
4
Communications are
Design Methodology
Tolerant Concurrent

A.M. Tyrrell
Department of Electronics

Everything:
for Fault­
Systems

University of York, Heslington, York, YOJ 5DD, Email:
amt@ohm.york.ac.uk

Abstract

A

Limiting the extent of error propagation when faults occur and localising the subsequent error
recovery are crucial elements in the design of fault tolerant parallel processing systems. Both
activities are made easier if the designer associates fault tolerance mechanisms with the
underlying communications of the system. With this in mind, this paper has investigated the
design of such systems, which enforces a design concentrating on the modelling and analysis of
interprocess communications providing a better match between the needs of the fault-tolerant
mechanisms and the communication structures themselves.

Keywords
Fault-tolerance, concurrent systems, communications, software design.

I INTRODUCTION

A distributed processing system, comprising a set of discrete processing units, offers the user
not only the prospect of increased efficiency and throughput through parallelism, but its inherent
redundancy might also be exploited to enhance reliability. To do so requires a properly designed
fault tolerance infrastructure which maintains the integrity of the system under fault conditions,
in particular communications. This paper describes a design methods which concentrates on the
communications within the system, which facilitates the design, placement and implementation
of fault-tolerant software mechanisms across a parallel system to ensure safe operations in the
presence of faults.

Fault tolerance is often incorpomted into a design as a ruggedisation process to protect a
process or set of processes regarded as critical to safe system operation (Lee and Anderson
1991). The fault tolerdnce mechanisms are required to recognise faults by the errors they cause
and to prevent error migration from the faulty process to elsewhere in the system, so that error
recovery is localised. The extent of the error recovery operation can be limited if the
communications structure in the system can be analysed accurately, and a boundary can be
identified within the state-space of the distributed system across which error propagation by
interprocess communication is impossible; it must include all processes which interact with the
function being protected and exclude all processes that do not interact with it. In other words,
the state-space of the system ha.o; to be partitioned into a hierarchy of atomic actions (Jalote and
Campbell 1986). It is then possible to design a distributed error detection and recovery
mechanism around the atomic action which ensures that all the processes affected by the fault

I. Jelly et al. (eds.), Software Engineering for Parallel and Distributed Systems
© IFIP International Federation for Information Processing 1996

40 Part One Research Papers

co-operate in recovery. This localisation of fault tolerance simplifies the design and can help to
meet timing constraints in real-time systems (Anderson and Knight 1983).

The design described in thi;; paper concentrates on the communications mechanisms within
an application, and within the fault tolerance mechanisms themselves. The design shows how
different communication structures help not only in the design of the particular application iL'!elf,
but more importantly in the design of the fault-tolerant mechanisms protecting the system
against faults latent in the system.

2 ATOMIC ACTIONS AND FAULT-TOLERANCE

Firstly, let us consider the crucial role communications play in the operation of fault-tolerant
mechanisms in a parallel processing environment. To an external observer the activity of a
process is defined by its sequence of external interactions; any internal actions (of which there
may be many) can not affect the external observer, at least until the next external interaction.
This allows the concept of an atomic action to be derived: the activity of a set of processes is
defined as an atomic action if there are no interactions between that set of processes and the rest
of the system for the duration of that activity. The extension to hierarchically nested atomic
actions is straightforward. These concepts are well-known in distributed transaction processing
(Mancini and Shrivastava 1988) from which tield many other attributes of atomic actions, such
as serialisability, failure atomicity and permanence of effect can be defined.

The process of identifying the atomic actions within a parallel system design brings into
clear focus the structure of interprocess interactions and thus the route by which errors might
propagate under fault conditions - an obviously crucial aspect in the detection and
implementation of the fault tolerant mechanism. All common mechanisms for providing fault
tolerance in parallel systems, such us forward error recovery (Rundell 1975), N-version
programming (Avizienis 1985), conversations (R;mdcll 1975), consensus recovery blocks
(Scott et al. 1987) and distributed recovery blocks (Kim and Welch 1989), have to cope with
error confinement and achieve this by imposing logic structures 'around' atomic actions.

A generalised fault tolerant mechanism could be considered as a co-ordinated set of
recoverable blocks. with one recoveruble block in each interacting process, 11llowing distributed
error detection and recovery. The mechanism is bounded by a set of start states (entry line), a
set of finish states (exit li11e) and two side walls which completely enclose the set of interacting
processes which are party to the mechanism, and across which interprocess interactions are
prohibited. The structure is indicated diagrammatically in Figure I. Note that it is the
communication pattern that defines the side walls, processes which are interacting are within the
side walls (processes R. S and T), processes which do not interact are outside the side walls
(processes P and Q).

