
21 

A high-level process checkpointing 
and migration scheme for 
heterogeneous distributed systems 

Tim Redhead 
University of Queensland, Australia 
CRC for Distributed Systems Technology, Level 7, Gehrmann Labs, 
University of Queensland, Australia, 4072, 
email: redhead@dstc.edu.au 

Abstract 
Reliability is a key concern of designers of distributed computing systems. Check pointing 
can be used as a basis for designing resilient processes and process-migration schemes, but 
very few systems which implement process-check pointing are heterogeneous. 'High-level' 
process checkpointing schemes capture process-state at a higher level of abstraction than 
do low-level schemes. The resulting state does not depend on low-level or platform-specific 
structures, and so is meaningful at any site in a heterogeneous distributed computing 
network. This paper presents a high-level approach to process checkpointing which is 
transparent to the programmer, which operates at a fine level of granularity, and which 
can deal with dynamically allocated memory and multithreaded processes. 

Keywords 
Process, checkpoint, heterogeneous, resilient, distributed. 

1 INTRODUCTION 

Process checkpointing involves capturing the state of a process in a single, atomic action. 
Restoration is the inverse operation of checkpointing and involves returning the captured 
state to the process, which can then continue executing as it would have if the checkpoint 
had never taken place. Checkpointing is often used as a basis for both process migration 
and the implementation of resilient processes (Mishra and Sclichting, 1992). 

A heterogeneous distributed computing system is one where each of the machines in the 
system may have different hardware architectures and operating systems. Many existing 
systems which provide process checkpointing and migration mechanisms are described 
by Nuttall (1992) . These and other systems can be broadly categorised according to the 
degree of heterogeneity of the environment for which they are designed. The first group 
includes distributed operating systems such as Amoeba (van Renesse, van Staveren and 
Tanenbaum, 1988), and operates in a totally homogeneous environment . It also includes 

A. Schill et al. (eds.), Distributed Platforms
© Springer Science+Business Media Dordrecht 1996



A high-level process checkpointing and migration scheme 273 

distributed systems such as Argus (Bal, 1992), which require both the operating system 
and the hardware on all machines be identical (Argus is implemented on a system of 
VAX3200's, which all run the UNIX operating system). The second group of systems 
include those that are designed for a partially heterogeneous environment; either the 
hardware platforms or the operating systems at each site may be different . but not both. 

1.1 The low-level approach 

None of the systems that are members of the first two groups are useful in a heteroge­
neous distributed environment . In contrast, the third group consists of those systems that 
are designed to run in a totally heterogeneous environment, and includes systems such 
as Chameleon (Attardi. et. ai, 1987(a) , 1987(b) , 1988). However, Chameleon is also an 
example of a system which is based on a low-level checkpointing approach. The low-level 
approach suffers from the following shortcomings, when used as a basis for resilient pro­
cesses and process migration in a heterogeneous system: machine-level structures such as 
stacks and registers must be translated or interpreted, operating systems can be widely 
dissimilar or incompatible, and the semantics of any state-data must be maintained so 
that the process-state is consistent at any host in the distributed system 

1.2 The high-level approach 

The work presented in this paper aims to develop an alternative to the low-level approach 
to process check pointing. High-level process checkpointing does not rely on any platform­
specific variables or structures. Instead, process-state is captured at the language-level of 
abstraction. The captured state is meaningful at any site in a heterogeneous distributed 
system, since it exists in a platform-independent format. 

The checkpointing and migration system presented in this paper is based on a high­
level process-check pointing mechanism and is designed to function in a heterogeneous, 
distributed environment . This system, known as HiCaM (for High-level Checkpointing 
and Migration), avoids the difficulties and inefficiencies of translating or interpreting a 
low-level process-state as it is moved between dissimilar sites. 

Other schemes which have taken a similar, high-level approach include Arjuna (Shrivas­
tava and Parrington, 1991), DC++ (Schill and Mock , 1993) and ANSA ware (ANSAware, 
1993) , but the aim of this work is to improve on these schemes in a number of areas. 
Specifically, the aims of HiCaM are to: 

• Reduce the additional work required of programmers and designers. 
• Reduce the risk of errors in the definition of the process-state 
• Reduce the level of granularity of the checkpoint operation. 
• Allow the high-level checkpointing of dynamically allocated memory. 
• Enable the high-level checkpointing of multithreaded processes. 

