtained show that Shuffle and Kautz graphs always outperform De Bruijn 
topologies. Moreover, ShuffleNets present a further advantage on the other topologies; in fact, 
since the nodes are topologically equivalent, the placement of the hot-spot node does not affect 
the throughput performance. 
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1. INTRODUCTION. 

Multihop Networks (MNs) [1,2] represent an attractive solution to implement optical 
infrastructure interconnecting a large set of stations distributed in a local-metropolitan area. 

In MNs the physical topology must be distinguished from the logical topology. The former 
consists in the physical medium connecting the network nodes, and is usually a star or bus; the 
latter is overlaid on the physical one, for example using a number of different wavelengths each 
between a pair of stations. In this way, each node is connected, by means of dedicated logical 
links, to a set of other nodes; so, a packet must be forwarded for multiple hops to reach its 
destination if origin and destination nodes are not directly connected in the logical topology. 
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The logical topology can be usefully represented by means of a graph. The indegree and the 
outdegree of the graph are represented by the number of logical links incoming to and outgoing 
from a node, respectively. The graph diameter determines the minimum number of hops 
needed, in the worst case, to go from to a node to another. In the class of graphs with N nodes 
and maximum outdegree p the minimum diameter is of O(logpN). A logical topology should be 
designed aiming at: i) simplifying the routing algorithm; ii) reducing, as much as possible, the 
number of hops to reach a destination node; iii) avoiding bottlenecks in the network in order to 
increase the maximum throughput. In this paper, three logical topologies are described (Shuffle, 
Kautz and De Bruijn topologies) and their throughput performance are compared. 

The Shuffle logical topology is based on Perfect Shuffle graphs. Many papers dealt with 
ShuffleNets (SNs) [1,3,4,5,6,7]. They showed the highly efficient use of the communication 
channel under uniform traffic, whereas they outlined a remarkable throughput decrease in case 
of non-uniform load, partially limited by the use of an adaptive packet routing scheme. 

Logical topologies based on De Bruijn and Kautz graphs have been proposed and studied in 
recent papers [8,9]. The comparison with the SNs is basically focused on topological properties 
and is limited to a uniform traffic scenario. 

In [8] it is stated that, for the same maximum degree and average number of hops, logical 
topologies based on De Bruijn graphs can support a much larger number of nodes than 
ShuffleNets. Networks based on De Bruijn graphs have higher throughput and lower average 
delay. In [9] a comparison between De Bruijn and Kautz graphs is discussed. The main 
outcomes are that logical topologies based on Kautz graphs can accommodate a greater number 
of nodes than that given by a De Bruijn graph with the same degree and diameter. Moreover, 
the average queueing delay in a Kautz graph network gives better results than in a network 
based on De Bruijn graphs. 

In this paper, a more complete analysis of the throughput performance of the three topologies 
is carried out, with reference to modulated hot-spot traffic configurations. Over a background 
given by a uniform traffic component, a hot spot traffic models the presence of a centralized 
network resource (e.g. a file server, a mass storage equipment, etc.) which a quota of the 
internal traffic is directed to or is originated from. As a particular case, if the hot spot 
component vanishes, a uniform traffic configuration is obtained. A high hot-spot traffic quota 
leads to critical conditions for MN performance, since it involves high loads on links incoming 
to and outgoing from the hot spot. So, a worsening of throughput performance is expected with 
respect to the uniform case. The study aims at evaluating the capacity of various logical 
topologies to mitigate the throughput degradation as the hot spot traffic quota increases. 

Simple analytical expressions of the actual throughput limits, derived in [7], are used for 
Shuffle Networks, whereas for the other topologies an enumeration approach is applied. 

Obtained results show that the performance of all the three topologies are strongly influenced 
by the traffic unbalance degree. Moreover, De Bruijn graphs always perform worst than Kautz 
graphs and ShuffleNets. However, for high values of traffic unbalance and network size the 
differences among the three topologies tend to vanish, and they fundamentally depend only on 
the network size and on the traffic unbalance value. Lastly, ShuffleNets have the exclusive 
advantage that, since all nodes are topologically equivalent, there is no impact of the hot-spot 
node placement on the throughput performance. 

