
20 
Performance issues in implementing a 
portable SMDS server 

J.-M. Jezequel and F. Guerber 
I.R.I.S.A. Campus de Beaulieu 
F-35042 RENNES CEDEX, FRANCE 
E-mail: jezequel@irisa.fr 
Tel: +33 9984 7192 Fax: +33 9984 7171 

Abstract 
Connectionless servers may be used to provide connectionless data services in ATM wide 
area networks. However, their performance might be a critical point, since, like with any 
other server, undersized connectionless servers might become bottlenecks in the network. 
This paper aims at providing some insight on this issue. We present the design and the 
implementation of a portable SMDS (Switched Multi-megabits Data Service) server, and 
discusses performance related aspects of a SMDS server-based connectionless network 
implemented in our laboratory. We conclude on the interest and perspectives of this kind 
of network architecture. 

Keywords Internetworking, SMDS, High Performance Routing, Implementation and 
Performance Evaluation 

1 INTRODUCTION 

In their comprehensive overview on connectionless data services for ATM networks, Le 
Boudec et al. [LB et al.94] identify two families of methods for routing connectionless 
messages on ATM networks. 

On the one hand, server-based methods rely on an overlay network with non-ATM 
switching to transfer connectionless messages. This network consists in a set of ATM 
interconnected connectionless servers. Clients willing to do connectionless traffic just 
have to access the nearest connectionless server using any available protocol, e.g. an 
ATM connection. 

On the other hand, integrated methods rely entirely on the ATM switches to transfer 
messages. In that case, the VPI/VCI labels are usually given a new semantics to allow 
for a connectionless service, and the ATM switches are modified accordingly. 

Integrated methods provide a cost effective and efficient solution for ATM-based LAN 
with a limited number of addressable entities, but where connectionless traffic typically 
makes up for an important part of the overall traffic. 

R. Puigjaner (ed.), High Performance Networking
© Springer Science+Business Media Dordrecht 1995



268 Part Eight Performance Analysis 

The server-based methods are more affordable for WAN because they have the advan­
tage of putting no specific requirement on the ATM switches. The connectionless servers 
can then be developed independently, using any standard access to the switch. However, 
their performance might be a critical point, since, like with any other server, undersized 
connectionless servers might become bottlenecks in the network. 

This paper aims at providing some insight on this issue. It discusses performance related 
aspects of a SMDS (Switched Multi-megabits Data Service [Bellcore92]) server-based con­
nectionless network implemented in our laboratory. In the section 2, we introduce SMDS 
and the context of our study. We then discuss the design and the implementation of a 
portable SMDS server (section 3). The section 4 is dedicated to the presentation of sin­
gle server performances, whereas the section 5 addresses multi-server performances. We 
conclude on the interest and perspectives of this kind of network architecture. 

2 BUILDING A PORTABLE SMDS SERVER 

2.1 An overview on SMDS 

SMDS is a connectionless, packet-switched data transport service running on top of con­
nected networks such as ATM or DQDB. 

SMDS has been designed to provide high throughput and low-delay transmissions, and 
to be able to maintain them over a large geographic area. As a result, it can be used to 
interconnect multiple node LANs and WANs, providing them a "any-to-any" service that 
includes features such as virtual private network facilities. 

Being a connectionless service, SMDS eliminates the need for carrier switches to estab­
lish a call path between two points of data transmission. Each switch reads the E.l64 
address included in SMDS packets, and then forwards them one-by-one over any available 
path to the desired endpoint. 

The benefit of this connectionless "any-to-any" service is that it puts an end to the 
need for precise traffic-flow predictions and connections only between fixed locations. 
With no need for a pre-defined path between devices, data can travel over the least 
congested routes in an SMDS network, providing faster transmission, increased reliability 
and greater flexibility to add or drop network sites. 

2.2 SMDS network architecture 

An SMDS network is based on a three-tiered architecture: a switching infrastructure made 
of SMDS switches, a delivery system made of SNis (Subscriber Network Interface), and 
an external network access system, ICI (Independent Carrier Interface). So each SMDS 
server has to switch packets coming from SNis, ICis, and ISSI (Inter Switching-System 
Interface) links (see figure 1). 