1.3 Outline of this paper 

This paper describes the design of a system which provides the infrastructure for pro­
cess migration and resilient processes in a heterogeneous distributed system. Section two 



274 Part Seven DeE - System Aspects 

of this paper discusses several design principles and gives an overall view of the whole 
high-level scheme, describing the general environment and how each of the components 
of the system work together. Section three describes OSF DCE. Sections four to eight 
present the design and current implementation of each of the system components in more 
detail. Individual system components include preprocessor tools as well as runtime sup­
port applications. Section nine outlines future work and section ten summarizes the work 
presented in this paper and offers some conclusions about what has been achieved to date. 
An implementation overview is given at the end of each relevant section, but the reader 
is referred to (Redhead, 1995) for more detailed implementation information. 

2 PRINCIPLES OF THE SYSTEM DESIGN 

This section provides an overview of the design of the high-level checkpointing system. 
There are three main principles behind the design presented here. 

The first principle of this work is that process-state should be captured at a level which 
is not reliant on platform-specific factors . Platform-specific factors include the number of 
registers present in the hardware of a particular machine, or some intrinsic feature of a 
particular operating system, such as its ability to dump core in response to a software­
interrupt. Such platform-specific features would severely limit a system's usefulness in a 
heterogeneous environment, since there is no guarantee that the feature will be present 
at all the system sites. 

Application processes are viewed as high-level abstract machines. This view-point ex­
cludes platform-specific characteristics from the definition of an abstract machine's state. 
However, this approach assumes that an abstract machine exists in a suitable distributed 
computing environment, as described in section 3. There are a number of environments 
which support these features, including OSF's DCE (Shirley, 1992), (Rosenberry, 1992), 
which has been used to support the HiCaM system presented here. 

As described by Theimer and Hayes (1991), a high-level programming language defines 
an abstract machine. Compilers are used to translate the platform-independent source 
(abstract-machine) code to platform dependant binary (physical-machine) code, but the 
behaviour (as described below) which is described by both source object and binary 
code is the same. In addition, there will be points in the program's execution, termed 
migration-points, where the process state can be specified in terms of the current state 
of the abstract machine. The more frequent the migration points, the less the delay in 
waiting for a migration call to be completed. 

The second principle behind the work presented here, is that checkpoint/restore func­
tionality must be included as part of an application process, rather than as part of an 
operating system. The individual functionality that is provided by the HiCaM mecha­
nism is different for each application; the functions which will checkpoint and restore a 
process are based on the process's state, and that state is defined in terms of the high­
level programming language. Since the functionality is application-specific, it makes sense 
to include the functionality within the application itself. In addition, processes cannot 
rely on underlying operating system-specific mechanisms in a heterogeneous distributed 
network, since that feature will almost certainly be absent at some of the system sites. 

The third principle of this work is that the system is designed from an object perspec­
tive. Processes are considered to be objects, each with hidden mechanism and at least one, 



A high-level process checkpointing and migration scheme 275 

well-defined interface. All inter-object communication (including file and database I/O) 
must take place through the object's interface(s), via a remote-procedure call mechanism. 
Object-behaviour is described by the state of the object which is visible at the object's 
interface. In this design, the object-paradigm is extended to apply at compile-time as well 
as at run-time, so that application-designers and programmers need not be aware of the 
mechanisms which will eventually allow their objects to be checkpointed or migrated; pre­
compiler tools automatically add any checkpoint; restore functionality (along with other 
functions which are described below) to the general, application code. 

2.1 Overall system design 

Figure 1 shows a diagrammatic representation of the run-time components of this dis­
tributed network. In this diagram, jagged arrows denote communication between applica­
tion client and server processes. Rounded, solid arrows show management communication 
taking place as an application server is instructed to checkpoint, and a Remex server is 
instructed to start a new process. The rounded, dashed arrow shows state being check­
pointed by a checkpoint server. 

User-application client and server processes may be resident on any machine in the 
network; client processes request that work be done on their behalf by server processes 
via remote procedure calls, and any results are returned from the server to the client. 

The system design provides remote-execution facilities via remote-execution servers 
which reside on each site in the distributed network. These Remex servers allow processes 
to be started on any site in the distributed network, usually in response t.o a request from 
a management application. 