The paper is organized as follows. In Sec. 2 the logical topologies are described; in Sec. 3, 
the adopted traffic configuration is explained. In Sec. 4 the procedures employed for the 
performance evaluation are reported, while in Sec. 5 a performance comparison is carried out. 
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2. LOGICAL TOPOLOGIES FOR MULTIHOP NETWORKS 

In this section, Shuffle, Kautz and De Bruijn logical topologies are described. Let ?{and L be 
the set of nodes and the set of links of a generic MN, respectively. Any node is able to detect p 
input frequencies and to transmit over p output frequencies. Whichever the logical network 
topology is, it results: 1£ l=p 1?{1, wherein IS I denotes the cardinality of the setS. 

2.1 Shuffle topology 

A (p,k) ShuffleNet (SN) [2] is composed of l?li=Ns=kpk nodes, logically arranged in k 
columns. Two adjacent columns are connected by means of a p-shuffle; the kth column is 
connected to the first one, in such a manner that the overall connectivity graph is wrapped 
around a cylinder. 

A generic node ~ ?lis identified by the 
couple [ex, X], where ex (~ex~- I) is the 
column index and x represents the row 
index, i.e. the string <xk,Xk-t .... ,xt> being 
the p-ary representation of the row index of 
the node ~- Moreover, [ex. X, xo] 
represents the node ~ outgoing link, 
identified by the routing digit Xo processed 
by the node itself. Each value of the digit xo 
corresponds to a specific output link. The 
node ~= [cx,<Xk,Xk-t. ... ,xt>l is connected 
tO the p nodes [Cx+},<Xk-},Xk-2, ... ,X},XQ>] 
obtained assigning the p possible values to 
xo. Figure I shows the logical topology of 
a (2,2) SN. 

2.2 Kautz topology 

00 

01 

10 

11 

Figure 1 (2,2) Shuffle logical topology. 

A (p,k) Kautz Network (KN) [9] is composed of l?li=NK =pk+pk-1. The generic node ~?lis 
identified by a string X=<x~;, Xk-i· ... , Xi> of k (p+l)-ary digits, called node index. Each link 
is identified by the couple [x, Xo], being Xo the routing digit processed by the node itself. The 
Figure 2 represents a (2,2) KN. The generic node <X~;, Xk-i· ... , Xi> is connected to the p 
nodes <XJc-i, XJc-2, ... , Xi, xo> obtained by assigning the p possible values to xo such that 
xo;exi. It is to be noted that this constraint implies that there is no link connecting a node to 
itself, and there is no node such that: Xi= xi+h 'Vie [O,k-1]. 

2.3 De Bruijn topology. 

A (p,k) De Bruijn Network (DN) [8] is composed of l?li=ND =pk. The node index of a generic 
node ~e ?£is identified by a string X=<XJc, Xk-h ... , xi> of k p-ary digits. Each link is 
identified by the couple [X, Xo], being Xo the routing digit processed by the node itself. The 
Figure 3 represents a (2,3) DN. The generic node <x~;, Xk-i• ... , xi> is connected to the p 
nodes <Xk-h x~;.2 , ... , x~o x0> obtained by assigning the p possible values to xo. It is to be 
noted that, if all the digits of the node index are equal, there is one link connecting the node to 
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itself. As it will be shown in the following, the presence of these links impairs the throughput 
performance of DNs as compared to KNs. 

Figure 2 (2,2) Kautz logical topology. Figure 3 (2,3) De Bruijn logical topology. 

3. TRAFFIC SCENARIO. 

In this section, the adopted traffic scenario is described, and the performance measures used in 
the comparison of the logical topologies are introduced. In the following, all the traffic 
measures are intended as normalized with respect to the link capacity, supposed equal for all the 
network links. Let: 
ao1(JI the normalized mean traffic generated by the traffic relation (;c,y); it is worth noting that, 

the traffic components relevant to the traffic relations originating from and terminating at 
the same node are not considered, therefore a0.a= 0, V~; 

0c1(JI the normalized mean carried traffic relevant to the traffic relation (;r,y); 

Ao.r the overall normalized mean traffic offered by a node ;u: 9(. i.eA0x = ~!1'1( a0 zy; 

Acot the normalized throughput of a node ;u: 9(. defined as the sum of the normalized mean 

carried traffic relevant to all the traffic relations originating from the node i.e. 

