
25

Enabling Interworking between
Heterogeneous Distributed Platforms*

B. Meyer, S. Zlatintsis, C. Popien
Aachen University of Technology, Dept. of Computer Science (Coomunication Systems)
Ahomstr. 55, D-52056 Aachen, Germany, Tel.: +49124118021415
Fax: +49124118888220, bemd@i4.informatik.rwth-aachen.de

Abstract
We present a trader design that is focussed on integrating already existing components. This
design has been used for implementing or enhancing traders on CORBA and ANSA ware
platforms. For CORBA we show, how this design can be used with special focus on type
management. Interworking between autonomous distributed platforms requires a contract to be
established. Therefore we have developed a new negotiation protocol based on policies,
contracts and trader links. Besides establishing federation contracts, gateway objects have to be
introduced to enable interworking distributed platforms. Server proxies, group proxies and
interceptors are possible ways to realize gateway objects.

Keywords
Trader, Interworking, Federation, Type Management, ANSA, CORBA.

INTRODUCTION

Interconnected networks of high performant computer nodes are succeeding large mainframe
computer because of the enormous improvement in communication and hardware technology
within the last decade. While local area networks connect all computer nodes in one building
new high speed networks will extend networks to regional and even to nationwide or global

'This work was supported by the Deutsche Forschungsgemeinschaft under Grant No. Sp230/S-1

A. Schill et al. (eds.), Distributed Platforms
© Springer Science+Business Media Dordrecht 1996

330 Part Nine aDP Trading and Security

structures. Walking along with network size, applications become more and more distributed.
In oder to ease the migration from monolothic to distributed applications, distributed platforms,
sometimes called distributed processing environments, have been developed. The Common
Object Request Broker Architectrue (CORBA) of the Object Management Group, the
Distributed Computing Environment of the Open Software Foundation and ANSAware are
prominent examples for this kind of platforms. Although these platforms were intended to
establish a vendor-independent platform, they do not support all kinds of operting systems.
Especially, no platform provides support for interwoking between two heterogeneous
distributed platforms. Ongoing with research on distributed platforms ISO started an activity
called Open Distributed Processing (ODP), see (ISO ODP 1995). It provides a framework of
abstraction, an architecture and a number of functions for distributed platforms. One major
function is the trading function, which enables location and server-independent binding of
interfaces. All services offered to a trader can be mediated to client requesting a certain service.

The notion of federation has been introduced by (Heimbigner et al 1985) and (Shet et al
1990) in the area of heterogeneoues multi-databases systems. It has been adapted for
interworking ODP traders by (Bearman et al 1992). What distinguishes federated form
distributed databases is, that the latter have a global data scheme, where the former have to
establish a common understanding of data schemata before a federation contract can be signed.
For the same reason we are going to distinguish trader interworking between federation and
cooperation. In regional, nationwide or global networks, there will be a huge number of
different service of fers, so a central trader service is not sensible. In addition, traders belong to
different companies each wanting to offer only a small set of service offers to public. Some
other user should be completely excluded from accessing a companys service. Therefore the
interworking between two traders have to built on a contractual basis. This agreement is called
a federation contract. In order to enable interworking between heterogeneous disributed
platforms, trading facilities have to be federated. Once all services in a federated system of
distributed platforms have been made available, gateway computers (or interceptors in ODP
terms) have to be developed for enabling interactions beyond technological boundaries of
distributed platforms. Section two provides a new design for a trader component, that can bee
implemented on several distributed platforms. As an example, we describe an realisation using
a CORBA implementation in section three. This design also has been used to enhance the trader
of ANSA ware. In order to provide interworking between heterogeneous platforms, a novel
federation protocol will be presented in section four. Section four also provides a describtion of
a trader gateway connecting an ANSAware and ORBIX distributed platform.

