
22
SEMPA: Software Engineering Methods
for Parallel Scientific Applications

P. Luksch, U. Maier; S. Rathmayer; M. Weidmann
Lehrstuhl fur Rechnertechnik und Rechnerorganisation (LRR-TUM)
Institut fiir lnformatik, Technische Universitiit Miinchen
D-80290 Miinchen
e-mail: { luksch, maier; maiers, weidmann}@ informatik-tu.muenchen.de
WWW.· http://wwwbode. informatik. tu-muenchen.de/
Tel.: (089)2105-8164; Fax: (089)2105-8232

Abstract
SEMPA is an interdisciplinary project that brings together researchers from computer science, mechanical engi­
neering and numerical mathematics. Its central objective is to develop new software engineering (SWE) methods
for (distributed memory) parallel scientific computing. SEMPA is being funded by the BMBF*.

MOTIVATION

In many applications, fluid simulations are required because experiments are either impossible (such as in the
case of climate modeling) or are too expensive. Today, the main factor that limits the use of simulation is run­
time. Only parallel processing together with efficient numerical algorithms can achieve the performance that is
necessary to enable more wide-spread use of simulation. Providing the necessary computational power will make
simulations feasible in many areas where they would require unrealistic run-times today.ln mechanical engineering,
productivity can be considerably increased if flow simulations, which today have to be run as batch jobs overnight,
could be run interactively from a CAD program.

Parallel processing has developed successfully in the research area over the last years. Now, as there are
standardized message passing interfaces, such as PVM [GBD+94), MPI [MPI94] etc., portable software can be
developed for a wide range of hardware platforms- from (heterogeneous) networks of workstations (NOWs) to
high-end massively parallel systems (MPPs). Since even small companies usually have a number of workstations
connected by a local area network (LAN), developing parallel software on a commercial basis is becoming an
attractive option.

However, experience has shown that software development for parallel systems still is much less productive than
writing sequential programs. One reason for this is that there are no adequate tools for designing and analyzing

*Federal Department of Education, Research and Technology

I. Jelly et al. (eds.), Software Engineering for Parallel and Distributed Systems
© IFIP International Federation for Information Processing 1996

260 Part Two Project Reviews

parallel software. In addition, there are no software engineering (SWE) methods that address the problems related
to parallelism such as synchronization issues, deadlocks and non-detenninism. Finally, there is only very little
suppon for the software engineer who is faced with the problem of understanding and existing program in order to
parallelize it for execution on a distributed memory multiprocessor.

2 PARTNERS

LRR·TUM (Lehrstuhl ftir Rechnenechnik und Rechnerorganisation, Institut ftir Infonnatik, Technische Univer­
sitlit Milnchen). LRR-TUM is in charge of project management. Our research focuses on
• multiprocessor architectures
• tools for designing and analyzing parallel programs
• parallel and distributed applications
• distributed shared memory systems.

Advanced Scientific Computing GmbH (ASC) , Holzkirchen. ASC is developing and marketing the CFD sim­
ulation package TASCftow which solves the Navier-Stokes equations in 3d space. TASCftow is used in many
companies and universities for simulating flows in a wide range of applications [TUG95].

GENIAS Software GmbH, Neutraubling near Regensburg. The company markets a number of software packages
for NOWs and MPPs. They have developed the batch queuing system CODINE on NOWs, which will be the
basis for the resource to be developed in SEMPA.

lnstitut fiir Computeranwendungen (ICA HI), Universitlit Stuttgart. ICA's research is focused on robust multi­
grid methods for a wide range of probleml including computational fluid dynamics, flow in porous media
and computational mechanics. They have developed the software tool-box UG, which simplifies the adaptive
solution of partial differential equations on unstructured meshes in two and three dimensions.

