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Abstract 

A 

Limiting the extent of error propagation when faults occur and localising the subsequent error 
recovery are crucial elements in the design of fault tolerant parallel processing systems. Both 
activities are made easier if the designer associates fault tolerance mechanisms with the 
underlying communications of the system. With this in mind, this paper has investigated the 
design of such systems, which enforces a design concentrating on the modelling and analysis of 
interprocess communications providing a better match between the needs of the fault-tolerant 
mechanisms and the communication structures themselves. 
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I INTRODUCTION 

A distributed processing system, comprising a set of discrete processing units, offers the user 
not only the prospect of increased efficiency and throughput through parallelism, but its inherent 
redundancy might also be exploited to enhance reliability. To do so requires a properly designed 
fault tolerance infrastructure which maintains the integrity of the system under fault conditions, 
in particular communications. This paper describes a design methods which concentrates on the 
communications within the system, which facilitates the design, placement and implementation 
of fault-tolerant software mechanisms across a parallel system to ensure safe operations in the 
presence of faults. 

Fault tolerance is often incorpomted into a design as a ruggedisation process to protect a 
process or set of processes regarded as critical to safe system operation (Lee and Anderson 
1991 ). The fault tolerdnce mechanisms are required to recognise faults by the errors they cause 
and to prevent error migration from the faulty process to elsewhere in the system, so that error 
recovery is localised. The extent of the error recovery operation can be limited if the 
communications structure in the system can be analysed accurately, and a boundary can be 
identified within the state-space of the distributed system across which error propagation by 
interprocess communication is impossible; it must include all processes which interact with the 
function being protected and exclude all processes that do not interact with it. In other words, 
the state-space of the system ha.o; to be partitioned into a hierarchy of atomic actions (Jalote and 
Campbell 1986). It is then possible to design a distributed error detection and recovery 
mechanism around the atomic action which ensures that all the processes affected by the fault 
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co-operate in recovery. This localisation of fault tolerance simplifies the design and can help to 
meet timing constraints in real-time systems (Anderson and Knight 1983). 

The design described in thi;; paper concentrates on the communications mechanisms within 
an application, and within the fault tolerance mechanisms themselves. The design shows how 
different communication structures help not only in the design of the particular application iL'!elf, 
but more importantly in the design of the fault-tolerant mechanisms protecting the system 
against faults latent in the system. 

2 ATOMIC ACTIONS AND FAULT-TOLERANCE 

Firstly, let us consider the crucial role communications play in the operation of fault-tolerant 
mechanisms in a parallel processing environment. To an external observer the activity of a 
process is defined by its sequence of external interactions; any internal actions (of which there 
may be many) can not affect the external observer, at least until the next external interaction. 
This allows the concept of an atomic action to be derived: the activity of a set of processes is 
defined as an atomic action if there are no interactions between that set of processes and the rest 
of the system for the duration of that activity. The extension to hierarchically nested atomic 
actions is straightforward. These concepts are well-known in distributed transaction processing 
(Mancini and Shrivastava 1988) from which tield many other attributes of atomic actions, such 
as serialisability, failure atomicity and permanence of effect can be defined. 

The process of identifying the atomic actions within a parallel system design brings into 
clear focus the structure of interprocess interactions and thus the route by which errors might 
propagate under fault conditions - an obviously crucial aspect in the detection and 
implementation of the fault tolerant mechanism. All common mechanisms for providing fault 
tolerance in parallel systems, such us forward error recovery (Rundell 1975), N-version 
programming (Avizienis 1985), conversations (R;mdcll 1975), consensus recovery blocks 
(Scott et al. 1987) and distributed recovery blocks (Kim and Welch 1989), have to cope with 
error confinement and achieve this by imposing logic structures 'around' atomic actions. 

A generalised fault tolerant mechanism could be considered as a co-ordinated set of 
recoverable blocks. with one recoveruble block in each interacting process, 11llowing distributed 
error detection and recovery. The mechanism is bounded by a set of start states (entry line), a 
set of finish states (exit li11e) and two side walls which completely enclose the set of interacting 
processes which are party to the mechanism, and across which interprocess interactions are 
prohibited. The structure is indicated diagrammatically in Figure I. Note that it is the 
communication pattern that defines the side walls, processes which are interacting are within the 
side walls (processes R. S and T), processes which do not interact are outside the side walls 
(processes P and Q). 

