
2 

Distributed Object Oriented 
Approaches 

Chris Horn and Annrai O'Toole 
IONA Technologies Ltd., 
8-34 Percy Place 
IRL-Dublin 2 
email: info@iona.ie tel: +353. 1.6686522 

Abstract 
This short document gives an overview of two leading object 
infrastructure technologies, the Microsoft COM/OLE and the 
OMG's OMA and CORBA. The short paper describes the history, 
origins and context for the development of both technologies. This 
is accompanied by a brief technical overview of the major 
architectural issues deployed in realising each technology. 

Keywords 
COM, CORBA, OLE, Distributed Objects 

1. COM AND OLE 

When the Microsoft PowerPoint team, based in Mountain View, Ca. began building 
their own graphing software a dictum came down from Bill Gates forbidding such an 
exercise. He ordained that the PowerPoint team should, indeed must, use the Excel 
graphing software. It was wasteful to reinvent that particular software component. 
Thus was OLE1.0 conceived. As Philippe Kahn of Borland described it, OLE 1.0 
enabled the "sharing of real-estate on the desktop". PowerPoint could hand over the 
rendering of data on a piece of the screen that it owned to a third party. In more 
sophisticated terms, OLE1.0 enabled the linking and embedding of third party 
rendering software within a foreign application. It was a large step forward towards 
software components. 

At the same time as OLEI.O was being developed, Microsoft were also grappling with 
the problem of how to make Dynamic Link Libraries (DLLs) more usable. In real 
terms a DLL is nothing more that a list of entry vectors. There are huge problems 
associated with the versioning of DLLs. If a new DLL were installed on a machine (as 
part of another application installation for instance) it could easily overwrite existing 

A. Schill et al. (eds.), Distributed Platforms
© Springer Science+Business Media Dordrecht 1996



8 Part One Invited Talks 

DLLs. Then when the old applications went to suck in the DLL they were in for a 
small surprise. Then entry vectors could well be out of kilter, resulting in that 
favourite of Windows error messages: GPF! 

Work was begun on making OLE1.0 for generic and also trying to find a way to solve 
the DLL evolution problem. The end result was OLE2.0. OLE2.0 has undergone 
some serious work since the first release in 1993. We are now at OLE 2.02, and the 
minor version number does no justice to the rather large changes that have been added 
to OLE. The OLE2.02 architecture is described in Figure I below: 

rr::::::::=::::=::::=::::==::::=::::=::::=::::===:::::-:::-::::::.------.-----.-----. 
Compound Ooeumenls 

Figure 1: OLE 2.02 Architecture 

The cast of characters from the ground up are: 

1.1 COM 

Monikers 
(Names) 

The Component Object Model is the basis for all COM and OLE objects. All COM 
objects inherit from the Base Type IUnknown. This supports three basic operations: 
AddRef, Release and Querylnterface. Before discussing these it must be 
noted that COM is a binary object model, i.e. the interface to a COM object is defined 
as a list of entry points (remember DLLs!). Thus while inheriting from IUnknown 
the programmer defines the object by listing all the entry points, orvtable for this 
object. The reason for this approach is simple. It enables objects to be written in any 
language using any compliant compiler (iust like DLLs). All the COM expects from 
this object is that the entry points are clearly and correctly laid out. In turn this 
approach supports, as the Microsoft marketing organisation like to call it, "shrink 
wrapped binary objects". The end user is free to buy any software component, such as 



Distributed object oriented approaches 

a graphing tools, from any vendor. It can be delivered in binary form on a floppy and 
should plug straight into my application. This is essential for desktop software. 

9 

Of course Microsoft do not expect developers to go around defining interfaces to their 
objects in terms of the layout of the entry points in memory: they provide some tools 
to help in the process. Tools such as the ODL and MIDL compilers (which will be 
discussed later) are provided by Microsoft as conveniences to developers . 

Another fundamental issue about COM is that it frowns on inheritancc. The official 
Microsoft religion disclaims inheritance as an evil blasphemy. Aggregation and 
delegation are the preferred methods! (It is not entirely clear whether Microsoft really 
dislike inheritance or whether the issue of things like multiple inheritance would have 
made the implementation of the binary model more cumbersome than it is worth I) 

So, in the absence of inheritance how does client code traverse the hierarchy, given 
that the only guaranteed thing we know about each object is that it supports 
IUnknown? Easy, we use QueryInterface. Essentially we come along to each 
object and we ask it: Are you one of these? The object is then free to determine 
whether it actually is (or can perhaps locate) an object of the type the client is looking 
for. If successful, QueryInterface returns the pointer to an implementation 
which fulfills the requirements desired by the client. This is how COM solves the 
evolution of DLLs. In an ideal operating system world there would he no DLLs , just 
COM objects. An application would ask the COM object if it supported a particular 
interface. If it were a newer version of the object than the application was used to 
then it would be easy for that COM object to return the application a pointer to a 
implementation which would conform to the older interface. while also heing able to 

respond positively to applications that were prepared to use the newer interface. 