At least one management client is provided by the checkpointing system, and runs on 
any site in the distributed network. The client (known as MiMan, for Migrator/Manager) 
allows human managers to interact with the distributed network, controlling many aspects 
of the execution of application processes, such as when they run, checkpoint and migrate. 

At least one checkpoint server is provided by the checkpointing system. for each class 
of server in the distributed network. Checkpoint servers are responsible for collecting 
checkpointed state and either retaining it in memory or transferring it. to stable storage. 
They are also responsible for returning captured state to a process that is undergoing 
restoration. 

Several precompiler tools are provided as part of the high-level checkpointing system. 
These tools are bundled together into one package, which transparently adds all the 
required functionality to application process-code, allowing the compiled process to take 
part in checkpointing and migration at runtime. 

3 DeE 

A high-level approach to process checkpointing requires an underlying support environ­
ment that must include a naming service, a remote procedure call mechanism and universal 
type definitions. DCE is a collection of libraries, services and tools which is developed by 
the Open Software Foundation (OSF), which provides such an environment. In the im­
plementation described here, state-transfer operations are implemented using DCE RPC. 

The design of this high· level checkpointing scheme depends upon describing an execut-



276 Part Seven DeE - System Aspects 

Figure 1 Diagrammatic snapshot of the runtime components of the HiCaM system. 

ing process's state in terms of a high-level abstract machine. However, the types defined 
by high-level programming languages are often incompletely defined, making it impossible 
to fully describe the state of a process using these types. For example, the C program­
ming language does not define what size an integer-type must be. Consequently, state 
which is defined using a C integer-type will have different meanings on different hardware 
platforms. DCE IDL types have the same definition on all machines. Since IDL type def­
initions are complete and consistent, interfaces defined using IDL types have the same 
semantics at any node in the system. Similarly, the state of a process can be defined using 
IDL-types, in which case the data which makes up a process-state will also be consistent 
at any node. 

4 CONFORMIST SERVERS 

In most distributed environments, applications are structured into client or server pro­
cesses. Server processes perform tasks in response to a request by one or more client 
process. The request is delivered to the server via an RPC, and any results are returned 
to the client in the same way. 

A user-application server requires additional functionality if it is to be able to take 
advantage of the high-level process checkpointing mechanism presented here. Additional 
functionality should be added transparently, and from the point of view of other application­
processes, the resulting conformist server should be indistinguishable from the original 
server at runtime. 



A high-level process check pointing and migration scheme 277 

HiCaM includes precompiler tools which generate a server's checkpointing/migration 
functionality, based on the original server code. The checkpoint/migration code includes 
function and data structure definitions, as well as auxiliary files, which arf' compiled sep­
arately and linked to the general application files to produce a conformist server process. 
The precompiler tools which add the conformist functionality are bundled together and 
the applications programmer need only invoke them from the command lilH' or a make-file. 
Figure 2 gives a diagrammatic summary of the functions that are addf'd hy the prepro­
cessing tools in the current system implementation. In this diagram, t.11f' four T-shaped 
boxes represent the additional functionality that is added during pre-processing by the 
HiCaM code generator. The three T-shapes to the right represent intf'rfares: a general 
application will have its own interface(s), but additional interfaces are also required. 

4.1 Thread Monitoring Capabilities 

A multithreaded server may concurrently service the RPCs of many clients, and each 
concurrent thread of execution can alter the server's state. However, at checkpoint time, 
the server's state must be guaranteed to be stable; all the server state must be accessible 
at a high level of abstraction, and the state may not change while a checkpoint operation is 
taking place. Therefore, thread monitoring capabilities must be added which transparently 
allow other checkpoint/restore functions to determine the total number of threads present. 
in a server at any time, and which threads are active (executing) at that time. In addition , 
the thread monitoring code must describe these aspects of the thread 's execution in terms 
of the high-level abstract machine, since this is the level at which checkpointing will take 
place. 

In the current system prototype, thread monitoring is implemented ill t.he following 
way. Thread monitoring code is automatically generated, which replaces t he manager-code 
address with the address of a new function, which in turn registers the addition of a new 
thread and identifies the client that is bound to that particular thread. The new function 
then passes the original RPC calling parameters to the conventional manager code, which 
then does the work that was requested by the client process. Any results from the manager 
code are passed back to a second precompiler-added function which deletes the current 
thread from the list of active threads (since the RPC has now dfecti\'el~' finished), and 
returns the result to the client as a conventional RPC return-vallif'. 