SMDS has been designed to be supported by various lower-level layers, e.g. ATM (AAL 
3/4 or even 5) or DQDB (see figure 2). SMDS thus features a technology independent 
interface, allowing for fully portable SMDS servers. There also exists a variant in which 
this technology independence is not respected. In the so-called high performance SMDS, 



Performance issues in implementing a portable SMDS server 269 

Figure 1 Architecture of an SMDS network 

the SAR (Segmentation and Reassembly) of AAL3/4 cells is avoided thanks to a cut­
through routing, making use of their Message Identifier (MID) field. In this paper, we 
concentrate on portable SMDS servers: cut-through routing might then be considered as 
yet another hardware dependent optimization. 

The idea behind a portable SMDS server is the possibility to implement it on a parallel 
computer featuring a "general purpose" (Unix like) operating system, while prototyping 
it on a standard Unix workstation. It also makes it possible to use a high level lan­
guage allowing to concentrate on algorithmic optimization issues instead of C or assembly 
language fine tuning and debugging. 

Portability is not yet an established idea in the telecommunication world where most 
systems are of a real time nature, and are finely tuned to get the best performances out 
of a given architecture. However, this is changing because the versatility of the new value 
added telecommunication services induces huge software development costs that need to 
be paid off on more than one hardware generation (itself becoming shorter and shorter). 
It is thus important to get some insight on the performance costs of portability for this 
kind of software. 

We want to know whether this approach can provide high-throughput and low-delay 
transmissions v:ithout the use of dedicated materials, further that a general purpose par­
allel computer. Our evaluation criteria is whether such a (parallel) "low-performance" 
SMDS server is likely to provide gigabit data flow rates (cited as an unlikely reachable 
limit in [LB et a\.94]). 



270 Part Eight Performance Analysis 

SMDS Protocol Service Users 

IS SIP Level 3 
Technology 

Independent ___ ~================~---
Interface 

IS SIP Level 2 

IS SIP Level 1 

IEEE 802.6-Based 

DS3 Based 

ATM-Based 

SO NET 
STS-3c-Based 

Figure 2 Architecture of an SMDS server 

3 DESIGN AND IMPLEMENTATION CONCERNS 

3.1 Achieving high performances 

They are a number of studies in the literature identifying bottlenecks in high-performance 
communication systems. Depending on the context in which their authors work, a number 
of approaches aiming at circumventing these bottlenecks have been proposed. 

First, the PDU header processing speed determines an absolute limit on the global 
performances of the communication system: the system may not have a throughput per 
1/0 board greater than the maximum PDU size divided by the header processing speed. 
This header processing speed has then to be optimized as much as possible. The intro­
duction of parallelism has been considered at this level, but it does generally not pay 
off (Diot91, Tantawy93] because of the limited intrinsic provision for concurrency in such 
kind of processing. This tendency is even enforced with recent "light-weight" protocol 
(XTP, SMDS, etc.) featuring simplified header processing, actually leaving nearly no 
room for parallelization. 

Another important source of performance loss is linked to data movement inside the 
system (Zitterbart91, Ito et al.93]. To be efficient, an implementation should avoid to 
copy PDU from memory to memory because of its time cost (DRAM bandwidth does not 
follow processing power). Also, for parallel implementations, data transfers between two 
separate nodes should be minimized because excessive internal communications can lead 
to link saturations and even to a global system slowdown. A good solution (Braun et al.91] 
is the use of a shared memory where are stored all the PDU. The processing nodes would 
only access the headers and trailers of these packets and would never deal with the data 
they include. 



Performance issues in implementing a portable SMDS server 271 

The execution environment has also a great influence on performances. The raw power 
of each processor determines the throughput of the system [Ito et al.93], and the band­
width of the channels connecting the different nodes limits the global data flow. 

The last bottleneck may be the interface between the processing system and the physical 
layer [Braun et al.91]: its throughput should be sufficient not to limit the system. If the 
number of access points to the physical links is insufficient, these are considered as shared 
resources. They can then be saturated if too many processing units try to use them at 
once. 

All these points were taken into consideration in the design of our SMDS server. 

3.2 An Object Oriented Approach 

Since we wanted to design a highly evolutive and portable SMDS server, we decided 
to use an object oriented analysis and design method (the Object Modeling Tech­
nic [Rumbaugh et al.91]) followed with an implementation with an object oriented lan­
guage: Eiffel [Meyer92]. 

The first step towards an object-oriented analysis is concerned with devising a precise, 
relevant, concise, understandable, and correct model of the real world. The purpose of 
object-oriented analysis is to model the problem domain so that it can be understood, 
and serve as a stable basis preparing the design step. 