2 IMPLEMENTING TRADER ON HETEROGENEOUS PLATFORMS

In this chapter we propose an architecture for a trader component. It has been developed with
focus on integrating existing components like a relational database or an X.500 directory
service. Other traders have been developed within the TRADE project at the Univ. Hamburg
(Merz et al 1994), the system TBRMS at Univ. of Western Ontario (Pratten et al 1994), the
MELODY project at Univ. Stuttgart (Kovacs et aI1994), the DRYAD porject at Univ. Helsinki
(Kutvonen et al 1994), the system Agora at Univ. Karlsruhe (Keller et al 1995), the trader
developed at DSTC in Australia (Beitz et al 1994) and the system X* at Univ. Dresden (Funke
1995). All these trader approaches do not address the topic of trader federation or cooperation.

Interworking between heterogenous distributed platforms 331

2.1 The trader federation model

Traders collect service offers exported by its users. If an user wants to import a certain service,
the trader checks whether or not it can find a matching service offer. Import and export
operations are provided at the Trader Service Interface, see (ISO Trader 1995) and Figure I. An
import request describes the required service by its type and properties. Some porperties of a
service are frequently changing, whereas others have constant or rarely changing values. They
are called dynamic respectivly static properties. Whereas static property values will be stored
by the trader, dynamic properties will be evaluated for every request. Therefore every server
offers an evalution operation at its Service Offer Evaluation Interface. Besides service offers a
trader keeps information about other traders it knows, stored as so-called links, trader properties
and other management data. Access is given to these information using operations of the Trader
Management Interface. In the following we will call each trader in a federation a trader
component. Trading federations will be established based on the policies of each participating
trading component. Since trader administrators are in charge of enforcing a trader policy, they
are also those objects negotiating a contract for trader components, see (Meyer et al I 994a).
Negotiations will be performed using operations offered at the Federation Service Interface, that
has not yet be defined by ISO. We will present an new approach to federation negotiation in
section 4.1.

(administrator) I FSI

TTMI
+ rSI

(trade~ I

IrsI ~SOEI

~~

Figure 1

(administrator)

tTMI
+-+ bound object interfaces

o object

FSI federation service interface
TSI trader service interface
TMI trader management interface
SOEI service offe revaluator interface

Object interfaces in a trader federation

2.2 A common trader architecture

An overall architecture of a trader component, possibly integrated within a federation, is given
in Figure 2. It consists of an number of different modules and edges connecting these modules
representing a usage relation. With usage is meant, that one module uses the other one for
implementation of the module body. By convention, modules located on a higher level always
use modules on lower levels.

The following design has been established according to the ODP trader specification (ISO
Trader 1995), with some slight modifications and extensions. The core of the architecture is the
(service) offer database which serves as storage for service offers of one trader. It encapsulates
the structure of a service offer and the way the service offer space is structured for efficient
access. Its has been found that the service type is a good primary key for service offers. In order
to compare a requested service type to offers in the database, the offer database falls back on
the f i 1 ter module. This module includes concepts for matching constraints, selection criteria
and scope restriction. In addition, it defines a query language using these concepts, see (Popien

332 Part Nine aDP Trading and Security

et al 1995). Based on user requirements it controls whether or not a property is evaluated
dynamically. The offer selection gets more complex and complicated if more than one property
is to be optimzed. In general, properties are not independent, so optimizing one property
conflicts with a best selection of another property, e.g. looking for a printer service with a
minimum cost per page and maximum printer resolution cannot be solved best with respect to
both properties. Therefore, a trade-off has to be fixed based on the importer's preference. This
preference can be specified in qualitative or quantitive terms. A qualitative preference can be
expressed by an ordering of the importance of properties, e.g. costs per page could be of more
importance than a printer's resolution. For quantitative preference the user must specify which
amount of variation of one property is of equivalent to the variation of a second property, e.g. a
variation of 0,05 DM for cost-per-page is of equal value as a variation of 100 dpi for
resolution. Assuming linear continuation of this preference, a offer Printerl with
(cost-per-page = 0,10 DM; resolution = 360 dpi) must be selected compared with an
offer Printer2 with (cost-per-page = 0,20 DM,resolution = 500 dpi).