Additional consideration has been given to the common scenario. whf're many clients 
re-bind to a multithreaded server, after that server has migrated. If t.he server was in the 
process of servicing more than one RPC when it. was migrated . it. will almost always be 
necessary for each of the respective clients to not only rebind wit.h that same server. but 
to rebind with the same thread within that server, since each thread will often contain 
information which is specific to the calling client.. 

4.2 Interface withdrawal and re-advertising functionality 

In a general distributed environment, server processes interact with their clients t.hrough 
well-defined interfaces. When a server first begins execution , it. advertises its availability 
by registering its interface with the name-service. However, if the server is lat.er migrated 
to a different site, the server's name-service registration must be updated t.o reflect. it.s new 
location; if the old binding information is not updated, subsequent. dif'nt swill att.empt to 



278 Part Seven DeE - System Aspects 

Figure 2 Additional code added by HiCaM preprocessor tools. 

bind with servers which do not exist at the expected (old) location, resulting in runtime 
errors. The system presented here includes functionality which withdraws the server's 
interface prior to a checkpoint operation, to ensure that no clients may make a request of 
the server during a checkpoint and thereby render the server's state invalid. In addition, 
the additional functionality updates the server's binding information in the name-service 
as part of the restoration process, in the event that the server is migrated after being 
chcckpointed. 

4.3 Signal-handling and cleanup facilities 

In UNIX-style operating systems, processes often interact via a software-signal mecha­
nism, which resembles a hardware intcrrupt. However, DCE takes control of the signal 
facilities so they cannot be used by programmers as they would in a non-DCE envi­
ronment.. Although DCE provides other process-control mechanisms such as exceptions, 
signals still appear to be preferable in some situations, especially for low-level process 
control. For this reason , the checkpointing design includes signal-handling facilities ; de­
velopers may write DCE programs which use signal-handling facilities in the conventional 
way. These signal-handling facilities are provided in the form of a function library, which 
is linked to the general server-code at compile-time. 

Signal handling facilities are incorporated into the prototype implementation, together 
with functionality that allows programmers to provide clean-up routines for their appli­
cations. DCE does not remove CDS entries when a process exits, and this can lead to 
out-of-date information being accessed by clients as they search for a suitable server. For 
this reason, application cleanup routines are very useful in helping maintain the CDS and 
thereby avoiding client runtime errors. 



A high-level process check pointing and migration scheme 279 

4.4 Checkpoint and restore functionality 

The main goal of this work is to enable processes to be checkpointed and migrated. 
The checkpoint/restore functionality makes use of all the functional additions mentioned 
previously; thread monitoring is needed to ensure that the process state is stable before 
and during a checkpoint; interfaces are withdrawn while a process is check pointed in order 
to ensure that no further (state-altering) RPCs are accepted; those same interfaces may 
be re-advertised if the process is migrated; signals are used by MiMan and Remex to 
control the execution of applications. 

However, still more utility must be added to application objects if they are to be 
checkpointed and restored. Existing systems which operate in a similar environment such 
as DC++, Arjuna, Argus and ANSAware-based schemes require the object designer to 
specify the state which is to be saved during a checkpoint operation; checkpoint and 
restore operations must be defined as part of the object 's interface. The object-designer 
or programmer must decide which variables comprise the state that is to be saved during a 
checkpoint operation. Based in this decision , they must then code-up the actual checkpoint 
and restore procedures, or at least provide the checkpoint and restore operation definitions. 

These existing checkpointing schemes can be improved upon in a number of areas. 
Firstly, existing schemes require more work from the application designers and program­
mers since they must at least write the checkpoint and restore functions , both of which 
can be very complex where large applications are concerned. This extra work increases 
the risk that programming errors will be introduced, and such errors would be difficult to 
detect if they occurred at runtime, when a process attempted to checkpoint or restore its 
state. 

Secondly, the level of granularity of these programmer-defined operations is necessar­
ily coarse. A programmer cannot know which piece of code will be executing when a 
checkpoint request is received, so the state which can be checkpointed can include only 
global variables. Unless a checkpoint call is guaranteed to arrive while a certain function 
is executing, the variables which are defined locally to that function may not exist at 
checkpoint-time. Under such a scheme, either the application must be written with a lot 
of global state, or much information may be lost. 