Acot= ~!1'1( aczy; 
A0 be the overall normalized mean load offered to the network, i.e. A0 = ~~1( Ao.r ; 

Ac be the normalized total traffic carried by the network, i.e. Ac = ~~1( Acot . 
The evaluation of the maximum network throughput is here carried out by considering traffic 

configurations resulting from the superposition of different percentages of uniform and hot-spot 
traffic patterns. A specific traffic configuration is characterized by: a) a percentage, a, (0::{~1), 
called hot-spot factor, of A0 associated with the traffic relations originating from and destined to 

a given node (that is, the hot-spot); b) the remaining load, (1-a)A0 , is uniformly distributed 
among all the traffic relations. 

Let the node z be the hot-spot; by considering that the number of traffic relations originating 
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from or terminating at zis equal to 2·(N-l), we have: 

{
/.1 ~ ;t. z and y ;t. z 

ao;a/..a) = F a.Ao 
N-1 + 2(N-l) ~= zor y= z 

h . F (1-a)Ao w erem =-N--

{F+~ Aot<a) = 2(N-l) 

F aAo + -2-

275 

~= z 

It is to be noted that, a=O corresponds to the uniform traffic case. In the following, for the 
sake of brevity, a traffic configuration with a#O will be called "a-hot-spot". 

The a-hot-spot traffic configuration models the presence of a centralized network resource, 
corresponding to the hot-spot node (e.g. a file server, a mass storage equipment, etc.), to which 
a quota of the internal traffic is directed or is originated from. The higher a is, the more the 
traffic configuration represents a critical case. This is due to the fact that it involves high loads 
on incoming and outgoing hot-spot node links. Therefore, a worsening of throughput 
performance can be expected as a increases. 

H a value of a is fixed, the normalized maximum throughput, Tmax(a), is defined as the 
maximum value of traffic carried by the network (normalized with respect to the number of 
nodes N) provided that the characteristics of the carried traffic be identical with those of the 
offered one, i.e. 

T max( a) ={~max[ A c1 I ~ = ~. V ~. y, z, w} 
A., Clem~ Oom~ 

In the case of uniform load, T nuuf. a=O) represents the maximum value of the offered traffic 
such that the traffic carried by the network be equally distributed over all the traffic relations. 

It is worth noting that in some cases T max( a) does not correspond to the actual maximum 
possible value of network throughput. In fact, if the network links are not uniformly loaded, a 
node could generate, at least in principle, more traffic over those paths crossing non-congested 
network zones. That would lead to a higher throughput, but the distribution of the carried traffic 
on the various traffic relations would not correspond to the hypothesized characteristics of the 
offered traffic. In this sense, T max( a) corresponds to the maximum throughput arising from a 
perfectly "fair" network operation with respect to the various traffic relations. 

According to the hypotheses on the traffic model, the evaluation ofT max( a) can be carried out 
by identifying the link carrying the maximum load and by counting the number of paths 
belonging to the uniform and hot-spot traffic components crossing that link. 

Let { e L be a generic network link. Let: 
Nx the number of nodes of a generic topology (x = S, K, D); 
N h( {) the number of paths belonging to the hot-spot traffic component passing through {; 
Nu({) the number of paths belonging to the uniform traffic component passing through{; 
t;,.,.;c the most loaded link(s) in the network; 
a({) the mean traffic carried by the link{. 

It results: 

r {N ({) (1-a) Ao N ({) a.Ao } 
a(rmax) = ,~ u Nx (Nx-l) + h 2 (Nx-1) (1) 

Since a(t;..ax) S 1, and normalizing with respect to NX, it follows that: 

Tm~ (a)= 2(NX-l) 
2(1-a)Nu(t;,.ax) + aNWh(fmax) 

(2) 
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4. MAXIMUM THROUGHPUT EVALUATION. 