Figure 2

I:l si mplc module

Q complex module

Modular architecture of a trader component

In order to improve the efficiency of the evaluation of dynamic property values, it should be
possible to group all service exports e.g. of a computer node and let a certain manager object
maintain the dynamic property values. Consistently a trader performing a lookup only has to
contact these managers for obtaining dynamic property values of several exporters. Therefore
it is necessary to evaluate dynamic properties afterwards searching with respect ot service type
and static properties, because the trader must know, which exporters within a group it needs to
contact for import query processing. More details can be found in (Kupper et al 1995).

Different traders will be connected by links, which together establish an arbitrary structured
trader graph. Another database, the management database, stores and maintains trader
properties, trader policies and related kinds of management information. More detailed
informattion on the notation used for policy representation can be found in (Meyer et al I 994b).
All these modules are under control of the trader query manager. Taking the import operation
as an example, the trader query manager checks the request against the trader policy and
forwards requests to the local offer databse or to federated traders.

IntelWorking between heterogenous distributed platforms 333

2.3 Using standard components

The most important database of each trader is the service offer database. It might contain
hunderts or even thousands of service ofers. Usually not all service offers can be stored in the
main memory of a computer node, so a database system as secondary memory is very useful.
Whereas an object-oriented data model seems to be more natural for modeling the offer
database, it is possible to model all information in relational database schemata. Therefore
requests to the service offer database have to be transformed into standard SQL (structured
query language). It seems to be sensible to design a query language for the service offer
database, that extends SQL with attributes for properties (static/dynamic, mandatory/optional)
and selection of an optimal service with respect to one (or more) properties. Another approach
uses the X.500 Directory Service for storing service offers, service types, links, properties or
policies, see (Popien et al 1993) and (Waugh et al 1995), which is a comprehensive summary
of annex B of the ISO trader document.

3 TRADER ON A CORBA PLATFORM

3.1 The Object Request Broker

The Object Management Architecture (OMA) has been designed to integrate objects from
heterogeneous systems into a single application. Therefore objects offer their services as
operations of an interface defined by an OMA-specific interface definition language (IDL).
Thus an object's implementation is hidden from the clients, while a homogeneous view to all
objects is provided. Interaction between objects are performed by a dedicated component, the
Object Request Broker (ORB), see (OMG CORBA 1993). It allows to access objects
independent from their implementation or their location in the environment and allows the
handling of objects and their corresponding references in an OMA platform. To offer its
functionality, the ORB has two repositories at its disposal, the interface repository and the
implementation repository. Interactions via an ORB follow a typed approach. This requires a
type checking mechanism to ensure that an invocation is provided with legal parameter types.
Therefore interface definitions can are stored in the interface repository, along with their
corresponding operations, parameters and exceptions, where they can be accessed for type
checking purpose. To make type description comparable, an ORB system offers the concept of
type codes. Type codes describe datatypes used at an interface in a uniform way, thus allowing
any constructed type description to be passed as a parameter in an invocation. The
implementation repository stores information concerning an object\'s implementation , i.e. an
object's reference, name, pathname of the executable or activation mode of the object.
Whenever the ORB comes across a dynamic object invocation, it retrieves the appropriate
reference from the implementation repository.

3.2 Type management based on CORBA

Besides service offers, the trading system needs to store service types and relationships between
them. Relationships between types can be subtyping or equivalence. To provide type
compatibility in the sense of ODP subtyping rules for interfaces should be met, see (ISO ODP

334 Part Nine aDP Trading and Security

1995). For being a subtype of another type, it allows parameters or properties to be subtypes,
but requires name equivalence for all named items in an service type, such as operation,
parameter or property names. Type equivalences can be used to relate types, that have different
names, data structures or attribute domains, but the same semantics. Therefore type
transformations have to be defined, see (Meyer 1995).

When developing a trader based on an ORB, the implementation repository and the interface
repository seemed to be a good basis. First, the implementation repository stores reference
information and could provide these information to the trader. Unfortunately, there is no public
class allowing to access information stored in the implementation repository, so object
references can only be accessed ORB-internal mechanisms. For this reason service offers and
object references have to be stored in a separate database. This is feasible since an object's
reference is known to the object itself and can be accessed and/or made available by it.