3 OBJECTIVES

Software Engineering Methods. In parallel scientific computing, software engineers usually are faced with an
existing program or with existing modules, typically written in FORTRAN77, which they are expected to
parallelize for execution on a distributed memory multiprocessors (NOW or MPP). Therefore the focus of SWE
is on the following topics:
e Analysis of complex software systems.
e Approaches to Parallelization that are specific to cenain classes of scientific applications
e Standards for documentation and program development
e Portability: cover a wide range of hardware platfonns ranging from (low-end) NOWs to high perfonnance

MPPs.
e Modularity and Re-usability.
e Concurrent Software Engineering: coordinate the work of programmers from different disciplines and

institutions
ParallelizatioaofTASCftow. The software package solves the Navier-Stokes equation in 3d space on unstruc­

tured grids using a finite volume discretization and an algebraic multi-grid solver. The program is written in
FORTRAN 77 and has about 113,000 lines of code.

Load Balaaeing and Resource Management. A resource manager is being developed, which basically is a batch

Compatu
Scicacc

SEMPA

Academia

Flpre I partners involved in lhe project

Compurer
cience

261

queuing system for parallel applications running on NOWs. The individual processes of the application are
dynamically assigned to available processors (i.e. worksrations). The resource manager will support load
balancing by providing appropriate resource usage information and a mechanism to migrate processes from one
workstation ro another.

The result ofSEMPA will he

e a collection of SWE methods that have heen approved in practice,
e a prototypical implementation of the parallel version of TASCftow,
• a prototype of a resource and load manager for batch ellecution of parallel applications.

Upon completion of the research project, our industrial partners intend to develop further the prototypes of the
parallel CFD package and the resource manager towards products that can be marketed commercially.

262 Part Two Project Reviews

Figure 2 project objectives and their interactions

4 PROGRESS REPORT

The project has staned in April, 1995. Up-to-date information about progress as well as project re­
ports and publications related to SEMPA are available via WWW (URL http://wwwbode.informatik.tu­
muenchen.delparallelrechner/applications/sempal). In the subsequent section, we summarize the results achieved
so far.

4.1 Analyzing the sequential program

The first step in parallelizing TASCIIow has been to acquire the necessary understanding of the algorithms it uses
and their implementation. ASC and LRR-lliM have been organizing a series of meetings, covering the following
topics (in that sequence):

I. basics of CFD, i.e. the governing equations and their physical interpretation, discretization methods, and
numerical methods for solving the system of linear equations that results from discretization.

2. a global overview of the code structure and the main data structures.
3. a more detailed review ofTASCIIow's main modules, stepping through each module subroutine by subroutine.

Each meeting staned with a presentation by ASC, which was followed by a discussion. At LRR-TUM, we
documented our view of what we had learned in a meeting in form of an internal report, which then was reviewed

SEMPA 263

by ASC. This procedure has proved to be an efficient way for know-how transfer between groups from different
disciplines, since it has helped to identify and fix sources of misconception very early and quickly improved our
understanding of each other's terminology and point of view.

As a final step, a framework has to be set up that defines a standard for documenting the design of the sequential
program from the computer science point of view.

4.2 A Concept for ParalleUzing TASCftow

Based on the insight gained from analyzing the program structure, a parallelization concept has been defined and
documented [Luk95]. SEMPA follows a two-level concept of parallelism.

On the lop level the SPMD model is used. The sequential algorithmt is replicated in multiple processes each of
which operates on a partition of the problem description. An additional master process is used for program set up
and for doing UO. Using parallel UO systems, which are available for a number of platforms, is being considered,
too.

Partitioning is done node-based, i.e. the nodes of the (unstructured) grid are divided into disjoint sets. We use a
public domain graph partitioning package (MeTIS [MET95]) for assigning nodes to partitions.

Below the SPMD level of parallelism, parallelization is considered at the level of processing nodes. Each
replicated worker of the SPMD model can be furtherparallelized into a number of concurrent threads (light-weight
processes having access to shared memory). This second level of parallelism can make use of multiple CPUs per
processing node as they are available in new MPPs or workstations.