Two types of communications are illustmted in Figure I; the lines between the 'recoverable
processes' represent the application inteructions, and are of a consequence of data requirements
between the parallel processes. It is these interactions th<ll will define where atomic action exist
within the system structure, and thus where fmllt-tolerunt mechanisms should be placed. The
second type of communications are those forced upon the application by the fault-tolerant
mechanisms. These will typically consist of exchanging data values for voting and/or for
comparison, of passing reconfigumtion information and signals around the system, and for the
recovery of the parallel processes within the fault-tolerant mechanism. This second class of
communicntion would not be present in non fault-tolerant systems, and in many respects should
be more secure thm1 the 'normal' applicntion communicutions.

The entry line defines the start of the atomic action and consists of a co-ordinated set of
recovery points for the participating processes. These processes may enter the atomic action
asynchronously. The exit line comprises u co-ordinated set of acceptubility tests, or voting
procedures. Only if ull participating processes pass their respective acceptability tests (or the
voting procedures are successful) is the mech<mism deemed successful and all processes exit, in
synchronism, from the action. If any acceptability test is failed, recovery is initiated and

Communications are everything 41

processing "passed" to another set of recoverable processes, or set of actions. Thus all
processes in the atomic action co-operate in error detection . Note how both synchronous and
asynchronous communication structures are present in these mechanisms.

PnJt.'CS"-''"'
tiUt)ldc
wnrn~ .:.lll1ion

lnl~r.-.1in!!
Jlft"""''';~

Figure I. The structure of a fault tolerant mechanism involving processes R, S, and T.

Any attempt to incorpomte an entry line and an exit line at arbitrary locations in a concurrent
system is unlikely to lead to a properly formed recovery mechanism . . It is necessary to identify a
boundary within the state space of the complete set of processes across which error propagation
by communication is prevented (Tyrrell and Carpenter 1995). Clearly, this boundary will be the
boundary of an atomic action. since stu.:h a boundary, of necessity, prohibits the passing of
information to any process not involved in the atomic action and similarly embraces all
interacting processes within the atomic action. Recovery mechanisms can be nested
systematically in the same hiemrchical fashion as atomic actions. If this duality is not imposed,
then should the system attempt to backtrack and recover in response to a fault, progressive
collapse by the domino effect (Randell 1975) can occur.

3 FAULT MODEL

It is important at this stage to say a little about the types of faults that can be expected in the
systems that are being considered. The fault model for these system comprises of both software
and hardware faults.

Hardware Faults:

dead processor (due to failure of processor or support chips),
dead interprocessor communication (due to failure of communication hardware),
erroneous interprocess communication (due to transient fault in processor or communication
hardware).

42 Part One Research Papers

Software Faults :

differential mode faults (ie. software versions fail independently of each other),
common mode faults (ie. software versions fail in same manner under the same conditions),
faults due to difficulty factor (ie. versions fail in different ways under the same system
conditions).

While more subtle and complete fault models have been suggested, this fault model provides
sufficient ability to give a good idea of the effectiveness of the fault-tolerant mechanisms under
consideration.

4 COMMUNICATIONS MODEL

A common communications model used in many fault tolerant systems is that of communicating
sequential processes (CSP). This model provides a synchronous non-buffering
communications procedure only. While this allows analysis of communications structures, and
a effective implementation environment, eg transputers, there are some limitations to this model
when used for fault-tolerant mechanism design and implementation. This form of
communication is useful for the description of communications that are required between
processes that are being forced into synchronous operation at points through their non­
synchronous (asynchronous) execution. Problems do occur when implementing and analysing
such system designs, when time-outs are introduced to prevent these synchronous
communications from allowing a faulty process to stop non-faulty processes.

A more comprehensive suite of communication mechanisms are required if fault-tolerant
mechanisms are to be really useful in real applications. Such a communications model has been
described by Simpson (Simpson 1994a). This communications model will be used here to
design fault-tolerant mechanisms and show how they would be implemented with such a model.

The communications model can be broadly categorised into one of four regions (Simpson
l994b), this is illustrated in Figure 2.