Multithreaded servers add to the local-state problem since the state of a multithreaded 
process is more difficult to describe at a high level of abstraction, than is the state of a 
single-threaded process . If the high-level checkpoint operation works only at a coarse level 
of granularity, then variables which are defined locally to functions are of no concern, as 
outlined above. However, if checkpointing operates at a medium-to-fine level of granularity, 
the state of execution of each individual thread must be described, since each one could 
be executing a different piece of code when a checkpoint request is received. 

For these reasons, HiCaM includes preprocessor tools which incorporate a code-generator. 
The prototype generator, which is included as part of the overall current system implemen­
tation, produces all the code that is required to checkpoint and restore a general process , 
within the bounds that are outlined in section 9 of this paper. After the additional code 
has been generated , it is compiled and linked to the original application code, to produce 
a conformist executable file . The conformist process can be configured to checkpoint its 
state automatically at pre-defined intervals, as well as in response to a checkpoint request. 
The checkpoint and restore operations take place at a medium level of granularity, allow­
ing executing threads to be checkpointed, so reducing the amount of information that is 



280 Part Seven DeE - System Aspects 

lost. Process state can include locally defined variables as well as global data, since the 
thread monitoring functionality can detect the stage of execution for each thread when 
a checkpoint request arrives. It is possible to checkpoint multithreaded servers under the 
current implementation. 

4.5 Management Interface 

A general object is transformed into a conformist one so that it can take advantage of 
certain management functions such as checkpointing and migration. For this to occur, 
the conformist object also requires a management interface, in addition to any other 
interfaces it may already possess. The management interface is defined in DCE IDL, 
and is tran.sparentiy added to any other application-based interfaces by the system pre­
compiler tools. Operations which are included in the management interface are outlined 
below. 

• start Server Causes the server to begin execution. This operation would usually be 
called when an application is first brought into service. However, it may also be used 
to reinitialize a process. 

• stopServer Used to shutdown an application. This function will usually invoke other 
cleanup functions, such as the one to remove the server's information from the CDS. 

• chkptServer Used to capture the state of an application. In the current version of the 
system, this call trips the checkpoint timer, causing a checkpoint operation to occur 
and the timer to reset. 

• restrServer This operation is called after a checkpoint or migration has occurred. It 
is used to inform the process that it should restore some old state (including UUID) , 
rather than start again from scratch. 

The management interface of every conformist application supports the same opera­
tions, allowing all conformist applications to be managed in the same way (by the MiMan 
tool, for example) . A stackFrameUnion_t_p is a pointer to a data structure which stores 
the application-dependant state that is saved by a checkpoint operation. The exact con­
tents of a stackFrameUnion depend on what stage of execution the process is at when 
a checkpoint request arrives so the union-tag is used to store this chronological infor­
mation at checkpoint-time. By storing the state information in this way, it is possible 
to have just one checkpoint operation on every management interface, even though very 
different state-information will be saved, depending on what stage execution is at when 
the checkpoint call is received. 

5 CONFORMIST CLIENT PROCESSES 

General client applications require additional functionality if they are to take advantage 
of the checkpoint/migrate system at run-time. In order that the overall checkpointing 
problem could be simplified, this work has initially concentrated on servers, resulting in 
an initial, simplified design that includes stationary clients and migratory servers. Based 
on this strict client-server design, a general client only requires additional functionality 
which allows it to keep track of a migrating server. 



A high-level process checkpointing and migration scheme 281 

It is common for a client to lose contact with a server due to process migration, especially 
if the RPC is long-running and the client is forced to wait some time for a reply. If a client­
server binding is broken, the client will need to rebind to the same server in order to receive 
a meaningful reply. 

In the current implementation, additional facilities are added to a dient process by 
the HiCaM precompiler tools, allowing it to transparently detect a failure in the RPC 
connection after a predetermined timeout period. Depending on the type of communica­
tion error, the client is able to determine that its link to the server has probably been 
broken, and that it should try to rebind to that same server again. When the checkpoint 
is complete, the conformist server will readvertise its binding informatioll. whether it has 
migrated or not. 