On the other side the interface repository is provided a public calss interface that allows to
store and view interfaces types by retrieving them from the repository. Especially the type codes
offered by the ORB were a great ease, because they can be generated on request by IDL
compiler along with type descriptions of interfaces, their operations and exceptions. The user
does not have to deal with the construction of type codes, the concerning mechanisms are
already provided. The obtained types can easily be brought into the typemanager's space. Only
type information concerning service types requires a little more expense, because service types
are not in the scope of an ORB. In this case information according service properties, service
offer properties and the service's semantics have to be provided by the exporter.

interface TypeManagerServicelnterface:

void AddType(
in TypeSig new_type,

. in TypeIDList SUbtypes,
in TypeIDList supertypes,
out TypeID identifier);

void DeleteType(
in TypeID identifier);

void SetEquivalenceRelation(
in TypeID type_I,
in TypeID type_2,
in Transfonnation 2_to_I);

void SetSubtypeRelation(
in TypeID supertype,
in TypeID subtype,
in Transfonnation sub_to_super);

void PlaceType(
in TypeSig type,
out TypeIDList SUbtypes,
out TypeIDList supertypes)

void IsSubtype(
in TypeDesc supertype,
in TypeDesc SUbtype,
out Boolean ok)

void IsEquivalentType(
in TypeDesc type_I,
in TypeDesc type_2,
out Boolean ok)

void GetSubtypes(
in TypeID type,
out TypeIDList subtypes)

void GetSupertypes(
in TypeID type,
out TypeIDList supertypes)

void GetEquivalentTypes(
in TypeID type,
out TypeIDList equivalenuypes)

Figure 3 Service interface for a type manager

lnterworking between heterogenous distributed platforms 335

Figure 3 gives an overview of the service interface of the type manager. Type relations the type
manager supports cover subtype and equivalence relations. The type manager allows USers to
add and delete types from the type repository. Adding types requires to give supertypes and
subtypes of the new type. In return, the user gets an unique type identfier. Relations between
two types of the repository can be introduced by dedicated operations for both, subtype and
onequivalence relation. Furthermore, ther are operations for checking subtype and equivalence
relation between two types. Therefore, the types can be described by a type identifier or a type
signature depending whether or not the types are part of the type manager. Another three
operations return all subtypes, supertype or equivalent types with respect to a given type. It is
important to mention that syntactic subtyping is not equivalent to semantic sUbtyping. Syntactic
subtyping can be automated whereas semantic subtyping needs support by the user and can
thereby carried out only computer-aided or manuall. Related work on type management can be
found in (Indulska et al 1994) and (Brookes et al 1995).

4 ESTABLISHING AND PERFORMING INTERWORKING

The following section presents a new approach to the federation of trader components based on
the notions of policies, contracts and links. Therefore a new protocol for the negotiation of a
federation contract, called Federation Negotiation Protocol will be introduced. After
establishing a federation , one trader can forward e.g. import requests to the partner trader. In
general. this interworking requires crossing technology boundaries of the involved ditsributed
platforms. Therefore we propose a trader gateway to be introduced. For the distributed
platforms ANSA ware and ORBIX describe a prototype implementation of a trader gateway.

4.1 The Federation Negotation Protocol

In the follwing we describe a new federtion protocol called the Federation Negotation Protocol
and concepts used for its realization. A related approach can be found in (Beasley et al) and
(Lima et al 1995). But contrary to our approach Lima assume a contract to negotiated between
two traders. We believe, that federation negotiation is a management tasks and should not
reduce a trader's performance, see (Meyer et al 1995).

Each trader holds a policy determining its behaviour. Two parts of this trader policy are
called the Federation Export Policy and the Federation Import Policy, that determines which
behaviour a trader offers to other traders and what kind of behaviour a it requests from federated
traders to be offered. The behaviour described within these policies might depend on certain
conditions or states of the trader, e.g. a very busy trader will have a very strict export policy
allowing only a small number of federted traders or restricting the shared service offer space. A
certain company might grant guest traders only a smaller service offer space than associated
companies. Both federation partner trader will store their part of a contract. We have developed
a formal notation for policies based on the notion introduced in the Reference Model ODP, see
(Meyer et al 1994b). (Anstotz et al 1995) show, how these policies can be interpreted by a rule­
based agent. A contract builds a directed relation between traders giving either an importer or
exporter role to each one of them. Each contract contains an identification, a specification of the
shared interface operations and the shared information. In Figure 4, we give an example of an
importer's part of a federation contract between two trader. The contract identifier consists of a