Destructive Non Destructive
Reading Reading

RectJerccm Reader cannot
he he/Jut> be held II[>

Destructi vc + + Writing

Writer Cllmrot
he held up SIGNAL POOL

Event Dllla Reference Data

Non Destructive + ~ Writing

Writerccm CHANNEL CONSTANT
he helclut> Me.uage Delta Cmifiguratimr Data

Figure 2 Communication Model.

Communications are everything 43

Interaction Function Symhul Writer Can Be Reader Can Be
Held Up Held Up

POOL + N N

SIGNAL + N y

CHANNEUBOUNDED RUFFER + y y

STIMULUS/INTERRUPT + N y

RENDEZVOUS + y y

HANDSHAKE + y y

OVERWRITING BUFFER + N y

CONSTANT ~ . N

REMOTE FUNCTION CALL + y y

REMOTE THREAD INVOCATION + y y

Figure 3 Enhanced Communication Model.

In (Simpson J994b) these communication models are described as follows: Pools allow
reference data to be passed from one function to another. This data is retained within the pool
where it can be consulted at any time by the reader and refreshed at any time by the writer.
Signals allow event data to be passed from one function to another. This data can be overwritten
at any time by the writer, but can only be actioned once by the reader. The signal is important in
real-time systems as it avoids back propagation of temporal interaction effects. Channels allow
message data to be passed from one function to another. It is normal for channels to have a
capacity of more than one, when they become synonymous with a bounded buffer. The
message in a channel cannot be lost. Constant.~ can be considered as configuration data, and
provide a write-once capability.

44 Part One Research Papers

Note in this model the categories are with respect to destructive reading and writing. Within
this simple model, "standard" message passing can be lixed, as can a form of shared data space,
asynchronous data, and even global duta.

This model can be further enhanced to incorporate system characteristics such as buffer size
(shown as n or 0), uni- and bi-directionality (shown by the arrows on lines) and non-data
passing (ie stimulus only) indicated by a blob. This enhanced model (Simpson 1994b) is
shown in Figure 3.

These enhancements give what is thought as a full model of communication procedures
required to describe computer systems. It is noted in (Simpson 1994a) that signal and pool
variants are the most useful for real-time applications. These are difficult to model in
synchronous-only models, however this model provides the dynamic characteristics required
for these models. We will now go on to show how this communications model can be used to
design fault-tolerant mechanisms in a parallel environment.

5 FAULT-TOLERANT DESIGN FOR CONCURRENT SYSTEMS

The use of atomic actions enables many of the problems associated with introducing fault­
tolerance into distributed/parallel system to be solved. One of the major problems with these
ideas is that in order to identify processes that may be considered atomic actions, the dynamics
of the processes and thus the state space of the system must be modelled. The author has
successfully achieved such analysis by using Petri-net and GMB graphical methods, and CSP
mathematical methods (Carpenter and Tyrrell 1989, Tyrrell and Holding 1986, Tyrrell and
Carpenter 1995).

For the introduction of fault-tolerant mechanisms to aid the system designer, there should be
provided a set of framework proa.ue.1· within which the application program will sit. The
structure of these framework processes should he of no concern to the application designer, the
only application specifics in its incorporation into the design should be the design of the error
detection mechanisms (whether hardware or software, this will always he application
dependent), and in the actual placement of the framework process across the distributed/parallel
system.

Once the atomic action boundaries have been identified, the chosen framework process
(such as, forward error recovery, backward error recovery, and error masking) can then be
placed around these safety critical application processes. We will now look at one of these
mechanisms, and see how the communications model helps in its design (and in a final
implementation).

Enhanced Distributed Recovery Blocks.

The mechanism used is based on distributed recovery blocks (Kim and Welch 1989). Jt is
a~·gued that distributed recovery blocks (ORB) are well suited for real-time control applications
smce:

ORB require code versions of graded complexity; a requirement which should easily be
satisfied by the plethora of new and classical control theories which are in existence,
ORB offers distributed operation over a number of redundant processing nodes,
In the event of a li.llllt ORB dynamically reconfigures the opcrution of these nodes in order to
obtain the maximum possible performance from the hardware available,
In the event of faults ORB will fail gracefully, always using the highest graded code version
available to it,
ORB relies on acceptance tests, rather than voting, to judge the correctness of results; this is
important as voting between alternative control algorithms can be unreliable due to their
tendency to produce correct, hut different results,

Communications are everything 45

ORB is proposed as a uniform way of dealing with hardware and software faults; it obviates
the need to identify the origin of a fault, which is a costly overhead in terms of time, and has
been a major difficulty in real-time computing designs.