The additional client-code allows the conformist client to transparently find the new 
location of the migrated server in the CDS, based on the server's UUID. The client then 
transparently rebinds to the server, and can thereby receive the correct RPC return-value 
when the server completes its RPC request. Current work includes the extending the 
code generator, so that there is less distinction between client and server processes, and 
applications which are both clients and servers can be checkpointed. 

6 DESCRIPTION OF THE REMEX SERVER 

As illustrated in figure 1, a Remex server resides on every site in the distributed network, 
providing remote process-execution facilities at its local site. Remex servers are transpar­
ent from the point of view of application developers and programmers and from the point 
of view of runtime application-objects themselves. The only entities which communicate 
directly with Remex servers are the MiMan migration/management applications. which 
are discussed in the next section. 

Remex servers provide a layering between the high-level checkpointing system and in­
dividual underlying operating systems. While all Remex servers advertise a standard 
interface, process instantiation requires calls to be made to the operating system of the 
machine on which the process is to begin execution. For this reason . Remex servers are 
written to include some platform-specific code. They do not migrate. but. instead provide 
part of the fixed infrastructure which exists to support application migra.tion at each site 
in the distributed network . 

7 DESCRIPTION OF THE MIGRATION MANAGER 

The MiMan migrator/management application provides the interface between human 
managers and the rest of the distributed computing network. Human managers can inter­
act with the components of the system via a graphical user interface, which allows them 
to control aspects of a conformist server's execution including its checkpoint frequency 
and destination (migration) site. Figure 3 shows a copy of the MiMan lIser interface. 

MiMan has five components: a target conformist-process selection component, a destination­
site selection component, a management component, a GlJI component. shown in figure 
3, and interfaces for interacting with target conformist processes and Remex servers. 

MiMan allows the user to select individual servers based on locat.ion and t.hen on UUID. 



282 Part Seven DeE - System Aspects 

If 
Fie Seled- seMf IManage-seMf 

BOld 

lrIJaRze 
Sa""" Hoslllame o.e<:l<polnl tc.edu.au I 

Mogfa!e 

ScnId'I WID Stop !6b3-ll C'-8de3~bbC'.~ 

~sUnl!JOn I woobt"d,lc.edu.au I 
Execu.ng on I rOObtr.dlt<:.tdu.au I 

ExeCUlng WID I I 
S.""" wid: bbllell15- 06b3- 11 c.~e3-09002bbcc ••• 

j 
Bound fo Irrver 

-
,. 

Figure 3 A screen-dump of the MiMan user interface. 

This means that users can concentrate on certain sites of interest and can also choose 
between a number of servers if more than one is present. When a server has been selected, 
MiMan can bind to that server, making it the target of future management requests, until 
such time as another server is selected. In the current implementation, MiMan performs 
the operations on the servers that were discussed in the management interface item of 
section 4.5. In addition, MiMan allows the user to select a destination site, and to migrate 
the server-state to that site. 

8 DESCRIPTION OF CHECKPOINT SERVERS 

The final run-time component of HiCaM is the checkpoint-server. The responsibility of 
the checkpoint server is to interface with a checkpointing application and receive the 
captured process state. The checkpoint server is then responsible for retaining the state 
in memory or, more usually, for saving the state onto some form of stable storage. There 
are two advantages to this design . The first advantage is that the actual state-saving 
functionality is removed from the application, thereby improving its performance and 
reducing the amount of required conformist functionality. The second advantage is that 
the design of the stable-storage mechanism can be developed separately to the checkpoint 
and migration functionality. 

The source-code for the checkpoint-server is generated by one of the precompiler tools, 



A high-level process checkpointing and migration scheme 283 

based on the checkpoint and restore code that is generated for an individual server. Each 
conformist server-application checkpoints its state to its matching checkpoint-server which 
has a compatible checkpoint and restore interface. From the point of view of general appli­
cations, checkpoint servers are transparent, forming part of theunderlying checkpointing 
system. 

9 FUTURE WORK 

Current research includes a study of how high-level checkpointing schemes affect the size 
of a general executable file and the efficiency of the executing process. Th~ results of these 
experiments will be published at a later date. 

In the short term, the functionality which allows clients to rebind with an individual 
server thread will be refined and extended. The aim is to allow clients to continue working 
within the same light-weight context, even if their multithreaded server should migrate 
during a task. HiCaM is also being extended to remove the strict boundaries between 
client and server applications, allowing clients to have the same functionality with regard 
to checkpointing and migration, as servers currently do. Further plans include research 
into non-object dependencies which often occur as part of process I/O. 

