
24
A New Type of Fourth Generation
Language for Multimedia
Databases: Kasuga Script

Yukari Shirota, Hideaki Nakayama, and Atsushi Iizawa
Software Research Center, RICOH Company, Ltd.
1-1-17, Koishikawa, Bunkyo-ku, Tokyo, 112 JAPAN.
email: { shirota, nakayama, izw }<Osrc. ricoh. co. jp

Abstract
Creating a high-quality multimedia database application is a complex and labor-intensive
process. This problem has become especially acute with the advent of contemporary mul­
timedia systems that have become large and powerful at the expense of programming
ease and program maintenance. Using traditional relational database fourth generation
languages (4GLs), users cannot effectively develop the multimedia database applications
of today. Therefore a new type of 4GL is required. In the paper, we introduce a multi­
media database application development script called Kasuga Script, which our group
has developed from scratch. To help users write applications in Kasuga Script, Kasuga
Script offers object classes, both navigational and declarative query functionality, tags,
transvalue, and operation process.

Keywords
multimedia database, Kasuga Script, tag,operation process

1 INTRODUCTION

The paper describes a multimedia database application development script called Kasuga
Script, which our group has developed from scratch. For the design direction of Kasuga
Script, we adopted a script-oriented approach similar to Tcl/Tk (Ousterhout, 1994) and
Perl, which are widely known to increase programming productivity (The USENIX Asso­
ciation, 1995). In addition, as Kasuga Script is evaluated by an interpreter, it is also
possible to eliminate the delay caused by the edit-compile-execute cycles associated with
conventional program development. The system integration (SI) group in our software
center has developed many applications using Kasuga Script, and found it both easy to
use and highly productive. Before we designed Kasuga Script, we carried out a detailed
investigation of the labor-intensive work involved in multimedia database application pro­
gramming. This is because we thought that if the critical parts can written easily, the
total programming cost would be drastically reduced. We identified the following labor-

N. Terashima et al. (eds.), Advanced IT Tools
© Springer Science+Business Media Dordrecht 1996

208 Part Four Language Description

intensive tasks: (1) making a connection between a GUI widget on a screen and a database
field, and a data conversion between them; and (2) writing the many callback procedures.
Binding a database field and a GUI widget is one of the biggest jobs in the programming.
Another one is writing a lot of callback procedures. Conventional GUI toolkits require
the programmer to attach callback procedures to GUI widgets. These procedures are
called by the system when the user operates the widget to notify the application of the
user's actions. Unfortunately, real interfaces contain hundreds or thousands of widgets,
and therefore many callback procedures, most of which perform trivial tasks, resulting in
a maintenance nightmare (Myers, 1991).

Kasuga Script offers some mechanisms that allow the user to write these critical
parts much more easily. The paper illustrates the features of our Kasuga Script and
how Kasuga Script solves the existing problems of SQL and the traditional relational
model (Codd, 1970). The problems are: (1) difficulties with multimedia data independence
in the relational model; (2) difficulties with navigational data manipulation in pure SQL
queries*; and (3) impedance mismatch problems in embedded SQL.

2 OBJECT-ORIENTED LANGUAGE

For multimedia database application development, Codd's relational model is inadequate
because it has no functions for handling multimedia data. As a result, the application has
to check for consistency, instead of the DBMS (DataBase Management System). To solve
the problem, in recent years, the concept of ADT (abstract data type) or encapsulation in
the object-oriented paradigm has been introduced into database programming languages
(James, 1983, Osborn and Heaven, 1986). Nowadays, not only object-oriented database
programming languages but also 4GLs based on the relational model have imported the
solution for multimedia database applications.

Kasuga Script has also been designed as an object-oriented programming language.
In Kasuga Script, there are a lot of object classes including data manipulation results,
visual interface components called Kasuga widgets, and image data and a lot of methods
are built in it. With multimedia data classes, data in Kasuga Script are encapsulated
so that data independence can be maintained. In particular, Kasuga Script offers
variations of the class image data and image handling methods, such as dithering and color
map arrangement, and pattern recognition methods, such as OCR and line recognition.