A sequence of links and nodes connecting two nodes ;randy defines a path. The number of 
hops of a path identifies the path length. In order to identify a path of length h a string of k+h 
digits can be used. A schematic description of the general path format is given in Figure 4. The 
first k digits correspond to the index (row index for SNs, node index for KNs and DNs) of 
origin node ~ while the rightmost h digits identify the routing digits. The digit Tj is processed at 
the P hop. A rightward sliding window of width k identifies, step by step, the index of all the 
crossed nodes from the origin to the destination. In particular, the last k digits identify the index 
of the destination node y. Routing algorithms for Multihop Networks can be classified 
according to the criterion adopted to fix the number and the value of the routing digits 
<rt.r2, .•• ,rh>-

(xk,xk-1•···· xk-h•···· x1,r1, r2 , ... , rh) 

~~~~J J 
L_h111 hop 

Figure 4 General path format. 

The performance comparison of the three logical topologies is carried out by uniquely 
considering minimum path length algorithms. In order to better understand the comparison, it is 
to be noted that, in the case of SNs, since the minimum length path is not unique, the multipath 
capability can be exploited. This does not hold for Kautz and De Bruijn, since there is a single 
minimum length path. 

In the following, a brief description of the minimum length routing algorithms adopted for the 
three logical topologies will be given. At this aim, we give some definitions. 

Let x = <xk,xk-lo····x 1> be a string of k digits. We denote as Aj(x), i~k. the i least 
significant digits of x, i.e., A.i(x) = <xj,Xj.J, ... ,XJ> and with ~i(x), i~k. the i most significant 
digits of x, i.e., ~i(X) = <xk,Xk-h···•xk-i+J>. Moreover, ()k represents a string composed of k 
don't care digit. Lastly, x·y represents the juxtaposition of the two strings x and y. 

4.1 Maximum throughput in SNs 

Let w be the number of columns from the origin to the destination node; it results: 
w = { (k+ Cy- Cx)modk ~f Cy "* Cx 

k Ifcy=Cx 

wherein Cx and cy are the column indexes of nodes ;randy. respectively. 
The minimum path length is equal to either w or w+k, and therefore its range is between 1 and 

2k-1. Let !Al(~y) be the set of minimum length paths for the traffic relation (~y). If h=w the 
minimum length path is unique (I!Al(~y)l = 1) and is unambiguously determined by the string 
x·A.w(y), otherwise there exist pw minimum length paths (I!Al(~y)l = pw), which are obtained 
by fixing arbitrarily the first w routing digits of the path x·~·y. 

In [2] a fixed minimum length routing algorithm, called in the following Fixed Routing on 
ShuffleNets (FR), is proposed. According to this algorithm, if ~k-w(Y) = Ak-w(x) the routing 
path is x·A.w(y); otherwise it is x·A.w(y)·y. This algorithm identifies, for each traffic relation, a 
unique route, and therefore it does not exploit the multipath capability of SNs. More details on 
the properties of FR can be found in [7]. 

Closed formulae for the evaluation of the maximum throughput for FR (T m~! (a.)) are 
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demonstrated in [7]; here we only recall the fundamental results of th&t a.~1alysis. Given a (p,k) 
SN operating according to FR and loaded by an a-hot spot traffic, with <>Sa.Sl, Nh(fmax) and 
N,.(fmax), are given by: 

!Nh("'ax)=4 Nu(fmax)=8 

N h( f.nax)=(k-1 )pk N u(fmax) pk+ 1 [p3(k2-k)-~~~~~f+2k2]-2k+2kp otherwise 

if k=p=2 

(3) 

Therefore T,: (a) can be evaluated by substituting eq.(3) in eq.(2). 
Throughput advantages can be obtained if the multipath capability is exploited, still keeping 

the minimum length constraint. The maximum throughput for minimum path length algorithms 
can be found by solving a linear optimization problem (Globally Optimized Minimum length 
Routing, GOMR). For network sizes greater than a few tens of nodes, the solution of the 
problem becomes unfeasible. However, a tight upper bound for the maximum network 
throughput (UaoMii a) ) is given by [7]: 

UaoMJia) = 1 (4) 
max[ Ct (k,a), C2(k,a)] 

where 
aN(N-l)(l-p)2 + 2(1-a)[k(pk+2-pk+l-(I-p)2)+p2-pk+4(1-p)2kpk] 

Ct(k,a)= 2 p(l-p)2(N-1) 
c (k ) - 3k2pk(l-p)+kpk(l+p)-2k 

2 ,a- 2p(l-p)(N-1) 