336 Part Nine ODP Trading and Security

combination of both partner's IDs and a sequence number to allow more than one contract
between two traders. The shared information specification can be used to reduce the accessible
service offer space of the exporting trader. It is possible to restrict to service offer space to
certain nodes, contexts, service offers of certain type or property values. If the result offer space
does not match with physical service offer partitions, it can be cached to achieve performance
gain. The transformation of a policy into a contract is not only a syntactical process but also a
seman tical one.

contract TraderI4&TraderI3& I
with TraderI3 as exporter
for interface TSCTraderI3:=UIID
allowing operations (import, IistOfferDetails)
require
maxPropagationDepth = 0;
maxNumberOfCheckedOffers = 1.000;
transportProtocol = UDP
giving access to
node = I3]ublic;
serviceType in (Drucker, DruckFormatKonverter)
where
resolution >= 360 dpi

Figure 4 Sample federation import contract

This is because knowledge of a trader's system state or of the membership of the requesting
object in a certain domain might have influence on the charateristics of the contract being
created. In general, a contracts are static, which means, that shared interfaces and information
do not change over the time. But it can be fixed in a contract, that it includes dynamic change
without modifcation. This requires a policy to be included within a contract. There exists an
federation export policy on the accepting side, which is matched with the federation import
policy of the requesting side in order to build a federation offer. Due to assuring a
maximumautonomity of the accepting side, the federation export policy takes preceedence over
the federation import policy.

As mentioned in section two, links between traders are used for storing the knowledge one
trader holds about service interfaces of other traders within a federation. In correspondence with
the standard (ISO Trader 1995), a link contains an identification to distinguish it from other
links, a name for the accessible service offer partition of this link, the reference for the remote
trader service interface and a number of properties concerning the link. Transforming a contract
into a link can be done by syntactical means, in contrast to the transformation of a policy into a
contract, that requires trader state knowledge. All information except name for the service offer
space and the interface identification will be merge into a single property list.

A federation contract between two traders will be established by negotiation between the
corresponding administrators, see Figure 5. If both traders are linked to the same administrator,
there is no need for inter-administrator cooperation. Federation negotiations are directed inthe
sense that one administrator takes the contract requesting role whereas the other has
theaccepting role. The federation negotiation protocol works as follows. The importer forwards
a contract request to the exporter. This contract request will be created from the importing
trader's federation export policy. Depending on the contract content, the exporter checks,
whether it can accept it or not. Therefore it matches the contract offer with the federation export

Intelworking between heterogenous distributed platforms 337

policy of the exporting trader. If it is not accpetable, it is possible for the accepting administrator
to weaken the contract requested and return it to the requestor as a contract offer. The importer
has to investigate, if the contract offer, which might be a modification of the contract request,
is acceptable. In this case is sends a confirmation. Both sides can send a reject to abort the
negotiation. After federation has been established both administrators transform the contract
into a trader link, which is sent to the importing respectively exporting trader.

importing
trader

AddLink

Figure 5

requesting
administrator

accepting
administrator

FederationRequest

FederationOffer
AddLink

Protocol of successful federation negotiation

4.2 Bridging distributed platforms

exporting
trader

Interworking of distributed platforms deals with different kinds of heterogenity. Each platform
uses its own format for object references or inter-object cooperation is realized by different
remote procedure call (RPC) mechanisms. In addition, interface types are described by different
notations called interface or type definition languages. Whereas these kinds of heterogenity are
related to the platform technology, another source for heterogenity are user-defined structures
within a distributed platform. Therefore, the service type hierarchy is a good example.
Assuming two distributed platforms are using different type hierarchies, interwoking requires
an integration of both hierarchies. Otherwise a federation between them has nosense at all,
because services offered by a federated platform could not be used instead of a local service.
Integration of type hierarchies on its side requires bridging of name, structural and semantic
heterogenity. All these above mentioned kinds of heterogenity have to be brigded in order to
provide federation transparency to the user. Federation transparency is the property of a system
to hide technological and administrative boundaries from the user. All mechanisms supporting
federation transparency have to be scalable, which means that they are able to mask the
integration of a new kind of distributed platform without requiring are compilation of all
applications. Consistently, they have to be realized within the run-time system of a distributed
platform.