Here is a multimedia application example that illustrates the pattern recognition func­
tions. Suppose that the application utilizes an OCR function to access database field data.
The operator need not input data from the keyboard. A Kasuga Script program with
the OCR functions can be written as shown in Figure 1. Figure 2 shows a screen of the
application. Through analyze_table(), table frames and strings in table cells are recognized
and then visually framed within borders. When an operator selectes a cell in the table,
ocr() is executed for that cell and a string generated by the OCR function is displayed
at the top of the screen. The recognition process generates its own internal data called
recognition objects. In addition, a Kasuga image widget has a function for displaying a
drawing surface where an operator can draw and handle drawing objects, such as lines
and rectangles. The two kinds of objects are bound together on the image widget. Hence,

*In the paper, we call a non-extended SQL a pure SQL.

A new type of fourth generation language 209

the recognized parts are automatically displayed in a different color or framed in a box
just after recognition, and conversely onscreen items or rectangle areas selected by an
operator are instantly identified by the recognition process and recognized. Consequently,
even if users have no knowledge about the recognition mechanism, they can easily write
a multimedia application with advanced pattern recognition functions.

var img :image; I* decralation of variable img */
screen(sc1) { /* create an image vidget imv *I

image(imv) :vidth 600 :height 500; };
scl.popup(); I* display imv •I
img.load("CATALOG image"); I* load image data from a file to img *I
scl.imv.put_image(img) :shared true; I* display the image data *I
img.divide_segmentO; I* recognize text areas and image areas •I
img.analyze_table() :selected; I* analyze tables in img •I

(vaiting for an operator toselect a cell in a table)
img.ocr() :selected; I* apply an OCR function to the selected cell *I

Figure 1: Kasuga Script program that uses pattern recognition functions.

~ 'l~ij!~t~!~~~~:/i~d!!~i.::
~ 1- s ..

0 '*' MIRA! Z<XW 3 ftJII

~ ~~~~Y~?J~l-F7~ ~j
c:::J =
[§!] ' o-x-A J5-IU5mm u. - .m"'

= If):HS~Wf,•l-t" ::1 :-TC-ISOM.ftl:~

~
:~t2Ditt.3Sgf'fi.4X)'C'I50oun.Mii•

'"' ~
a::El£l!l ~~;i~~=~~~:~D~ ?"P~ 8

= ~=:~~~t;ll·~:l.!-lf...J
= ffia $ 7-itX-47rOf;,.. 13

m:JI ~:~~~~;,~i MUIJEV~

f'·-' 'N?i"'-""""""~'1
~
~ ~,,_,,..

DXo-V!IDISOIOGC<:.

Figure 2: Sample screen of an application that uses pattern recognition functions.

path_schema EMP {
database: /demo/emp; I* database name *I
path: amp .. /belong/ .. division as emp_path;
var: emp_id = {emp.ID};

emp_neme = {emp.name};
div_neme = {division.neme};

} emp_schemal, emp_schema2;
EMP.open(); I* database open *I
emp_schemal.emp_path.generate_path_setO; I* data retrieval operation *I

Figure 3: Kasuga Script program that manipulates data.

210 Part Four Language Description

3 BOTH NAVIGATIONAL AND DECLARATIVE QUERY

A new type of 4GL such as Kasuga Script should also be a full-featured general-purpose
programming language. In other words, it must meet computational completeness so that
navigational (procedural) procedures can be described using the language. On the other
hand, as Stonebraker et al. insist in their "third generation database system manifesto,"
the declarative query function is essential for data independence and effective data ma­
nipulation (Stonebraker et al., 1990). Namely, both navigational and declarative query
functions are needed in our database programming language. A pure SQL program does
not have navigational functionality. Hence, it has less descriptive power than an object­
oriented database programming language. However, nowadays almost all database systems
possess their own application development languages or 4GLs, and the majority of users
use these languages; the number of pure SQL users is small. These languages provide com­
putational completeness. Therefore, using the application development languages instead
of pure SQL, they can solve this descriptive power problem.