The upper bound provided by eq. (4) is very close to the actual value of the maximum 

throughput, except for low values of a for the (2,2) SN. For any other values of p and k the 
upper bound practically coincides with the maximum, as it arises from the analysis of Figure 5. 

1.4,::::::;:::--:--------:------:-------;----, 
p=3,k=2 : __ T~~ 

a: IIi 1.2 .... ····· ..... : .......... ·······:··················; ........... . 
~ : : : ----T~R 
• 1 - : : : 

~ --- UGOMR 

"§ 0.8 

e .......,""'*,..,.,.,. .... -s 0.6 

j 

J "-'~·;.;·_ o---~············· . . 

oL-------~~~~:::·::====~;·~-~-~~~-~-~~~-~-~-~-~-;J 
0 0.2 0.4 0.6 0.8 

Hot spot factor - 11 

Figure 5 Throughput limits for ShuffleNets, p = 2 and 3. 

This figure plots r,: (a), TmC:::MR (a) and UaoMR(a) vs. a fork= 2,3, for p = 2 and 3, 
respectively. In the following, UaoMR(a) will be employed in the .rrformance comparison 
with DNs and KNs, except in the case of the (2,2) SN, where r::_M (a) will be reported. 

From the figure it is evident that the node throughput considerably decreases as a increases; 
however, for low values of a GOMR is able to achieve a throughput close to the value relevant 
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to the uniform traffic case. It must be observed that. in the SN case, the hot-spot node can be 
placed in any network node without affecting the throughput performance, since all the nodes 
are topologically equivalent [7]. This is not true for the other network topologies, as it will be 
shown in the following. 

4.2 Maximum throughput in KNs and DNs 

The routing algorithm for KNs and DNs is based on the same principles; what follows applies 
to both topologies. Given a (p,k) KN or DN, for each traffic relation (t,y) there is a unique 
minimum length path (l~~y)l = 1). The maximum number of hops of a minimum length path 
is equal to k; therefore, the length s of the string representing the path is such that k+ 1 <s<2k. 
The minimum length path can be found according to the Minimum Length routing on Kautz 
graphs (MLK) (Minimum Length routing on De Bruijn graphs (MLD)) consisting in the 
following two steps: 
For each traffic relation (t,y), 
• find the largest integer os;; g such that Ai,(x) = J.Li(y) 
• the path from X to ?'is identified by x·A.t-i(y). 
It is to be noted that, taking into account the routing algorithm operation, all the links (nodes) 

whose index can be obtained by a transliteration of a same link (node) string are topologically 
equivalent O>. This means that, in the case of links, they are loaded by the same number of 
paths while, for the nodes, this means that they have the same configuration of incoming and 
outgoing links. 

A detailed description of the above routing algorithm for KNs and DNs and its properties can 
be found in [9] and [8], respectively. 

In order to evaluate the throughput performance ofMLK (MLD), Nu(fm.ax) and Nh(fmax) must 
be evaluated. That would imply the count of the number of paths crossing each network link. 

As for the uniform component, a useful upper bound for NuCfmax), that holds for both 
topologies, can be easily found. The generic path passing through { = <lk.lk-1 , ... ,11 .lo> can be 
written as ~a·~~. wherein (}.;;;a+~k-1. All the possible origin nodes Yr. of the path are such 
that Yr.= ~a'J.lk-a(t), while the possible destination nodes 'Bare such that 'B = Ak-b(l)·~b· An 
upper bound of the maximum number of paths passing through V fe Lis obtained by assigning 
all the possible values to ~a and ~. i.e. 

k-1 k-1-a 
N _ ~ ~ (a+b) _ kpk(p-l)-pk+1 (S) 
UP-~ ~p - (p-1)2 

Nup provides an upper bound for the exact number of paths crossing a generic link £ In fact, 
shorter paths connecting Yr. and 'B not passing through {could exist. The number of these paths 
must be taken into account to determine N11(fm.ax). However, in most cases Nw=Nu(fm.ax); this 
occurs in the following conditions: 
• for Kautz topology, if k52p-2; in fact, there exists a link such that no shorter path can be 

found among those counted in Nup; in the string relevant to this link at most one digit is 
repeated, and this digit appears neither in lk nor in lo. For example, the string <0121314> 
(and any its transliteration) represents the most loaded link in a (4,6) KN. 