ORB are based on the standard method of recovery blocks, Figure 4. The enhancements
incorporated within ORB include the concurrent execution of the try blocks over a distributed
network of processing nodes and the dynamic rcconfiguration of nodal operations in the event
of a fault. The systems proposed in this paper takes the basic ORB and introduces extra
acceptance tests to reduce the chances of Byzantine type errors and is termed an Enhanced ORB
(EORB), Figure 5. The acceptance test in the EORB scheme are carried out concurrently on N
different nodes. In addition the local database of previous data which is maintained on each
node will be exactly the same. The ORB maintains separate databases on each node these are
regularly exchanged and compared, thus guaranteeing that they are the same and eliminating the
need for any form of roll-hack recovery in the event of a detected error. EORB performs a vote
at the start of every iteration to ensure each node is operating with exactly the same data.

lnptn

()Ulf'M.II

Figure 4 Distributed Recovery Block.

6 COMMUNICATION FAILURES

In an earlier paper on the EORB (Eiphick et al. 1993), a design was reported which in addition
to designing the EDRB around real-time applications a number of features were added to the
design to help cope with communication failures. When implemented with a CSP model, link
procedures were used to detect communication failures (or time-outs), ensuring that other non­
failed nodes continued to operate correctly. Reinitialisation procedures were also used to reset
failed nodes and allow them to be re-included on the next iteration of the loop (assuming non­
permanent hardware faults). The calculation of these time-outs were non-trivial and prone to
errors.

These link procedures where very much a consequence of the CSP, synchronous model
used. Here it is shown how this new communications model gives a more general solution,

46 Part One Research Papers

allowing particular interactions between parallel processes to be more closely modelled by
specific communication structures.

~

Figure 5 Enhanced Distributed Recovery Block.

Generally. it can be seen in this design that the communications consist of a number of
signal and overwriting buffers, and channel or bounded buffer interactions. During the
application processing itself, some reference data may be read/written - illustrated by the pool
interactions. Indeed some timing information is likely within this process itself, and can be
easily specified using this design method. A simple control loop is shown in Figure 6
(Simpson 1994a) illustrating this design method. More detail of this is given in (Simpson
1994a). The choice of whether the interaction should be a signal or a channel is dependant on if
the writer should (can) be held up by the reader or not. This is important, for example, when
interaction with processes external to the atomic action (ie at the input and output) so that the
processes time constraints do not affect the external environment (eg this could be the controlled
process). Another example for the use of signals is when the parallel processes are exchanging
data for voting and comparison; here we would not wish the writing process to be held up. In
certain cases however, it is important that both writer and reader are held up, for example, when
the input data is read in and the processing cycle of each process is synchronised.

It appears that by using this new, more general communications model, the system design is
better suited to the functions required of it by the particular interactions between the parallel
processes. The richer set of communication primitives in this model enables explicit
communication structures to be built for specific jobs within the system; in particular in this
application, specific for the EDRB. These explicit communication structures force the designer
of the system to consider the most applicable structures for the particular interactions. This
should produce a design closer to the application, and hopefully a design that is less likely to
perform incorrectly in the final implementation. The implementation of such a system should

Communications are everything 47

also be easier than an equivalent one using just synchronous communications; Using this richer
set of communication structures, many of the timing problems associated with the purely
synchronous design disappear allowing a simpler design to be arrived at. Obviously, one hao; to
pay for such an improvement! Many of the problems associated with the purely synchronous
design methods are removed by the more "complex" set of mechanisms provided in this new
communication set. One could consider that the problems have now been removed to the
hardware mechanisms controlling the communications. This assumes that hardware
mechanisms are available to implement the different communication structures. It is mentioned
in (Simpson 1994b) that chip support for these communication primitives is being designed in
the form of a kernel executive chip and a comms executive chip.

his lory paramelcn;

Figure 6 Example Control Process.

7 CONCLUSIONS

This paper has proposed that communications are crucial to the design, and implementation of
fault-tolerant mechanisms applied to parallel processing systems. It has shown how a more
general model of communications, than that of synchronous communications, can provide better
mapping from what is required in fault-tolerant mechanisms. This has been illustrated by a
design of a particular fault-tolerant mechanism, but as with the concept of atomic actions, these
are general conclusions and should be applied to all fault-tolerant mechanisms designed for
operation within a parallel environment.

It has been shown in previous papers that atomic actions should form the basis for fault
tolerant mechanisms in a parallel environment; this paper shows how they can be designed and
implemented in a systematic, proper fashion. Work is continuing to improve this design
method for fault-tolerant mechanisms, as is an implementation of these communication
structures by others.