Kasuga Script is a general purpose language with computational completeness. Si­
multaneously, Kasuga Script offers declarative query functions in conjunction with
RICOHBASE. RICOHBASE is a DBMS that our software division developed. RICO­
HBASE is based on the Graph Data Model (GDM) (Kunii, 1990) which belongs to the
family of extended relational data models. Its main departure from the relational model
consists of the introduction of link types, thereby making it a link-oriented model. Figure
3 shows a simple Kasuga Script program that manipulates data. The path_schema
EMP is defined as a database access path class and emp_schemal and emp_schema2 are
its instances. The path "emp . ./belong f.. division" shows a data access path that consists
of record type "emp," link type "belong," and record type "division." Variables such as
empjd and emp..name are called tag. The above-mentioned emp.ID, emp.name, and di­
vision.name represent database field names. Since the three expressions in the var part
define tag variables corresponding to database fields, after data retrieval operations, we
can access the data through the tags as follows: emp_schemal.empjd. In Kasuga Script,
a method of retrieval is generate_path_set() as shown in the example.

4 SEAMLESS LANGUAGE DESIGN

When we write a database query in SQL, an embedded SQL program is often used. How­
ever, there is a semantic and syntactical gap between SQL code and its parent language
such as C or Fortran. This is called the impedance mismatch problem of SQL. In addi­
tion, another gap exists in an application program between control flow parts and the
GUI library (see Figure 4.). Because both data structures are different, data conversion is
needed, which also gives programmers trouble. The two gaps in embedded SQL program­
ming create labor-intensive work for programmers. To solve the problem, we have designed
Kasuga Script to be seamless. Kasuga Script users, in advance, define database fields
to correspond to GUI widgets, using the above-mentioned tags. After the definition, data
conversion between database fields and GUI widgets is automatically executed, hidden
from the operator's view.

Figure 5 illustrates GUI widgets bound with database fields through tags. The up­
per part in the figure illustrates the internal status of the DBMS. Because the DBMS

A new type of fourth generation language 211

of Kasuga Script is RICOHBASE, it shows the data structures of RICOHBASE. In
RICOHBASE query processing, the resultant data type is the set of access paths for the
query; namely the path consists of record types and their link types. When a query is
executed, a target, which is a set of paths, is generated together with a cursor pointing
to a path. The cursor can be moved up and down over the entire range of the target and
facilitates record-at-a-time operations. The path pointed to by the cursor is referred to
as the current path. The path data structure, as shown in the figure, consists of upper
and lower structures. The upper structure is a set of Unique Record Identifiers (URis) of
record occurrences and the lower one is a set of field values. The reason for the two-layered
structure is to make the internal data search more effective.

If a tag is bound with a database field name, whenever the cursor is moved, the tag
value also changes so that the tag may point to the corresponding field of the current
path. In addition, if the tag is bound to a widget on the screen, the new value is displayed
on the widget. Inversely, when a string is input on the widget, the tag value also changes
and the corresponding internal field value may change.

In general, complicated data conversion is required between a database field and a
widget. Therefore, it is of overriding importance that the data conversion parts be easily
written. In Kasuga Script, it can be described using the transvalue mechanism. The
examples shown in Figure 6 illustrate three types of transvalue descriptions. In the first
example, the transvalue is used to encode/decode a nation name and its code numbers.
Next, the transvalue is used to get a population figure from a database. The input
(qualification) data is a nation name and the output is a population figure. The strings
"name" and "population" are field names of record "nation." In the last example, input
image data is output after scaling in the given dimensions. The scaling factors "w" and
"h" are given as parameters. For the action rules, we can write Kasuga Script programs.
Hence, all Kasuga Script methods such as the above-mentioned OCR are available.