Cll A transliteration of the string <Xk,Xk-lo····Xt> is any string such that at least one digit is substituted, and 
the equality and inequality relations are kept. For example, iu a (2,2) KN the links <010>, <101>, <020>, 

<202>, <121> and <212> are all transliterations of the same link. 
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• for De Bruijn topology, the condition is k5:2p-4; in fact, in addition to the above statements, 
the constraint that two occurrences of the repeated digit cannot be adjacent in the string must 
be taken into account. This constraint is automatically satisfied in the case of KNs. The 
string <0121314> represents the most loaded link in a (5,6) DN. 

If the above conditions are not satisfied Nu({) is here evaluated by enumeration. 
As far as Nh({) is concerned, a closed form expression is not presently available; so its 

evaluation was carried out by enumeration. 
Figures 6 and 7 plot the maximum throughput of MLK and MLD vs. a, respectively. It is to 

be noted that, in both cases, the network performance depends on the position of the hot-spot 
node. In fact, the number of paths crossing the links outgoing from a node varies with the node 

index, i.e., the network nodes are not topologically equivalent. Consequently, for each value of 
a, there exist a best and a worst position for the hot-spot node; therefore, in the figures the 
throughput performance is represented by a region delimited by the curves corresponding to the 
best and worst placement of the hot-spot. It is to be noted that the curves relevant to SN, KN 
and DN cannot be ~antitatively compared, since they are relevant to networks of different size. 

Figure 6 plots TmaxLK(a) vs. a for k=2,3 and for p=2,3. It should be noted that, when k=2 
(whichever pis), all the node indexes can be derived from the index of a node by means of a 

transliteration, and therefore they are all topologically equivalent. Consequently, the hot-spot 
placement has no impact on the throughput. 
If k=3, in the two cases reported here, the best hot-spot position is the same for any value of 

a, and the throughput decrease caused by a wrong hot-spot placement is not sensitive. 
For higher values of k it has been verified that the best hot-spot position varies with a, 

although the relevant curves still have the same qualitative behaviour. 

1.6r----------=--------~--------~: --------~:--------~ 

::5 l;! 1 4 ............... ) ................. ; ................. :............ . 
:::EE. • : : --i 1.2 ··········· ···+···············j·················[·--·········----
-5.1 
::l 
~ 
-£ 0.8 
"C 

-~ 0.6 
a; 
E 
0 z 

0.2 0.4 0.6 0.8 

Hot spot factor - a 

Figure 6 Throughput limits for Kautz graphs, p = 2 and 3. 

p=2 

p = 3 ... 

Figure 7 plots Tm!w(a) vs. a fork= 2,3 and for p = 2,3. In the DN case, it resulted that in 

most cases the best hot-spot position varies with a. 
For example, in the (2,3) case for low values of a (a:>;0.3) the best position for the hot-spot 

is in the node <000> (or equivalently in <111>). That can be justified by considering that the 

links incoming and outgoing in these nodes are those less loaded by the uniform traffic. 

Consequently, the addition of the hot-spot traffic component on these links does not cause a 
more stringent bottleneck to be introduced in the network; conversely, the load on the bottleneck 
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links (<1001> and <0110>) decreases, since it is mostly determined by the uniform traffic 
component. This causes a growth of the maximum throughput for low values of a. As the 
traffic unbalance further increases, the best hot-spot position moves to <010> (or <101>). In 
fact, since the nodes <000> and <111> have only one incoming and one outgoing link (the 
recirculating links don't carry traffic) for high values of traffic unbalance these links would 
become very stringent bottlenecks. The new position of the hot-spot node causes the bottleneck 
links to be <0101> and <1010> for any further increase of a. The same considerations can be 
carried out for p=3. The case (2,2) is somehow degenerate since the uniform traffic component 
is the same on all the links (excluding<(){)()> and <111>); consequently, the best hot-spot 
position is always the same (<01> or <10>), and the maximum throughput decreases with a. 