4.3 Interactive and automatic Parallelization Tools

The parallelization of an existing program, especially if it is complex and has been developed by many engineers
over a long time, is a quite difficult and error-prone task.

Research projects as well as commercial efforts during the last years have been dealing with this problem. Most
available tools are source-code analyzers for FORTRAN77 programs which parallelize according to the SPMD
model. One of those tools has already been subject of investigation within SEMPA. It is the quite sophisticated
interactive an automatic parallelization tool FORGE [Res95]. There the most significant loops are identified by
either using profiling information, or checking the code for the deepest loop nestings. Once the loops have been
chosen, the arro~ys referenced inside of them are partitioned and distributed according to the partitions. The parallel
processes then run the same program but only on a subset of the partitioned data structures following the so-called
owner computes rule.

The advantage of these tools is that the user can get a better understanding of the program that he is about
to parallelize. He also is taken off the burden to explicitly program message passing code. On the other hand he
anyhow has to have a good understanding of how message passing really works because the tools are not yet at a
point where they can produce efficient code. Neither can they really work on very complex packages as for example
TASCHow.

4.4 New Languages

Moving from FORTRAN 77 to newer programming languages meets the requirements of modern computer archi­
tectures, programming paradigms, and software engineering aspects. Fortran 90 for example offers not only more

t augmented hy additional code for communication and synchronization

264 Part Two Project Reviews

complell data structures and data encapsulation but also provides language constructs (array operations) for con­
current ellecution. The latest of all FORTRAN evolutions, High Performance Fonran, additionally has constructs

for ellplicit data distribution as well as constructs for ellpressing concurrency.
FORTRAN 77 compilers produce fast object code and numerous numerical programming libraries are available

due to its long time of ellistence. Object oriented design is still uncommon in scientific computing because the

compilers (e.g. for C++) do not yet generate optimized code that is comparable to the one generated by FOR­

TRAN 77 compilers. However, the fundamental ideas of object oriented programming- objects, class-hierarchies
and polymorphism - are of great advantage to modem software engineering and can help to overcome the gap

between the code development and its concept.
In SEMPA, we have decided that rewriting TASCflow as a whole in an object-oriented language is infeasible due

to manpower restrictions. Instead, we have selected a module of reasonable size for implementation in Fonran 90,

C++ (and possibly other languages) to demonstrate the integratability of object-oriented techniques to a scientific

application, and to evaluate the appropriateness of these languages for our purposes.

REFERENCES

[GBD+94) AI Geist, Adam Beguelin. Jack Dongarra, Weicheng Jiang. Robert Manchelt.. and Vaidy Sunderam.
"PVM: Parallel Vinual Machine- A Users' Guide and Tutorial for Networked Parallel Computing". MIT Press
(1994). www: http://www.netlib.org/pvm31booklpvm-book.html.

[Luk95] Peter Lu.lt.sch. A Concept for Parallelizing TASCflow. SEMPA-Repon SEMPA-TUM-95-05, Technis­
che Universitiit Milnchen, lnstitut filr lnforrnatik (September 1995). www: http://wwwbode.inforrnatik.tu­
muenchen.delarchiv/Projektberichte/SEMPA/ws-aug-95.ps.gz. draft version.

[MET95] "METIS: Unstructured Graph Panitioning and Sparse Matrill Ordering System". George Karypis and
Vi pin Kumar, University of Minnesota (1995).

[MPI94) MPI: A Message Passing Interface Standard. Technical repon University of Tennessee, Knoll ville, Message
Passing Interface Forum (May 1994).

[Res95] Applied Parallel Research. ''The FORGE Product Set". Applied Parallel Research Inc., 550 Main Street,
Placerville, CA 95667 (February 1995).

[TUG95) 3rd TASCflow User Conference - Presentations. Tech. Repon ASCGII'R-95-04, Advanced Scientific
Computing GmbH, Aying (May 1995).