Two types of communications are illustmted in Figure I; the lines between the 'recoverable 
processes' represent the application inteructions, and are of a consequence of data requirements 
between the parallel processes. It is these interactions th<ll will define where atomic action exist 
within the system structure, and thus where fmllt-tolerunt mechanisms should be placed. The 
second type of communications are those forced upon the application by the fault-tolerant 
mechanisms. These will typically consist of exchanging data values for voting and/or for 
comparison, of passing reconfigumtion information and signals around the system, and for the 
recovery of the parallel processes within the fault-tolerant mechanism. This second class of 
communicntion would not be present in non fault-tolerant systems, and in many respects should 
be more secure thm1 the 'normal' applicntion communicutions. 

The entry line defines the start of the atomic action and consists of a co-ordinated set of 
recovery points for the participating processes. These processes may enter the atomic action 
asynchronously. The exit line comprises u co-ordinated set of acceptubility tests, or voting 
procedures. Only if ull participating processes pass their respective acceptability tests (or the 
voting procedures are successful) is the mech<mism deemed successful and all processes exit, in 
synchronism, from the action. If any acceptability test is failed, recovery is initiated and 
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processing "passed" to another set of recoverable processes, or set of actions. Thus all 
processes in the atomic action co-operate in error detection . Note how both synchronous and 
asynchronous communication structures are present in these mechanisms. 

PnJt.'CS"-''"' 
tiUt)ldc 
wnrn~ .:.lll1ion 

lnl~r.-.1in!! 
Jlft"""''';~ 

Figure I. The structure of a fault tolerant mechanism involving processes R, S, and T. 

Any attempt to incorpomte an entry line and an exit line at arbitrary locations in a concurrent 
system is unlikely to lead to a properly formed recovery mechanism . . It is necessary to identify a 
boundary within the state space of the complete set of processes across which error propagation 
by communication is prevented (Tyrrell and Carpenter 1995). Clearly, this boundary will be the 
boundary of an atomic action. since stu.:h a boundary, of necessity, prohibits the passing of 
information to any process not involved in the atomic action and similarly embraces all 
interacting processes within the atomic action. Recovery mechanisms can be nested 
systematically in the same hiemrchical fashion as atomic actions. If this duality is not imposed, 
then should the system attempt to backtrack and recover in response to a fault, progressive 
collapse by the domino effect (Randell 1975) can occur. 

3 FAULT MODEL 

It is important at this stage to say a little about the types of faults that can be expected in the 
systems that are being considered. The fault model for these system comprises of both software 
and hardware faults. 

Hardware Faults: 

dead processor (due to failure of processor or support chips), 
dead interprocessor communication (due to failure of communication hardware), 
erroneous interprocess communication (due to transient fault in processor or communication 
hardware). 
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Software Faults : 

differential mode faults (ie. software versions fail independently of each other), 
common mode faults (ie. software versions fail in same manner under the same conditions), 
faults due to difficulty factor (ie. versions fail in different ways under the same system 
conditions). 

While more subtle and complete fault models have been suggested, this fault model provides 
sufficient ability to give a good idea of the effectiveness of the fault-tolerant mechanisms under 
consideration. 

4 COMMUNICATIONS MODEL 

A common communications model used in many fault tolerant systems is that of communicating 
sequential processes (CSP). This model provides a synchronous non-buffering 
communications procedure only. While this allows analysis of communications structures, and 
a effective implementation environment, eg transputers, there are some limitations to this model 
when used for fault-tolerant mechanism design and implementation. This form of 
communication is useful for the description of communications that are required between 
processes that are being forced into synchronous operation at points through their non­
synchronous (asynchronous) execution. Problems do occur when implementing and analysing 
such system designs, when time-outs are introduced to prevent these synchronous 
communications from allowing a faulty process to stop non-faulty processes. 

A more comprehensive suite of communication mechanisms are required if fault-tolerant 
mechanisms are to be really useful in real applications. Such a communications model has been 
described by Simpson (Simpson 1994a). This communications model will be used here to 
design fault-tolerant mechanisms and show how they would be implemented with such a model. 

The communications model can be broadly categorised into one of four regions (Simpson 
l994b), this is illustrated in Figure 2. 

Destructive Non Destructive 
Reading Reading 

RectJerccm Reader cannot 
he he/Jut> be held II[> 

Destructi vc + + Writing 

Writer Cllmrot 
he held up SIGNAL POOL 

Event Dllla Reference Data 

Non Destructive + ~ Writing 

Writerccm CHANNEL CONSTANT 
he helclut> Me.uage Delta Cmifiguratimr Data 

Figure 2 Communication Model. 
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Interaction Function Symhul Writer Can Be Reader Can Be 
Held Up Held Up 

POOL + N N 

SIGNAL + N y 

CHANNEUBOUNDED RUFFER + y y 

STIMULUS/INTERRUPT + N y 

RENDEZVOUS + y y 

HANDSHAKE + y y 

OVERWRITING BUFFER + N y 

CONSTANT ~ . N 

REMOTE FUNCTION CALL + y y 

REMOTE THREAD INVOCATION + y y 

Figure 3 Enhanced Communication Model. 

