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Abstract 

We have developed an Interactive Remote Instruction (IRI) system to support university­
level instruction in a networked environment. The IRI system creates a virtual classroom 
where all participants have similar experiences independent of their location (separated by 
up to order of 100 km). Participants interact with audio, video, and collaborative tool 
operation using a multimedia workstation. We describe an IRI testbed consisting of Sun 
Sparcstations 5 running Solaris 2.4 implemented over a local area network. We discuss the 
performance trade-offs and the scalability of the IRI system by analyzing results obtained 
during the execution of a test suite. The most important conclusion of this work is that, 
though some improvements are required, we are able to achieve an acceptable performance 
within the goals we had established for IRI-required functionalities using moderately priced 
hardware. Feasibility means that response time for user commands is no more than twice 
in the worst case (Mosaic running on a single workstation by itself versus Mosaic running 
collaboratively on the testbed with multiple video streams and audio added). Results from 
this experimentation are being used to design dynamic resource management scheme which 
will regulate the demand on the IRI system resources to improve user perception of the 
quality of the virtual classroom. 
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1 INTRODUCTION 

While several multimedia teleconferencing systems are available which support collaborative 
work, none have the ability to support more than a few simultaneous users and none automate 
the handling of video and audio streams. We present a performance study on the tradeoff's 
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in functionality and costs and user perceived quality using a system which we are building 
to support Interactive Remote Instruction (IRI). As we continue development of this IRI 
prototype, we are simultaneously using it to evaluate our current user-interface design, the 
performance achievable with our current software and hardware architectures, and the more 
subtle performance issues required to provide acceptable services. Our goal is to demonstrate 
a system which can be used to show the feasibility of supporting college-level education across 
spatial boundaries in a manner largely transparent to the students and faculty involved. 

After a brief discussion of the current IRI architecture and functionality, the core of 
this paper is a presentation of performance results achieved to date. The purpose of this 
study is two-fold: to show that with current technology the use of multimedia for remote 
instruction is viable; second to obtain performance data which can guide us in developing 
a resource management subsystem to use for allocating shares of system resources to the 
critical functions affecting user response time. 

Section 2 gives an overview of the functionality of the IRI system, section 3 describes our 
experimental testbed, analysis methodology and performance results. Section 4 presents our 
conclusions from this work and describes planned future activities. 

2 ARCHITECTURE AND FUNCTIONALITY 

IRI can facilitate both teacher/student and student/student interactions through two-way 
audio and video, tool sharing, electronic mail, and electronic conferencing capabilities [MAL94, 
MAL94]. 

In conferencing applications the network must provide a level of service give participants 
a "natural feel" about interactions. The time between a speaker moving or speaking and 
that motion or sound perceived by other participants is crucial. Emerging video compression 
standards indicate that one-way end-to-end delay should be less than 150 milliseconds and 
round-trip delay less than 300 milliseconds [RAD94] for conversational modes. The delay 
between audio and video transmission has to be limited to provide lip-synchronization of the 
audio and video signals. 

IRI transparently integrates teaching tools with which instructors can communicate 
course content. While an energetic instructor today might use slides, overheads, paper 
handouts, photographs, graphics, video, and audio, each mode requires separate tools for 
delivery. IRI consolidates these resources at one workstation and places them at the instruc­
tor's fingertips. 

2.1 The IRI Software Architecture 

The software architecture for IRI is built, whenever possible, on existing software compo­
nents, many in the public domain. Several components are derived from XTV, a general pur­
pose collaborative system developed jointly by Old Dominion University and the University 
of North Carolina at Chapel-Hill [ABD90, ABD94] collaborative use of tools. All traffic gen­
erated by an X tool is transmitted reliablely using traditional TCP. A resource..management 
module is the arbiter on tradeoffs among conflicting demands for bandwidth and will, if 
necessary, decrease the bandwidth on a video stream to give more bandwidth to a reliable 
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Figure 1: User Interface with Mosaic running 

connection. 
We believe that a successful IRI system must have the following characteristics: 
• The use of the system should be comfortable to all users, both instructors and students. 

It should support modes of instruction that faculty believe are most effective for their subject 
matter and should provide students useful choices. 

• Both faculty and students should see personal benefit from its use; it should not be 
perceived as a "cheap second choice" motivated by cost-cutting. 

• The implementation should be flexible and scalable due to rapid evolution of supporting 
technology. The capabilities of the hardware we use for the initial experimental system will 
be very different from that of the hardware we would choose in year five. But the system we 
build must still function effectively on that new hardware. 

• It should support multiple modes of interaction. For example, students must be able 

to use the system for team projects with participants distributed across the state. Students 
must be able to discuss problems with instructors on an individual level. 