In the following we will focus on solving heterogenity of object references and
cooperation mechanisms. Type integration mechanisms are part of the type manager and an
approach extending interface definition languages with type integration be found in (Meyer
1995). To provide federation transparency, mechanisms have to be integrated to the the run­
time system of each computer node or a special gateway object has to be introduced. Gateway
objects can be realized by proxy objects or by an interceptor. A server proxy stubstitutes a
certain foreign server, whereas a group proxy represents a group of foreign server objects
offering services of the same type. In contrast to proxies, an intercepetor is a gateway, that
transforms operation calls between two platforms. The main diference between a proxy and an
interceptor is, that an interceptor is a generic object dealing with operation calls of any service

338 Part Nine ODP Trading and Security

type, whereas proxies only deal with operations of a certain service type. In order to forward an
operation to the server, an interface reference is needed to be given to the RPC run-time system.
In case of a foreign object, the local run-time system cannot interprete the foreign object
reference, and has to be transformed into the foreign object reference format. The proxy
interface reference can be used in case of a server proxy as gateway, whereas group proxies and
interceptors require more information in addition to the gateway interface reference. This might
be a server identification or reference, that is valid in the foreign domain.A more elegant
solution is the introduction of a universal interface reference, that can be interpreted in all
distributed platforms. Therefore, all platforms have to agree to a universal description for
interface references or a union data type has to be defined for all involved distributed platforms.
The disadvantage of the universal interface reference approach is, that all distributed plat forms
have to be extended in order to use this kind of reference. This is possible for platforms delivred
with its source code, but not for commercial platforms. In the following discussion of the three
gateway approaches we will concentrate on the e transformation approach. One possible
gateway is server proxy object for each object. A client wishing to invoke an operation at a
foreign object calls the corresponding proxy object which does the invocation of the real server,
receives the invocation\'s result and passes them back to the client. Service offers of foreign
server will be stored in the local trader with the reference to the proxy object instead of the
foreign reference. The mapping onto the foreign reference is going to be done within the proxy
object implictely. The client in this case is not aware of whether the invoked object is a foreign
one or not, since the reference it uses belongs to its own system. A disadvantage of this scenario
is the overhead of proxy objects that exist in both the environments since not all of the exsting
objects need a proxy object as not every object is invoked by foreign objects. The call
mechanism for a group proxy is similar to the one for a server proxy except that the proxy
interface reference is not enough to uniquely identifying a certain server. Although the client
invokes an operation at the proxy interface, it also has to pass the foreign address (or an identi­
fier) of the server to call. It is the task of the group proxy to forward the call to the corresponding
server. The addressing problem in the local domain is the same as with group proxyies
mentioned above. The major drawback of the interceptor approach is, that this object is likely
to become a performance bottleneck, even if it is located on special computer node. In order to
improve performance, several equivalent interceptors might be created. This raises the problem
that interceptors have different interface references, so it must be known in advance which
server will be handIed by which interceptor, or group addresses for interceptors must be
supported.

We are implementing a gateway for the distributed platforms ANSAware and the CORBA
software ORBIX. It consist of a server proxy. As already mentioned a uniform interface
reference is required to allow clients to invoke foreign objects. Both platforms offer tools to
transform an object reference or an ansa_interface_reference into a string and back. A client
wishing to invoke an operation of a certain object passes the previously received uniform
interface referenece to the server proxy of its distributed platform along with the ope ration's
name and the list of parameters the operation requires. The interceptor then receives the request
and does for its part the real invocation, afterwards passing the invocation's result back to the
client.