It was proposed in a previous paper (Tyrrell 1994) that a set of design procedures for fault­
tolemnt distributed/parallel systems could he as follows:

design a set of application processes,

48 Part One Research Papers

model these using an appropriate state space method,
identify the safety critical functions of the system,
identify the atomic actions associated with these safety critical processes,
place the appropriate framework process(es) around these atomic actions,
design error detection mechanisms tor the application in question.

The ideas proposed in this paper would support these design procedures, and enhance them by
the introduction of a rich set of communication primitives allowing the mappings from one stage
of the design to the next to be achieved easily and naturally.

8 ACKNOWLEDGEMENT

The author would like to thank Geof Carpenter and Hugo Simpson for their ideas on some of
the work related in this paper.

9 REFERENCES

Anderson, T. and Knight, J.C. (1983) A framework for software fault tolerance in real-time
systems. IEEE Transactions on Software Engineering, 9, 12, 355-364.

Avizienis, A. (1985) The N-version approach to fault-tolerant software, IEEE Transactions on
Software Engineering, 11, 12, 1491-150 I.

Carpenter, G.F. and Tyrrell, A.M. (19!19) The use ofGMB in the design of robust software for
distributed systems. Software Engineering Journal, 4, 268-282.

Elphick, J.R. Patton, R.J. and Tyrrell, A.M. (1993) Enhanced Distributed Recovery Blocks: A
Unified Approach tor the Design of Safety-Critical Distributed Systems. lEE Colloquium on
Safety Critical Distributed Systems, lEE London, Digest No: 1993/189.

Jalote, P. and Campbell, R.H. (1986) Atomic uctions for fuult tolerance using CSP. IEEE
Transactions on Softwure Engineering, 12, 1, 59-68.

Kim, K.H. and Welch, H.O. (1989) Distributed execution of recovery blocks: an approach for
uniform trel}tment of hardware and software faults in real-time applications. IEEE
Transactions on Computing, 38, 5, 626-636.

Lee, P.A. and Anderson, T. (1991) Fault Tolerance: Principles and Practice. Springer Verlag.
Mancini, L. V. and Shrivastavu, S. K. (1988) Replicution within atomic actions and

conversutions: a case study in fault-tolerance duality. FTCS-19, Chicago, 454-461.
Randell, B. (1975) System Structure for Software Fm•lt Tolerance. IEEE Transactions on

Software Engineering, 1, 220-232.
Scott, R.K. Gault, J.W. and McAllister, D. F. (1987) Fault-tolerant software reliability

modelling. IEEE Transactions on Software Engineering, 13, 5, 583-592.
Simpson, H.R. (1994a) Temporal Aspects of Real-Time System Design. lEE Colloquium on

Methods and Techniques for Real-Time System Development, lEE Press.
Simpson, H.R. (1994b) Architecture for Computer Bused Systems. Proceedings of the 1994

Tutorial und Workshop on Systems Engineering of Computer-Based Systems, Stockholm,
70-82.

Tyrrell, A.M. and Holding, D.J. (1986) Design of reliable softwure in distributed systems
using the conversution scheme. IEEE Transactions on Software Engineering, 12, 7, 921-
928.

Tyrrell, A.M. (1994) The Design of Fault Tolerant, High-Performance Control Systems. lEE
Colloquium on High-Pcrfonnunce Computing for Advanced Control, lEE London, Digest
No: 1994/241.

Tyrrell, A.M. and Carpenter, G.F. (1995) CSP Methods for Identifying Atomic Actions in the
Design of Fault Tolerant Concurrent Systems. IEEE Transuctions on Software Engineering,
21, 7 629-639.

Communications are everything 49

10 BIOGRAPHY

Dr Tyrrell received a 1st class honours degree in 1982 and a PhD in 1985, both in Electrical and
Electronic Engineering. He joined the Electronics Departmental York University in April 1990,
and was promoted to Senior Lecturer in 199.5. Previous to that he was a Senior Lecturer at
Coventry Polytechnic. Between August 1987 and August 1988 he was visiting research fellow
at Ecole Polytechnic Lausanne Switzerland. His main research interests are in the design of
parallel systems, fault tolerant design, software for distrihuted systems, simulation using
parallel computers and real-time systems. In the last live years he has puhlished over 60 papers
in these areas, and has attracted funds in excess of £500,000.