IRI Functionality Description: We have demonstrated a prototype of the IRI system 
called 'tv-learn.' Though with limited capabilities (e.g., all facilities are within one building, 

TV signals use coaxial cable between workstations, data are transferred with a standard 
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lOMb/second Ethernet), it allowed us to illustrate many of the basic system capabilities and 
key features of the user interface. 

The screen image in Figure 1 illustrates many of IRI's features described in [MAL94, 
MAL94]. When an instructor is actively presenting, the largest window contains a full­
motion video similar to instructional television. However, this figure depicts a state in which 
an instructor might have invoked WorldWide Web to bring on-line resource materials directly 
into the classroom. When the large window is occupied by a tool, a small full motion video 
image of the instructor appears in the upper right corner as depicted in Figure 1. The two top 
small images on the right below that are those of students engaged in a discussion with the 
teacher. Any tool which the instructor chooses appears in the large window. This window is 
also a transparent pane which allows the student to make notes and, if desired, these notes 
can be made public (see buttons on bottom of the window - these are active when the note 
button has been pressed). The instructor can use almost any type of computer tool (word 
processor, spreadsheet, simulation with animated output, graphical drawing software), and 
any student in the class will see the tool running as if it were running on her own workstation. 
In addition, any student at any site can take control of the tool and use it while all other 
students see the results of that student's efforts, The bottom image on the right is that of 
one of the remote class rooms. 

3 EXPERIMENTAL TESTBED 

Our approach to building the IRI system over a wide area network (WAN) is to implement 
an alpha version of the IRI system over a local area network testbed and study its perfor­
mance before shifting the implementation to a WAN. The image of the teacher is distributed 
through a coaxial cable instead of satellite transmission. In this section we report on our 
measurements and their analysis from that testbed. 

3.1 Bandwidth Limitation 

For an initial estimate of network requirements, we developed a bandwidth budget based 
on the traffic required to provide acceptable functionality. In [MAL95] we reported on the 
details of that model. To estimate network needs, we assume a worst case scenario where 
all transmissions originate at the hub and one of the remote sites. We identified network 
traffic types, protocols used, features causing traffic, sources of transmissions, destinations, 
estimated bandwidths, and a priority for each traffic type. The priority is to be used to 
adjust bandwidth so that, for example, images of remote classrooms might be updated less 
frequently if the net or the CPU are heavily loaded. 

IP multicasting is used to transmit multimedia data to avoid the overhead of establishing 
and maintaining TCP connections among all machines. All class members join a specific 
multicast group and send and receive date from this group. Each class in the tv-learn 
system maps to a unique class D IP address and port number; all participants joining this 
class get this mapping dynamically. Thus, participants can join and leave the class at any 
time without going through the overhead of any kind of joining or leaving protocol. 

Because of the nature of video- occasional loss of a packet normally has little impact on 
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the perceived image at receive sites - these images are sent using unreliable multicasting to 
avoid the overhead of reliable multicasting. However, crucial data such as that between the 
X server and X clients uses a reliable transport protocol. 

The current version of the tool engine establishes a point-to-point (TCP) connection 
between the teacher and each student's program. This ensures the reliability needed to 
maintain synchronicity for X applications. However, it implies that data have to be dupli­
cated and sent on each of these connections separately. The consequences are two-fold: the 
time spent in sending data to every student individually and the network traffic generated. 
As expected, the number of bytes transferred is a linear function of the number of partic­
ipants. To reduce this traffic from O(n) to 0(1), we will use reliable multicasting. The 
reliable multicast protocol (RMP) proposed by Brian Whetten [WHE] has been shown to be 
efficient and robust and we intend to replace TCP with RMP. 

3.2 Performance Analysis Methodology 

The testbed consists of three Spare 5 workstations running under Solaris 2.4 connected 
by Ethernet. A workstation has two Sun video cards, one for the display of the teacher's 
image and one for handling the image of the student at that workstation. These video cards 
perform compression on the card but decompression is handled by the workstation's CPU. 
Each workstation has a local disk and 16MB of memory. The workstation serving the teacher 
is also the file server for the net with 32 MB of memory. At the user level all but the note­
taking and replay user functions described in the previous section have been implemented. At 
the system level, the major module not implemented is the resource-management module. 
The alpha version has stripped all the GUI from the video, audio and collaborative tool 
operation and automated the user interaction as specified for the IRI system. Multicasting 
and synchronization of video and audio have been implemented; reliable multicasting and 
pipelining for tool collaboration is being implemented but not part of the experimentation 
described in this paper. We reported in an earlier paper [MAL95] on the linear increase in 
network traffic due to using TCP /IP for tool collaboration (our solution being the use of 
RMP [WHE]) and the need for pipelining data traffic between the tool server and the clients. 

Hardware costs is a major consideration in developing the IRI system, thus we employed 
standard, inexpensive technology in setting up our testbed. Clearly, using technology we 
could have off-loaded decompression but it would have increased the cost considerably. 