10 SUMMARY 

This paper has presented the design of a high-level checkpointing and migration system, 
HiCaM, which includes compile-time tools, management functionality and transparent 
runtime process support. The system provides a basis for the implementation of resilient 
processes and for process migration in heterogeneous distributed systems. The underlying 
checkpointing mechanism captures process state at a high-level of abstraction, allowing 
it to be meaningfully transferred to any site in a heterogeneous distributed system. In 
addition, the checkpointing mechanism is able to capture the process-state at a finer 
level of granularity than is possible with existing similar systems, can handle dynamically 
allocated memory, and is also able to checkpoint and restore multithreaded applications. 

Client processes are able to continue working with migratory servers, transparently 
detecting the server's move and then tracking it to its destination site, where re-binding 
occurs . 

Programmers are not required to learn any special languages or constructs to use this 
system, nor are they required to write any additional code; preprocessing tools are pro­
vided which transparently transform a user application into a conformist application. 
However, the server application must exist in a distributed environment which includes a 
naming service, universal types and an RPC mechanism. 

HiCaM also provides underlying services which form a checkpointinglmigration in­
frastructure. These services include Remex servers, checkpoint servers and MiMan client­
applications. MiMan provides a graphical interface which allows human managers to inter­
act with the distributed system, directing the execution of individual server-applications. 

The system design presented in this paper has been implemented on a distributed 
network of DEC Alpha and IBM RS6000 machines, running OSF II and AIX respectively. 



284 Part Seven DeE - System Aspects 

All machines in the distributed network also run OSF DCE. The number and type of 
platforms is expected to increase in the future. 

ACKNOWLEDGEMENTS 

The work reported in this paper has been partly funded by scholarships from the Depart­
ment of Computer Science at the University of Queensland, and the CRC for Distributed 
Systems Research. The CRC for Distributed Systems Research is funded in part by the 
Cooperative Research Centres Program through the department of the Prime Minister 
and Cabinet of the Commonwealth Government of Australia. 

The author would like to thank his supervisors, Dr. Kerry Raymond (DSTCICiTR) and 
Prof. Andrew Lister (Dept . Computer Science, UQ), for their assistance and suggestions 
during the course of this research. 

REFERENCES 

Mishra, S. and Schlichting, R. (1992) . Abstractions for Constructing Dependable Dis­
tributed Systems. Technical Report. Department of Computer Science, University of 
Arizona 

Nuttall, M. (1994) A brief survey of systems providing process or object migration facili­
ties. ACM Operating Systems Review, 64-80. 

van Renesse, R., van Staveren, H. and Tanenbaum, A. (1988) Performance of the Worlds 
Fastest Distributed Operating System. Operating Systems Review, 22, 25-34. 

Bal, H. (1992) Fault-tolerant parallel programming in Argus. Concurrency: Practice and 
Experience, 4(1), 37-55. 

Attardi, G. et. al. (1988) Techniques For Dynamic Software Migration. ESPRIT 88: Proc. 
5th Annual ESPRIT Conference, 475-91. 

Attardi , G. et. al. (1987) Specifications for High Level Abstract Common Machine Version 
3.1. Chameleon Report TR-87-40, 1-62. 

Attardi, G. et. al. (1987) Incremental Loading in HLACM. Chameleon Note TR-87-38, 
1-9. 

Shrivastava, G.D.S and Parrington, G. (1991) An Overview of the Arjuna Distributed 
Programming System. IEEE Software, 66-73 . 

Schill, A and Mock, M. (1993) DC++ Distributed Object-Oriented System Support on 
Top of OSF DCE. Distributed Systems Engineering, 112-25. 

ANSAware. (1993) ANSA ware 4.1 Application Programming in ANSA ware. Programming 
Manual. 

Redhead, T. (1995) Implementation of high-level check pointing in heterogeneous dis-
tributed systems. to be submitted. 

Shirley, J . (1992) Guide to Writing DCE Applications. O'Reilly and Associates. 
Rosenberry, W. et. al. (1992) Understanding DCE. O'Reilly and Associates. 
Theimer, M. and Hayes, B. (1991) Heterogeneous Process Migration by Recompilation. 

Proceedings 11th Int. Con/. on Distributed Computing Systems. 11-25. 