5 POST-SPAGHETTI PROGRAMMING

The programming style of GUI toolkits, such as those used in the X window system (Mc­
Cormack and Asente, 1988), MacApp (Schmucker, 1986), and HyperCard and HyperTalk
(Goodman, 1987) is said to be event-driven. There are problems with this programming
style: (1) the whole program structure becomes intricate; (2) the logical sequence of opera­
tions is separated into multiple procedures; and (3) it is difficult to define some operations
as modules, such as data update. In general, we call it the event-driven spaghetti program­
ming problem. For example, suppose that there is a button namedlf)Xf)()ti'I'Elon a screen.
The button is supposed to be pushed in multiple contexts such as retrieve, insert, or up­
date. Therefore, the callback procedure invoked when the button is pushed must include
various instructions depending on the context:

if (mode== RETRIEVE) staff_retrieve();
else if (mode== INSERT) staff_insert();
else if (mode== UPDATE) staff_update();

In event-handling programming such as one of GUis, the modes tend to be nested in a
complicated way. Hence the number of conditional branches becomes generally large. To

212 Part Four Language Description

solve the problem, we introduced an operation process to allow program moduliza­
tion. In Kasuga Script, whenever a database operation is invoked, a new operation
process can be created. The operation process internally owns its own stack struc­
ture which is separated from those of other operation processes and each operation
process has its own event queue. Figure 7 is a Kasuga Script version of the above­
mentioned example. As shown here, since there is no need to monitor what is happening
in other operations, the program structures become simple and neat. Using wait_event()
statements, an operation process waits for the event described in waiLevent() to be
issued. In an application process, plural evenLswitches can be executed in parallel. In
an evenLswitch structure, each operation process is exclusively executed. In an op­
eration process using wait_event(), the control process proceeds sequentially. We can
also use an operation process for transactions and error handling.

DBMS
r-- '7-:7·

database application program
=

..

control ...
...

q~h flow :••;;; 1+~~--l,.l..ogrammi g ·b
r ~Its 1+-¥.

GUI
grammi g

-~~::: :l!::~~~:J
(impedance (data J

mismatch conversion

Figure 4 Two kinds of gaps in a database
application.

DBMS

target

path 1
path 2

curse :.':..... path i

path i

Figure 5 G UI widgets bound to database
fields via tags.

A new type offourth generation language 213

Let us consider the related work with our operation process. The "programming by
demonstration" methods in (Myers, 1991), for which the goal is to solve the spaghetti
program problem, allows callbacks to be insulated from widgets. However, if the users
action sequences are complicated, the users cannot express their required actions only by
demonstration. We think that practical, complicated GUI programming still needs textual
programs written in languages such as Kasuga Script.

The opposite approach to the event-driven style is the state transition machine based
style (Jacobs, 1982, Wasserman, 1984, and Olsen, 1984). The problems of the approach
are: (1) a user can deal with only one thing at a time and cannot do actions other than
in the fixed order; and (2) if a program scale is large, we cannot draw the state transition
graph, because the action sequences are complicated and the number of combinations in­
creases exponentially. To solve these problems, the event-driven approach was introduced.
The event-driven approach, however, also has some problems as mentioned above. The
approach in Kasuga Script is in principle oriented to the event-driven style and in ad­
dition partially adopts the state transition machine style. The method waiLevent() plays
the role of a state transition machine and on the other hand widgets are left still available
in the event-driven style. By a combination of both approaches, Kasuga Script is able
to solve the problems of both approaches.