The key question we wanted to answer in our experimentation is: Can we operate a 
tool, such as Mosaic or ghostview, in a distributed manner over several workstations and 
add multiple video and audio streams without unduly increasing response time of the tool, 
degrading the video and audio reception, or crashing the system? We had set as our goal 
that response time should not be more than double in the worst case, audio should essentially 
remain the same and the video frame rate not be reduced by more than half. We were hoping 
that the experimentation would give us enough insight to enable us to design an intelligent 
resource management module which would detect changes in load on the CPU and the 
network traffic and regulate the demand on these resources by intelligently scheduling the 
tasks. 

The key problem for this question was the relationship between the various functionalities 
and performance. To that end we designed a set of experiments to isolate the potential causes 
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of performance degradation. To measure the effects we monitor CPU performance at two 
second intervals using mpstat and instrumented our code to monitor network traffic and 
frame rates at the same time intervals. In the figures that follow, CPU utilization is the sum 
of system and user time percentages, network traffic is in bits per second and frame rate in 
number of frames per second. We are not using routines such as netstat because we want 
to isolate the traffic generated by our system from the totality of traffic over the Ethernet. 
Response time is the elapsed wall-clock time from initiating a command until completion of 
that command. We report on the time to bring up a tool separately from the average of 
executing five typical commands for that tool. 

Our test suite has three phases: a baseline of a single machine running a tool, machine( s) 
running a tool collaboratively, and machine(s) running the tool collaboratively and combina­
tions of teacher and student images and voices. Individual tests were repeated and averaged, 
the number of times depending on the variation in the results. We selected tools according 
to their demands on CPU and network traffic generated: Mosaic, xv, ghostview, emacs, and 
xcalc. We provide figures in the result section for the worst (Mosaic) and best (xcalc) case 
and refer in the explanations to results from the other tool experiments. 

Table 1 List of experimental operations 

Mosaic 
Opening an URL 
Flip back to prev. page 
Move Forward to next page 
Flip Back to prev page 
Open a hyperlink 

xcalc 
Log of a number 
Square root of a number 
Sine of a number 
Factorial of a number 
Inverse of a number 

An experiment consisted of invoking a tool in tv-learn and after a 60 second delay ex­
ecuting the five actions of Table 1 in 30 second intervals. The html documents that were 
required for the operation of Mosaic were locally present. This was done to get a precise 
response time independent of network factors. Some minimal CPU activity was noted during 
the period of the end of an action and the beginning of the next action; these points are not 
plotted. 

3.3 Experimental Results 

3.3.1 Tool Performance 

Comparisons of CPU load: Experiments were performed for several tools (emacs, an 
editor, ghostview, a postscript document viewer, and xv, an image handler, xcalc, and 
Mosaic). During tool use of a light-demand tool like xcalc, we see a series of CPU utilization 
spikes of under 20% for 3 to 5 seconds in response to each command operating the tool. 
Even for the worst case, although the CPU activity continues for a longer period, it is not 
necessarily in the high range. Worst case CPU utilization is close to 100% when using xcalc, 
but only for a few seconds in response to tool invocation. Mosaic was picked to illustrate 
the impact of high-demand tools. 
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Figure 2: Comparison of CPU utilization for tool Mosaic (without video) 

CPU utilization for the other Xclients mention fall within the envelope between xcalc 
and Mosaic; none have 100% CPU utilization in normal usage even for the worst case. With 
Mosaic, the worst case shows sporadic 100% CPU utilization but also show the feasibility 
of running all supporting tools in a workstation with a single processor. Figure 2 compares 
CPU utilization in response to a set of Mosaic commands for Mosaic running stand-alone 
(the base case) and under tv-learn with an instructor and two students participating. Under 
tv-learn, utilization would peak at 100% for as long as 10 seconds in response to these Mosaic 
commands. 

As mentioned, during this experimentation video traffic accounted for most network 
traffic; even a large tool like Mosaic generated only around 50k bps, with relatively rare 
peaks of 150k bps. Video traffic is consistently around 650k bps. While the total number of 
bits transferred is directly proportional to the number of students, at any one instance, the 
bits transferred are not necessarily higher for two students than one student. This is due 
to the processing time involved for sending the packets to two students. The total number 
of bits transferred with two student participants (5,827,544) is more than twice that for 
one participant (2,711,752). We are now working to incorporate the reliable multicasting 
protocol to keep the network traffic independent of the number of students. 

No significant amount of video and audio traffic was dropped by using UDP. The sum of 
all the data rates is well within the bandwidth budget for IRI using duplex Tl connections 
between sites (and Ethernet within a site) if we assume we can hold the rate for data traffic 
(collaborative tool operation) constant by using a reliable multicast protocol. 