In (Simpson J994b) these communication models are described as follows: Pools allow 
reference data to be passed from one function to another. This data is retained within the pool 
where it can be consulted at any time by the reader and refreshed at any time by the writer. 
Signals allow event data to be passed from one function to another. This data can be overwritten 
at any time by the writer, but can only be actioned once by the reader. The signal is important in 
real-time systems as it avoids back propagation of temporal interaction effects. Channels allow 
message data to be passed from one function to another. It is normal for channels to have a 
capacity of more than one, when they become synonymous with a bounded buffer. The 
message in a channel cannot be lost. Constant.~ can be considered as configuration data, and 
provide a write-once capability. 



44 Part One Research Papers 

Note in this model the categories are with respect to destructive reading and writing. Within 
this simple model, "standard" message passing can be lixed, as can a form of shared data space, 
asynchronous data, and even global duta. 

This model can be further enhanced to incorporate system characteristics such as buffer size 
(shown as n or 0), uni- and bi-directionality (shown by the arrows on lines) and non-data 
passing (ie stimulus only) indicated by a blob. This enhanced model (Simpson 1994b) is 
shown in Figure 3. 

These enhancements give what is thought as a full model of communication procedures 
required to describe computer systems. It is noted in (Simpson 1994a) that signal and pool 
variants are the most useful for real-time applications. These are difficult to model in 
synchronous-only models, however this model provides the dynamic characteristics required 
for these models. We will now go on to show how this communications model can be used to 
design fault-tolerant mechanisms in a parallel environment. 

5 FAULT-TOLERANT DESIGN FOR CONCURRENT SYSTEMS 

The use of atomic actions enables many of the problems associated with introducing fault­
tolerance into distributed/parallel system to be solved. One of the major problems with these 
ideas is that in order to identify processes that may be considered atomic actions, the dynamics 
of the processes and thus the state space of the system must be modelled. The author has 
successfully achieved such analysis by using Petri-net and GMB graphical methods, and CSP 
mathematical methods (Carpenter and Tyrrell 1989, Tyrrell and Holding 1986, Tyrrell and 
Carpenter 1995). 

For the introduction of fault-tolerant mechanisms to aid the system designer, there should be 
provided a set of framework proa.ue.1· within which the application program will sit. The 
structure of these framework processes should he of no concern to the application designer, the 
only application specifics in its incorporation into the design should be the design of the error 
detection mechanisms (whether hardware or software, this will always he application 
dependent), and in the actual placement of the framework process across the distributed/parallel 
system. 

Once the atomic action boundaries have been identified, the chosen framework process 
(such as, forward error recovery, backward error recovery, and error masking) can then be 
placed around these safety critical application processes. We will now look at one of these 
mechanisms, and see how the communications model helps in its design (and in a final 
implementation). 

Enhanced Distributed Recovery Blocks. 

The mechanism used is based on distributed recovery blocks (Kim and Welch 1989). Jt is 
a~·gued that distributed recovery blocks (ORB) are well suited for real-time control applications 
smce: 

ORB require code versions of graded complexity; a requirement which should easily be 
satisfied by the plethora of new and classical control theories which are in existence, 
ORB offers distributed operation over a number of redundant processing nodes, 
In the event of a li.llllt ORB dynamically reconfigures the opcrution of these nodes in order to 
obtain the maximum possible performance from the hardware available, 
In the event of faults ORB will fail gracefully, always using the highest graded code version 
available to it, 
ORB relies on acceptance tests, rather than voting, to judge the correctness of results; this is 
important as voting between alternative control algorithms can be unreliable due to their 
tendency to produce correct, hut different results, 
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ORB is proposed as a uniform way of dealing with hardware and software faults; it obviates 
the need to identify the origin of a fault, which is a costly overhead in terms of time, and has 
been a major difficulty in real-time computing designs. 

ORB are based on the standard method of recovery blocks, Figure 4. The enhancements 
incorporated within ORB include the concurrent execution of the try blocks over a distributed 
network of processing nodes and the dynamic rcconfiguration of nodal operations in the event 
of a fault. The systems proposed in this paper takes the basic ORB and introduces extra 
acceptance tests to reduce the chances of Byzantine type errors and is termed an Enhanced ORB 
(EORB), Figure 5. The acceptance test in the EORB scheme are carried out concurrently on N 
different nodes. In addition the local database of previous data which is maintained on each 
node will be exactly the same. The ORB maintains separate databases on each node these are 
regularly exchanged and compared, thus guaranteeing that they are the same and eliminating the 
need for any form of roll-hack recovery in the event of a detected error. EORB performs a vote 
at the start of every iteration to ensure each node is operating with exactly the same data. 

lnptn 

()Ulf'M.II 

Figure 4 Distributed Recovery Block. 