The analysis model extends itself in three dimensions: 

• the object model, showing the static structure of the real world system through abstract 
or physical classes and their relationships. 

• the dynamic model, showing the temporal behavior of the objects in the system. 
• the functional model, showing the constraints between the objects in the system (and 

notably between inputs and outputs). 

The design phase starts with the output of the analysis phase and gradually shifts its 
emphasis from application domain to computation domain: the implementation strategy 
is defined, and trade offs are made according to the priorities defined in the previous 
section. Then the definition of classes is refined by collapsing on the object model the two 
other analysis dimensions (dynamic and functional). Auxiliary classes may be introduced 
at this stage to deal with complex relationship or implementation related matters. 

The output of the object oriented design phase is a blueprint for the implementation. If 
the implementatioiJ. is made with an object oriented language such as Eiffel, it is basically 
an extension of the design process. The Eiffel object oriented language emphasizes the 
design and construction of large, high-quality softwares by assembling reusable software 
components made of classes, coming from either standard libraries (providing arrays, lists, 
hash tables, etc.), or classes developed by other programmers during previous projects. 

Beyond classes (on which modularity is based), Eiffel offers multiple inheritance, poly­
morphism, static typing and dynamic binding, genericity, garbage collection, a disciplined 
exception mechanism, and systematic use of assertions to improve software correctness in 
the context of programming by contract. 

The output of the design stage gave us the class hierarchy blueprint allowing us to build 
an actual prototype for each class (with stub routines), and then implement the routine 



272 Part Eight Performance Analysis 

bodies class by class. After a class is actually implemented, it is tested separately to 
validate its internal consistency (unit testing). It is then added to the system in lieu of 
its stub class, and the system is tested against this new set of functionalities. The testbed 
is a bunch of Unix workstations communicating through an Ethernet. Since we are not 
interested in performances at this stage, the low bandwidth of Ethernet is not a problem. 

Our SMDS server actually uses a highly portable communication library called POM 
(Parallel Observable Machine). This library, ported on all the parallel computer OS 
available in our lab (including the network of workstations) greatly facilitates the porting 
of communicating applications across widely different architectures. The POM is then 
used as the underlying layers 1 and 2 for our SMDS server, whose layer 3 is technology­
independent. 

This way, the SMDS server is built and tested incrementally, module by module, thus 
minimizing integration problems. The reuse rate of our code is quite high. Including the 
Eiffellibraries we used, our system comes up to 119 classes with a total of 19660 lines of 
code. From these, 45% of the classes and 60% of the lines of code composing our system 
come from the standard Eiffellibraries. 

3.3 Implementation remarks 

3.3.1 Using a garbage collector 
With many languages, programmers must explicitly reclaim heap memory at some point 
in the program, by using a free or a dispose statement. Eiffel frees the programmer from 
this burden, thanks to a garbage collector. 

It was once widely believed that garbage collection was quite expensive relative to 
explicit heap management, but recent advances in garbage collection technology make 
automatic storage reclamation affordable for use in high-performance systems. Gener­
ational techniques reduce the basic costs and disruptiveness of collection by exploiting 
the empirically-observed tendency of objects to die young. Incremental techniques may 
even make garbage collection relatively attractive for real-time systems. Most Eiffel im­
plementations come with such an incremental garbage collector, which can be activated 
and suspended at will. 

We measured that the garbage collector's work is shorter when it is called often, and 
that it globally needs less than 1% of the computation time. So, with frequent iterative 
collections, its work duration has a Gaussian kind of distribution with an average around 
3ms. As a result, our SMDS server launches an iterative collection each time it is otherwise 
idle (not to penalize packet processing), but if a working period is too long, a collection 
is forced so the optimal interval between two collections is respected, and the collecting 
time never exceeds 15 ms and has a probability of 99.9% to be under 10ms. 

Further that allowing us to limit the garbage collector monopolization of the processor 
to short periods, the shifting of memory management processing to idle periods allows 
time savings during active periods. Our server then has a higher ability to absorb traffic 
peaks. 