3.3.2 Video Performance 
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Figure 3: CPU load and Frame Rates for Instructor with 2 students, no tool 

Baseline CPU load: Figure 3 represents the load on the CPU when running the baseline 
case of 'tvJearn' with the Instructor and 2 student participants. This scenario represents 
running the 'tv Jearn' code, a live feed video capture and display of 2 student images, mul­
ticast from the other 2 student workstations, on the instructor's workstation. 

Table 2 shows the times when each new action is initiated. Figure 3 shows corresponding 
jumps in the CPU load at these points. These CPU utilization levels are the baseline for 
subsequent discussions and figures showing loads for the operation of Mosaic and xcalc. 

Table 2 Activity Log 

time activity 
4s tv _teach code started 
20s live feed capture started 
80s 1 multicast image started 
102s 2nd multicast image started 

The frame rates for the live feed and the multicast image about 9 and 14 frames/sec 
respectively. The lower rate for the teacher's image is due to the size of the display; we 
expect both to increase with the next generation of video cards. We see that different 
activities (e.g., live feed, multicast image) do not produce a significant effect on other frame 
rates. 
Comparisons of CPU loads for Mosaic and xcalc: 

No significant CPU load variations result from xcalc operations after the activities de­
scribed in Table 2 initiated the video and audio streams. In the case of Mosaic, in Figure 
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Figure 4: Comparison of CPU Utilization for tool Mosaic (with video) 

2, we can clearly discern spurts of CPU activity corresponding to the actions performed. 
This shows that IRI running on this platform can handle multiple video and audio streams 
in conjunction with collaborative tool operation. Since all these additions are multicasting 
streams they are independent of the number of students participating in a class. Handling of 
the audio had no significant effect on either CPU load or network traffic but user perceived 
audio quality was degraded. This is due to the simple algorithm used to synchronize video 
and audio. Seeing that we have CPU and net resources available we will now improve the 
algorithm. 

3.3.3 Response Time 

From the user perspective, with the CPU utilization and network loads not directly observ­
able, the response time to a command is the key performance metric. As our experiments 
were done on Xclients, we classify response time into two types. The invocation of the tool 
usually takes longer but is a one time action which can be overlapped with other activities 
by the teacher (or even be done in advance of class). The response time for subsequent 
operations of the tool is the prime concern. 

In Figure 5 we have listed response times for all experiments ranging from the base case 
with no IRI system to the case of Mosaic running collaboratively and three video and an 
audio stream running concurrently. Tool invocation does indeed take up to 9 times more for 
the worst case (the solid bar). We expect to improve this through pipelining and multicasting 
the collaboration communication system. Thus, the processing time involved in distributing 
the packets to n students would be reduced to that of one student resulting in lowering the 
response time for bringing up a tool for the cases of more than 1 student. Typical operations, 
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Figure 5: Response Time for Mosaic 

however, take at most about twice the time of that of the base case. Commonly used tools 
like xcalc, emacs and xedit show a still better result: the response time of the worst case is 
close to that of the best case. 

4 CONCLUSIONS 

This paper reports on further results as we continue development of our Interactive Remote 
Instruction (IR) system. In [MAL94] we focused on implementation details; in [MAL95] 
on user-interface, ease-of-use issues. Here we report on performance issues and relate loads 
(CPU and network) to major functional areas, for example, support of audio/video and tool 
operation. 

Our current version addresses audio/video synchronization only to a limited degre; this 
will be addressed in future versions of the software. In addition, we will implement a dis­
tributed resource management routine which will reallocate based on priority of the applica­
tion/service. We will also incorporate RMP (reliable multcast protocol) to reduce network 
traffic when reliable transport is appropriate. 

A major goal was to determine if we could obtain acceptable performance using standard 
workstation platforms when operating a tool such as Mosaic or ghostview in a distributed 
fashion across these workstations when audio/video functionality was also included. This 
prototype demonstrates that we can handle multiple video images (both instructor and stu­
dent images) along with simultaneous distributed management of collaborative tools (such 
as Mosaic); existing low-cost technology can yield acceptable performance in a LAN environ­
ment, but with some aspects which need improvement. For example, the frame rate (number 
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of frames of video image presented per second) was limited by the video boards we used to 
between 9 and 14 frames per second depending on application and image size. Use of better 
video boards will improve the frame rate and off-load the CPU by doing compression and 
decompression on the video board. The time required to initiation tools was high, through 
after initiation, performance was acceptable. We are studying the use of pipelining tech­
niques for collaborative tools to decrease the time required to initiate a tool; this may also 
further improve response time on tool operation. 

The most important conclusion of this work is that, though some improvements as out­
lined above are required, we are able to achieve an acceptable performance within the goals 
we had established for IRI-required functionalities using moderately price hardware based 
on current technologies. 
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