I* !.define a translation table of
* input and output data pairs *I

transvalue tr_nation(code)(name){
table: {0, "Italy"},

{1, "France"},
{2, "Germany"}

};
I* 2.retrieve a database with
* input data as the qualification
* part *I

transvalue population(in)(out){
database: /db/nation;
path: nation[name ==in];
value: out = population;

};
I* 3.write data conversion rules
* in Kasuga Script *I

transvalue

};

tr_image(in)(out, w, h){
action:
in = out;
$out.scale() :width $w

:height $h;

Figure 6 Kasuga Script transvalue
program examples.

event_switch {
case <active/scr.RETRIEVE>:
I* button RETRIEVE activated *I
clear_screenO;
I* qualification input by
* operators until button EXEC
* is activated *I

wait_event(<activate/scr.EXEC>);
staff_retrieve();
break;

case <active/scr.INSERT>:
I* button INSERT activated *I
clear_screenO;
I* data input by operators
* until button EXEC is
* activated *I

wait_event(<activate/scr.EXEC>);
staff_retrieve();
break;

};

Figure 7 Kasuga Script program using
an operation process.

214 Part Four Language Description

6 CONCLUSIONS

This paper presents a database programming language named Kasuga Script. Kasuga
Script offers many features: tags to bind a database field and a GUI widget; transvalues
for data conversion; and operation processes to avoid event-driven spaghetti programing
problems. In database application programming, binding a database field with a widget
and converting data between them involve labor-intensive work. In Kasuga Script, using
tags, transvalue, and operation processes, the size of programs as well as labour costs
can be drastically reduced.

REFERENCES

Codd, E. F. {1970) A Relational Model of Data for Large Shared Data Banks. CACM, 6, 377-387.
Goodman, D. {1987) The Complete HyperCard Handbook. New york, Bantam Books.
Jacob, R. {1982) Using Formal Specifications in the Design of a Human-Computer Interface.

Proc. of Human Factors in Computer Systems, March, 315-322.
James, J., Fogg, D. and Stonebraker, M. {1983) Implementation of Data Abstraction in the

Relational Database System INGRES. ACMSIGMOD Record, April, 1-14.
Kunii, H.S. {1990) Graph Data Model and Its Data Language, Springer-Verlag, Tokyo, 1990.
McCormack, J. {1988) An Overview of the X Toolkit. Proc. of the ACM SIGGRAPH Symposium

on User Interface Software, 46-55.
Myers, B.A. {1991) Separating Application Code from Toolkits: Eliminating the Spaghetti of

Call-Backs. Proc. of the ACM SIGGRAPH Symposium on UIST, 211-220.
Olsen, D. {1984) Push-down Automata for User Interface Management. ACM Trans. on Graph­

ics, 3, 177-203.
Osborn, S.L. and Heaven, T.E. {1986) The Design of a Relational Database System with Abstract

Data Types for Domains. ACM Trans. Database Syst., 3, 357-373.
Ousterhout, J.K. {1994) Tel and the Tk Toolkit, Addison-Wesley.
Schmucker, K.J. (1986) Object-Oriented Programming for the Macintosh. Hasbrouck Heights,

NJ, Hayden Book Company.
Stonebraker, M. et al. {The Committee for Advanced DBMS Function) {1990) Third-Generation

Data Base System Manifesto. ACM SIGMOD Record, 3, 31-44.
The USENIX Association (1995) Proc. of the Tcl/Tk Workshop, July 6-8, Toronto, Canada.
Wasserman, A.l. (1984) Developing Interactive Information Systems with the User Software

Engineering Methodology. Proc. of IFIP INTERACT'84, 611-617.

BIOGRAPHY: Yukari Shirota is Assistant Manager of the Database Research Group
at the Ricoh Software Research Center. Her research interests include image database
construction tools and GUI generation for database applications. She received her Dsc
from the Dept. of Information Science, Faculty of Science, the University of Tokyo. Hideoki
Nakayama is also Assistant Manager of the same group. He is responsible for designing
and developing RICOHBASE DBMS kernel parts. He has an MSc from the Dept. of
Information Science, Faculty of Science, the University of Tokyo. Atsushi lizawa is the
head of the Database Research Group. His interests range from DBMS kernel design
to multimedia database applications and image data technology needed for application
development. He received his MSc from the Dept. of Information Science, Faculty of
Science, the University of Tokyo.