These trader implementations on ANSAware and ORBeline and the gateway between them
will also be used in the IWT project started at the DSTC in Australia, see (Vogel et al 1995).)

Interworking between heterogenous distributed platforms 339

5 CONCLUSIONS

Connecting heterogenenous distributed platforms can be easily achieved by trading
components. Therefore common service interfaces are necessary. We have presented a modular
trader architecture that can be used to implement trader components on different distributed
platforms. We have used trader design by enhancing or establishing a trader component on the
ANSA ware and ORBIX distributed platform. For enabling interworking between between
heteroegenous. autonomous platforms. a federation contract between its trading components
has to be established. Therefore we have presented a protocol called the Federation Negotation
Protocol, that is based on the notions of policies, contracst and links. It is realised by a three­
way communication assuring both parties can quit the negotiation process if the contract is not
satisfactory. Once a federation has been established operations can be forwarded to remote
traders and servers. Because of heterogeneous object references, cooperation protocols,
interface and type descriptions. gateway objects have to be introduced. We have discussed
several gateway approaches like server proxies, group proxies or interceptors. For enabling
interworking between the ANSA ware and ORBIX distributed platform we described concrete
implementation work going on at Aachen University of Technology.

6 REFERENCES

Ansttitz, F.; Meyer, B. (1995) Towards implementing Flexible Systems Management - A
policy-based approach. In: Sloman, M. (ed.): International Workshop on Services for
Managing Distributed Systems, Karlsruhe 1995

Bearman, M. and Raymond, K. (1995) Federating Traders: An ODP Adventure. In: Meer, 1. de;
Heymer, V.; Roth, R. (eds.): Open Distributed Processing, North Holland 1992. pp. 125-141

Beasley, M.; Jane Cameron, J.; Gray Girling, G. et al (1993) Federation Manifesto. Documentt
APM.1193.01

Beitz, A.; Bearman, M: An ODP Trading Service for DCE. Proceedings of First International
Workshop on Services in Distributed and Networked Environments, IEEE Computer Society
Press 1994, pp. 34-41

Brookes, W.; Indulska, J, Bond, A. et al (1995) Interoperabilty of Distributed Platforms: A
Compatibilty Perspective. In: Raymond, K.; Armstrong, L. (eds.): Open Distributed
Processing: Expereinces with distributed environments, Chapman & Hall 1995, pp. 67-78

CORBA (1993) Object Management Group: The Common Object Request Broker
Architecture: Architecture and Specification. Revision 1.2, December 1993

Funke, R. (1995) X* - a DC++ based Trader (in german). In: Mittasch, C. (ed.):
Anwendungsunterstiitzung fiir heterogene Rechnernetze, Workshop Proceedings, Freiberg
1995, pp. 51-58

Heimbigner, D. ; McLeod, D. (1985) A Federated Architecture for Information Management.
ACM Transactions on Office Information Systems, Vol. 3, No. 3, July 1985, pp. 253-278

Indulska, J. ; Raymond, K.; Bearman, M. (1994) A Type Management System for an ODP
Trader. In. Meer, J. de; Mahr, 8.; Storp, S. (eds.): Open Distributed Processing II, North
Holland 1994. pp. 169-180

Keller, L.; Grosse, A. (1995) Mediation of Reliable Services in Trader-based Systems (in
german) . In: Mittasch, C. (ed.): Anwendungsunterstiitzung fiir heterogene Rechnernetze,

340 Part Nine ODP Trading and Security

orkshop Proceedings, Freiberg 1995, pp. 41-50
Kovacs, E.; Wirag, S. (1994) Trading and Distributed Application Management: An Integrated

Approach. Proceeding of 5th IEEEflFlP International Workshop on Distributed Systems:
Operation & Management, Toulouse, October 1994

KUpper, A.; Popien, c.; Meyer, B (1995) Service Management using up-to-date quality
properties. #

Kutvonen, L.; Kutvonen, P. (1994) Broadening the User Environment with Implicit Tradding.
In: Meer, 1. de; Mahr; B.; Storp, S. (eds.): Open Distributed Processing II, North Holland
1994, pp.157-168