Performance issues in implementing a portable SMDS server 273 

Kind of processing headers processed/s mean processing time 
SNI to ISSI 5025 199 us 
ISSI to SNI 8093 124 us 
Switching (ISSI to ISSI) 5347 187 us 

Table 1 Header processing speed in an SMDS server 

3.3.2 SMDS Protocol problems 
The Bellcore specifications describing SMDS sometimes introduces hardly achievable con­
straints. For example, with respect to the updating routing tables, the 06-1 and 06-5 
paragraphs specify that it should take no more than lOOms to recompute these tables 
in case of a modification in the network. However with some tricky network topologies, 
this computation has a 0( n 2 .log2n) complexity since n shortest path spanning trees may 
need to be calculated (n is the number of SMDS servers in the network), each with the 
Dijkstra algorithm (complexity o(n.log2n)). As a result, the size of an SMDS network is 
bounded in some way by this real time limit. 

By the way, the SMDS protocol sometimes has strange behaviors. In the case of a par­
ticular topology, full adjacency in the network is sometimes really long to be reached: two 
fully adjacent subnets connected by a unique link A need half an hour (LSRefreshTime) 
to become adjacent if A is down (which occurs when getting started or after a failure) 
. This is due to a problem in the database loading stage: the two servers connected to 
the link A become adjacent but never give all informations to the other servers of their 
subnets, so these have to wait for the LSA (Link State Advertisement) automatic re-flood. 

4 THE SMDS SERVER PERFORMANCES 

4.1 Header processing speed 

We first determine the internal performance limits of our SMDS server. The significant 
figures are the speed of header processing in different contexts: transmission (packet 
received from an SNI and then injected in the SMDS network), reception (PDU coming 
from an ISSI link and delivered to a SNI), and switching of traffic (from an ISSI link to 
an other one). 

For these specific measures, we use a specialized SMDS server, where the lower layers are 
simulated: a transmission only consists in incrementing a counter; and as for receptions, 
the server is always told that a PDU is ready to be read and the reception is simulated 
(a fixed set of predefined PDU is used). The measures consist in performing continual 
operations on the server and compute their mean durations (which is more realistic than 
exploring the assembly language listing to add up individual times of machine language 
instructions on a given path of the header processing). 

The following measures have been made on Sun SPARC20 workstation. Since these 



274 Part Eight Performance Analysis 

300r----r----T----.----.---~~---r----, 

250 

200 

150 

100 

50 -------------------------------------------o~---w~~~~~~~~~~~~~~~ 

0 10000 20000 30000 40000 50000 60000 70000 
SMDS PDU size 

Figure 3 Maximal data flow rate of a SMDS server 

tests involve no network connection, the results are directly proportional to the processing 
power of the processor. 

The performance figures exposed in table 1 show that the internal speed of a sequential 
server is sufficient to reach Gigabit flow rates on a standard processor: the slower operation 
reaches 3.29 Gb/s with 64k PDU. 

Thus the bottleneck in such a system is not likely to be localized in the header processing 
but in the interface with the network. We have to measure the maximal data flow rate of 
a real server to confirm that. 

4.2 Flow rate measurement 

We want to determine the maximal data flow rate of our SMDS server for a set of repre­
sentative physical network technologies. We measure a one way, user to user, actual data 
flow rate through two SMDS servers communicating through a unique link. This measure 
takes into account the header processing, the operating system and the SAR overheads, 
and the actual data transmission between the two users. This experiment has been done 
with a range of PDU sizes, allowing us to get information on both the latency and the 
throughput of the network. 

The Ethernet (maximum bandwidth 10 Mbs/s) and ATM experiments were led on 
Spare workstations, with Fore System SBA-200 SBus interface boards in the later case 
(maximum bandwidth 150 Mbs/s). To experiment with an higher bandwidth, we also 
used the internal network of a parallel computer, the Intel Paragon XP /S. This computer 
is made of 56 processing nodes, linked by high-speed communication channels (having a 
maximum bandwidth of 640 Mbs/s for 64K messages) in a 2D grid topology. Each node 
of this machine has, in addition to the main processor (i860), a co-processor dedicated 
to communications with the other nodes. As a result, we consider the Paragon XP /S 
as a really efficient support for an application such as our SMDS server. By the way, 
its use allowed us to simulate large SMDS networks in a real context of multi-megabit 
communication lines. 

The parameters of these measures are a buffer size (for reception on ISSI links) of 
10 PDUs, and a transmission rate different for each PDU size and optimized to fit the 



Performance issues in implementing a portable SMDS server 275 

SNis 

SNis 

Figure 4 Distributing the network connections to get a Parallel SMDS server 

throughput of the receiving server, thus avoiding artificial congestions. The results appear 
on figure 3. 