As it can be noted, in the case of ON an inconvenient placement of the hot-spot node can lead to 
a sensitive worsening of the network performance. 

1.2 r--::::::==lP"-~----....--------.----------, 

0 
0 0.2 0.4 0.6 0.8 

Hot spot factor - a 

Figure 7 Throughput limits for De Bruijn graphs, p = 2 and 3. 

5. PERFORMANCE COMPARISON 

In the following, the performance of the three logical topologies, with respect to the maximum 
throughput they can carry in a hot-spot traffic configuration, will be analyzed. 

Figures 8 and 9 plot the maximum normalized throughput vs. the network size N for SN, DN 
and KN, for a= 0, 0.2 and 1 and for p = 2 and 4, respectively. In the case of SN, both Tm?; 
(a) and UGOMR(a) are plotted. The former represents the basic performance of SNs, while the 
latter represents the best obtainable performance for these networks with minimum length 
routing algorithms. Although the curve of UcoMR(a) cannot be actually reached unless a 
globally optimized algorithm is used, the performance of locally optimized adaptive algorithms 
can be very close to it [7]. 

If a value of a;t() is fixed, the curves relevant to Tm?; (a) for SNs tend toward 0 as 2/aN, 
independently of p [7]. That can be explained by observing that, from eq. (3), Nh(f,ax) is equal 
to (k-l)pk, while the hot-spot component on all the other hot-spot outgoing links is equal to 
kf}'L 1-(k-1 )pk = JiL 1. Consequently, the remaining p-1 links outgoing from the hot-spot have 
a negligible effect on the throughput limit 
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Conversely, from eq. (4) it results that, when the tenn C1(k,a) dominates, the curves relevant 
to UGOMR(a) tend to 0 as 2plaN. Consequently, they are shifted upwards with respect to those 
relevant to Tm: (a). By comparing C1(k,a) and C2(k,a) it can be seen that, for increasing 
values of k and p, C1(k,a) is greater than C2(k,a) even for very small a. Conversely, for a=O 

it is always Ct(k,a) < C2(k,a). The considerable difference between UGoMR(a) and Tm: (a) 
for a:;f() can be intuitively explained by considering that, for increasing network size, FR is not 
able to reroute through alternative paths the traffic component which is not direct to the hot-spot 
node. Moreover, the asymptotic behaviour of the curves relevant to FR does not depend on p. 

From the graph it results that also in the case of DNs and KNs the maximum throughput has 

the same behaviour for increasing values of N, i.e., it tends to 0 with decay rate 1/aN. In all the 
cases, the perfonnance of MLK and MLD is between that of FR and GOMR; in most cases, 
Tm'!LK (a) practically coincides with UGoMR(a). 
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6. CONCLUSIONS 

The throughput perfonnance of Multihop Networks loaded by hot-spot traffic and operating 
according to minimum path length routing strategies has been analyzed. Three logical topologies 
based on Perfect Shuffle graphs, Kautz graphs and De Bruijn graphs have been considered. 

Analytical expressions of maximum throughput values have been utilized for ShuffleNets; 
whereas, for Kautz and De Bruijn networks, a lower bound has been found which, in most 
cases, provides the exact throughput value. When this is not true, a path enumeration technique 
for the throughput evaluation has been used. 

From the analysis it turned out that the throughput perfonnance of the three topologies is 
qualitatively equivalent. More precisely, ShuffleNets and Kautz networks always slightly 
outperfonn De Bruijn graphs, while they have throughput perfonnance practically coincident. 

Generally speaking, the network perfonnance depends fundamentally on the number of 
network nodes, whereas the impact of the particular choice of p and k is negligible for all the 
topologies. The only distinctive element among these topologies consists in the higher flexibility 
of ShuffleNets, since in these networks the hot-spot can be placed indifferently in each node. 

Further work is now proceeding to fmd closed fonn expressions for the maximum throughput 
for Kautz and De Bruijn topologies. Moreover, impact on adaptive routing schemes on Kautz 
and De Bruijn networks have to be analyzed. 
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