Lima, L.; Madeira, E. (1995) A Model for a Federated Trader. In: Raymond, K.; Armstrong, L.
(eds.): Open Distributed Processing: Expereinces with distributed environments, Chapman
& Hall 1995, pp. 173-184

Merz, M.; MUlier, K.; Lamersdorf, W. (1994) Service Trading and Mediation in Distributed
Computing Systems. Proceedings of 14th International Conference on Distributed
Computing Systems (ICDCS'94), IEEE Computer Society Press, 1994, pp. 450-457

Meyer, B.; Popien, C. (1995) Performance Analysis of Distributed Applications with
ANSAmon. In: Raymond, K.; Armstrong, L. (eds.): Open Distributed Processing:
Expereinces with distributed environments, Chapman & Hall, pp. 309-320

Meyer, B.; Popien, C. (1994) Object Configuration by ODP Traders. In: Meer, 1. de; Mahr, B.;
Storp, S. (eds.): Open Distributed Processing II, North Holland 1994, pp. 406-408

Meyer, B.; Popien, C. (1994) Defining Policies for Performance Management in Open
Distributed Systems. Proceeding of 5th IEEEIIFlP International Workshop on Distributed
Systems: Operation & Management (DSOM'94), Toulouse 1994

Meyer, B. (1995) Integration of Heterogeneous Interfaces in Distributed Systems (in german).
In: Mittasch, C. (ed.): Anwendungsunterstiitzung fur heterogene Rechnernetze, Workshop
Proceedings, Freiberg 1995, pp. 25-32

ISO ODP (1995) ISOIIEC ISIDIS 10746-112/3: IT - Open Distributed Processing - Reference
Model,1995

ISO Trader (1995) ISOIIEC DIS 13235: IT - Open Distributed Processing - ODP Trading
Function -Editors Draft DIS text. 19 May 1995

Popien, c.; Meyer, B. (1995) A service request description language. In: Hogrefe, D.; Leue, St.
(eds.): Formal Description Techniques VII, Chapman & Hall 1995, pp. 37-52

Popien, c.; Meyer, B. (1993) Federating ODP Traders: An X.500 Approach. Proceedings of
Interbnational Conference on Communication (ICC'93), IEEE Computer Society Press
1993, pp. 313-317

Pratten, W.; Hong, J.; Bennett (1994) A trader based resource management. Proceeding of 5th
IEEEIlFIP International Workshop on Distributed Systems: Operation & Management
(DSOM'94), Toulouse 1994

Shet, A.; Larson, 1. (1990) Federated Database Systems. ACM Computing Surveys,Vo\' 22, No.
3, Sptember 1990, pp. 185-236

Vogel, A.; Bearman, M.; Beitz, A. (1995) Enabling Interworking of Traders. In: Raymond, K.;
Armstrong, L. (eds.): Open Distributed Processing: Expereinces with distributed
environments, Chapman & Hall 1995, pp. 185-196

Waugh, A.; Bearman, M.: Designing an ODP Trader Implementation using X.500.ln:
Raymond, K.; Armstrong, L. (eds.): Open Distributed Processing: Expereinces with
distributed environments, Chapman & Hall 1995, pp. 133-144

lnterworking between heterogenous distributed platforms 341

7 BIOGRAPHY

Bernd Meyer studied computer science at University of Karlsruhe and Aachen University of
Technology. 1994 he received his diploma and then became a research assistant at the
Department of Computer Science at Aachen University of Technology. His research topics are
trading, distributed platforms and managment of distributed systems.

Stefan Ziatinstis studies computer science at Aachen University of Technology. He received
his pre-diploma in 1993. Since 1994 he works at the Department of Computer Science where
he is involved in distributed systems espcially trading and type management. He has submitted
his diploma thesis entitled "Design and evaluation of a trader gateway between ANSAware and
ORB Systems".

Claudia Popien studied mathematics and theoretical computer science in Leipzig, Diploma
1989. After a research work at Technical University of Magdeburg she became an assistant at
Aachen University of Technology,the Department of Computer Science in 1991. She finished
her Ph. D. thesis entitled "Service trading in distributed systems - service algebra, service
management and service request".