In any of these cases, the physical network bandwidth and the internal processing speed 
(since a i860 has approximately the same processing power as a Spare) of our SMDS server 
both widely exceed the server maximal unidirectional flow rate. This means that in our 
system, there exists a bottleneck located in the lower layers of the protocol (probably due 
to some inefficiencies at the network-server interface, to SAR, and to OS overhead). 

5 MULTI-SERVER PERFORMANCES 

5.1 Circumventing the bottleneck with parallelism 

The classical solution to this problem consists in multiplying access points to the network. 
For that, we distribute the ISSI and SNI connections among the different nodes of a 
parallel computer (see figure 4), each one having its own OS and interface(s) with the 
SMDS network, and collaborating with other nodes to provide the SMDS service. 

This "parallelization" technique is related to the SPMD (Single Program, Multiple 
Data) model. Each node of the parallel SMDS server is actually the sequential SMDS 
server described above: no new code has to be written, only configuration files have to be 
modified. 

This simple (yet widely used) method results in extending the number of SMDS servers 
in the network. It has the advantage of being quite scalable: the aggregate bandwidth of 
such a server should be proportional to the number of supporting nodes, hence making 
available a range of performances easily adjustable to the user needs (because no new 
software has to be written). 



276 Part Eight Performance Analysis 

350 I I I I I I 

300 ,.. Light traffic -. • ~ 
~ Medium traffic -~"" 
.c 250 r Heavy traffic/:- - -
~ 200 ,... ~7-----: 
.c ------
:§ 

150 i-
.,. .... """'"' ____ -3: 

"'C 

~,,,,'' c: 100 -a:l 
ID ,, ~ -. --. 50 ........... _...:.~-=-------- -

0 I I I I I I 

1 2 3 4 5 6 7 8 
Number of processors 

Figure 5 Total user data flow rate for 32k packets, with various traffic densities 

5.2 Measuring Aggregate Bandwidth 

These performance tests consist in measuring the maximal switching capacity of a parallel 
server, depending on the number of processor it has. The test architecture includes: 

• a parallel server (as defined above) implemented on 1, 2, 4, 6 or 8 nodes of the Paragon 
XP/S 

e an environment (surrounding the parallel server) made of a number of other SMDS 
servers (e.g. eight), each one implemented on one node of the Paragon XP /S and 
achieving traffic generation and absorption. 

Since we are mainly interested in its switching capacity, our parallel server does not 
support SNis, whereas the other servers are normal servers supporting SNis that send 
and receive packets. 

We are interested in seeing how faster works a parallel server, depending on the number 
of nodes it has. So we measure data flow rates for various PDU sizes, under different 
conditions of (random) traffic load. We got the kind of results represented on the figure 5. 
These aggregate bandwidth results were obtained with 32k PDU under three different 
traffic densities. 

As expected, the aggregate bandwidth of a parallel server grows with the number of 
its nodes. An interesting point is the behavior of the server when switching heavy traffic: 
small servers (less than 4 nodes) are congested and deliver less than 50 Mb/s, whereas 
the larger ones are able to manage it, delivering more then 300 Mb/s. This is because the 
SMDS policy is to discard incoming user data PDU when the server is overwhelmed. 

In case of a light traffic, the discarding rate is low and the total throughput of the 
server does not benefit from the larger number of processor. Large servers work under 
their maximal capacity, and are quite overkill in this context. 

On the other hand, if the traffic is heavier, the small servers crash down: their through­
put falls, and the discarding level may becomes really high (up to 87%!). 

Each parallel SMDS server thus has an optimal traffic range, under which it does not 
use the maximum of its capabilities, and over which it is congested. By the way, an entity 
called the Congestion Management Protocol is included in the SMDS server to react in 



Performance issues in implementing a portable SMDS server 277 

650 
600 

.!!!. 
550 

.0 500 
~ 450 
.s:: 400 
i5 350 "!i 300 "C c 250 as 
ID 200 

150 
100 

1 2 3 4 5 6 7 8 
Number of processors 

Figure 6 Maximal aggregate bandwidth in optimal conditions 

real time to the congestion status of the server. When a server is undergoing a congestion, 
its CMP entity tell the neighbor servers to slash a part of their traffic directed to it. 

5.3 Maximal global performances 

From all previous measures (various PDU sizes and traffic densities), we extract the best 
aggregates bandwidth results for each size of SMDS servers (from one to eight nodes). 
These results are displayed on figure 6. 