6 COMMUNICATION FAILURES 

In an earlier paper on the EORB (Eiphick et al. 1993 ), a design was reported which in addition 
to designing the EDRB around real-time applications a number of features were added to the 
design to help cope with communication failures. When implemented with a CSP model, link 
procedures were used to detect communication failures (or time-outs), ensuring that other non­
failed nodes continued to operate correctly. Reinitialisation procedures were also used to reset 
failed nodes and allow them to be re-included on the next iteration of the loop (assuming non­
permanent hardware faults). The calculation of these time-outs were non-trivial and prone to 
errors. 

These link procedures where very much a consequence of the CSP, synchronous model 
used. Here it is shown how this new communications model gives a more general solution, 
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allowing particular interactions between parallel processes to be more closely modelled by 
specific communication structures. 

~ ... . . .. 

Figure 5 Enhanced Distributed Recovery Block. 

Generally. it can be seen in this design that the communications consist of a number of 
signal and overwriting buffers, and channel or bounded buffer interactions. During the 
application processing itself, some reference data may be read/written - illustrated by the pool 
interactions. Indeed some timing information is likely within this process itself, and can be 
easily specified using this design method. A simple control loop is shown in Figure 6 
(Simpson 1994a) illustrating this design method. More detail of this is given in (Simpson 
1994a). The choice of whether the interaction should be a signal or a channel is dependant on if 
the writer should (can) be held up by the reader or not. This is important, for example, when 
interaction with processes external to the atomic action (ie at the input and output) so that the 
processes time constraints do not affect the external environment (eg this could be the controlled 
process). Another example for the use of signals is when the parallel processes are exchanging 
data for voting and comparison; here we would not wish the writing process to be held up. In 
certain cases however, it is important that both writer and reader are held up, for example, when 
the input data is read in and the processing cycle of each process is synchronised. 

It appears that by using this new, more general communications model, the system design is 
better suited to the functions required of it by the particular interactions between the parallel 
processes. The richer set of communication primitives in this model enables explicit 
communication structures to be built for specific jobs within the system; in particular in this 
application, specific for the EDRB. These explicit communication structures force the designer 
of the system to consider the most applicable structures for the particular interactions. This 
should produce a design closer to the application, and hopefully a design that is less likely to 
perform incorrectly in the final implementation. The implementation of such a system should 
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also be easier than an equivalent one using just synchronous communications; Using this richer 
set of communication structures, many of the timing problems associated with the purely 
synchronous design disappear allowing a simpler design to be arrived at. Obviously, one hao; to 
pay for such an improvement! Many of the problems associated with the purely synchronous 
design methods are removed by the more "complex" set of mechanisms provided in this new 
communication set. One could consider that the problems have now been removed to the 
hardware mechanisms controlling the communications. This assumes that hardware 
mechanisms are available to implement the different communication structures. It is mentioned 
in (Simpson 1994b) that chip support for these communication primitives is being designed in 
the form of a kernel executive chip and a comms executive chip. 

his lory paramelcn; 

Figure 6 Example Control Process. 

7 CONCLUSIONS 

This paper has proposed that communications are crucial to the design, and implementation of 
fault-tolerant mechanisms applied to parallel processing systems. It has shown how a more 
general model of communications, than that of synchronous communications, can provide better 
mapping from what is required in fault-tolerant mechanisms. This has been illustrated by a 
design of a particular fault-tolerant mechanism, but as with the concept of atomic actions, these 
are general conclusions and should be applied to all fault-tolerant mechanisms designed for 
operation within a parallel environment. 

It has been shown in previous papers that atomic actions should form the basis for fault 
tolerant mechanisms in a parallel environment; this paper shows how they can be designed and 
implemented in a systematic, proper fashion. Work is continuing to improve this design 
method for fault-tolerant mechanisms, as is an implementation of these communication 
structures by others. 

It was proposed in a previous paper (Tyrrell 1994) that a set of design procedures for fault­
tolemnt distributed/parallel systems could he as follows: 

design a set of application processes, 
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model these using an appropriate state space method, 
identify the safety critical functions of the system, 
identify the atomic actions associated with these safety critical processes, 
place the appropriate framework process(es) around these atomic actions, 
design error detection mechanisms tor the application in question. 

The ideas proposed in this paper would support these design procedures, and enhance them by 
the introduction of a rich set of communication primitives allowing the mappings from one stage 
of the design to the next to be achieved easily and naturally. 
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