A single processor server achieves user data switching at a speed of 130Mb/s, whereas 
parallel servers reach nearly 430Mb/s for 8 processors. We obtain a quasi-linear speed­
up, with a mean slope of 1/2. Extrapolating this result, greater flow rates should be 
achievable by multiplying the number of nodes of the "parallel" SMDS server. But since 
the speed-up is only of 4 for a 8-nodes server (1/2 slope), these results are not optimal (a 
slope closer to unity would be more satisfying). 

Note that the slight break noticed on the maximal flow rate graphic for the 6-nodes 
server has a simple explanation: the topology used to support this parallel server is not as 
efficient as the others, because it is harder to place six nodes surrounded by eight traffic 
simulators on the Paragon 2D grid. As a result, the achieved flow rate is a bit lower than 
optimal. 

6 CONCLUSION AND FUTURE PROSPECTS 

We have presented the design and the implementation of a technology independent and 
portable SMDS server consistent with Bellcore's specifications. Despite the use of high 
level tools in a standard Unix environment, the SMDS real time constraints have been 
respected, due to our control of the Eiffel garbage collector. 

Through experimental performance studies, we have shown that a bottleneck existed at 
the network-server interface. This bottleneck can be circumvented with a simple but scal­
able parallelization technique based on the mere duplication of the servers. This approach 
offers interesting performances, since such a parallel SMDS server has a total aggregate 



278 Part Eight Performance Analysis 

bandwidth increasing linearly with the number of its processors to reach 430 Mb/s for 8 
processors on a Paragon XP /S. 

However, the slope of the linear speed-up is only 1/2, instead of the ideal unity. Further­
more, our simple parallelization technique induces an increase of the number of addresses 
in the network, since each node of a global parallel SMDS server is considered as an 
independent sequential server, with its own ID. As a result, the routing tables are more 
complex and their computation takes much more time: if all the servers in the network are 
parallelized and implemented on n nodes, the number of addresses in the network would 
be multi plied by n and the computation time for routing tables by more than n 2 ( cf. 
section 3.3.2), which poses a hard problem since the SMDS routing tables computation 
time has a fixed upper limit (lOOms). 

Our ongoing work is then to find more sophisticated parallelization techniques in order 
to share some resources among the different nodes composing the parallel server, using 
for example a Shared Virtual Memory [Li86]. In particular we are considering the use 
of an unique ID for all nodes, and possibly the sharing of the routing tables, along with 
their parallel computation. 

REFERENCES 

[Bellcore92] Bellcore. - Generic Requirements for SMDS Networking. - Technical Re­
port TA-TSV-001059, Bell Communication Research, 1992. 

[Braun et al.91] Braun (T.) and Zitterbart (M.).- Parallel XTP implementation on trans­
puters. In: The 1991 Singapore International Conference on Networks. pp. 91-96.­
G.S.Poo, Sep 1991. 

[Diot91] Diot (C.).- Architecture pour /'implantation hautes performances des Protocoles 
de communication de niveau transport.- PhD thesis, Institut National Polytechnique 
de Grenoble, January 1991. 

[Ito et al.93] Ito (M.), Takeuchi (L.) and Neufeld (G.). - A multiprocessor approach for 
meeting the processing requirements for osi. IEEE Journal on Selected Areas in Com­
munications, vol. 11 (2), February 1993. 

[LB et al.94) Le Boudec (J.-Y.), Meier (A.), Oechsle (R.) and Truong (H. L.).- Connec­
tionless data-service in an atm-based customer premises network. Computer Networks 
and ISDN Systems, vol. 0 (26), July 1994, pp. 1409-1424. 

[Li86] Li (Kai). - Shared Virtual Memory on Loosely Coupled Multiprocessors. - PhD 
thesis, Yale University, September 1986. 

[Meyer92] Meyer (B.).- Eiffel: The Language.- Prentice-Hall, 1992. 
[Rumbaugh et al.91] Rumbaugh (James), Blaha (Michael), Premerlani (William), Eddy 

(Frederick) and Lorensen (William). - Object-Oriented Modeling and Design. - New 
Jersey, Prentice Hall, 1991. 

[Tantawy93] Tantawy (A.).- Realisation de protocoles a haute performance. In: Actes 
du colloque CFIP'93 sur l'ingenierie des protocoles, Monreal. - Hermes, September 
1993. 

[Zitterbart91] Zitterbart (M. ). - High-speed transport components. IEEE Network Maga­
zine, January 1991, pp. 54-63. 