In many cases it may be more useful to think of Query Interface as 
QueryImplementation, because what the client is really asking is: "do you 
support this implementation?" 

At an abstract level, it is important to note that the COM notion of an object is very 
much a transitory affair. Although each COM object has a unique identifier (a 128 bit 
Global Unique Identifier - GUID), these are really used to identify and distinguish 
between different interface types. The process in creating and using a COM object is 
something like: Ask COM to create a COM object denoted by a GUID that the client 
supplies; ask that object to load state from a location supplied by tbe client; perform 
some operations on that object; and finally ask to object to unload it's state hack into 
the location supplied by the client. There is no equivalence of a single object 
reference which can uniquely define the combination of an object ' s interface, code 
and statc . 

Once COM is understood is becomes easy to understand the rest of OLE. In simple 
terms, OLE is merely a collection of predefined and per-implemented COM objects , 
or components, which provide various levels of service to applications. 



10 Part One Invited Talks 

1.2 OLE 

OLE version 2.0 was the first deployment of a subset of the COM specification that 
included support for local objects (both in-process and local) and all the infrastructure 
technologies but did not support remote or networked objects. OLE 2 includes mostly 
user-interface oriented features based on usability, application integration, and 
automation of tasks. 

1.3 Persistent Storage 

This is a set of interfaces and an implementation of those interfaces that create 
structured storage, otherwise known as a "file system within a file." Information in a 
file is structured in a hierarchical fashion which enables sharing storage between 
processes, incremental access to information, transactioning support, and the ability 
for any code in the system to browse the elements of information in the file. In 
addition, COM defines standard "persistent storage" interfaces that objects implement 
to support the ability to save their persistent state to permanent, or persistent, storage 
devices such that the state of the object can be restored at a later time. 

1.4 Monikers 

Monikers allow a specific instantiation of an object to be given a particular name, so 
that a client can reconnect to that exact same object instance with the same state (not 
just another object of the same class) at a later time. This also includes the ability to 
assign a name to some sort of operation, such as a query, that could be repeatedly 
executed using only that name to refer to the operation. This level of indirection 
allows changes to happen behind the name without requiring any changes to the client 
that stores that particular name. This technology is centered around a type of object 
called a moniker and COM defines a set of interfaces that moniker objects implement. 
COM also defines a standard composite moniker that is used to create complex names 
that are built of simpler monikers. Monikers also implement one of the persistent 
storage interfaces meaning that they know how to save their name or other 
information to somewhere permanent. Monikers are "intelligent" because they know 
how to take the name information and somehow relocate the specific object or 
perform an operation to which that name refers. 

1.5 Uniform Data Transfer 

A set of interfaces through which data is exchanged between a client and an object 
and through which a client can ask an object to send notification (call event functions 
in the client) in case of a data change. The interfaces include support structures used to 
describe data formats as well as the storage mediums on which the data is exchanged. 



Distributed object oriented approaches 11 

The combination of the foundational and the infrastructural COM components reveals 
a system that describes how to create and communicate with objects, how to store 
them, how to label to them, and how to exchange data with them. These four aspects 
of COM form the core of information management. Furthermore, the infrastructure 
components not only build on the foundation, but monikers and uniform data transfer 
also build on storage as shown in Figure 2 .. The result is a system that is not only 
very rich, but also deep, which means that work done in an application to implement 
lower level features is leveraged to build higher level features . 

The Component Object Model and Component Objects 

Figure 2: COM is built in progressively higher level technologies that 
depend upon lower level technologies. 

1.6 Drag and Drop 

The ability to exchange data by picking up a selection with the mouse and visibly 
dropping it onto another window. 

1.7 Compound Documents 

The ability to embed or link information in a central document encourages a more 
document-centric user interface. This also includes In-Place Activation (also called 
"Visual Editing") as a user interface improvement for embedding where the end user 
can work on information from different applications in the context of the compound 
document, without having to switch to other windows. 

Microsoft in cooperation with other vendors is continuing to enhance OLE with new 
interfaces to extend compound documents and to define architectures for creating 
components such as OLE Controls, OLE DB, OLE for Design & Modeling, OLE for 
Healthcare, and in the future more system-level OLE architectures that build not only 
on the COM infrastructure but also on the rest of OLE as well. Again, the key is 
leveraged work: by implementing lower level features in an application you create a 
strong base of reusable code for higher level features . 



12 Part One Invited Talks 

1.8 Automation 

The ability to create "programmable" applications that can be driven externally from a 
script running in another application to automate common end user tasks. Automation 
enables cross-application macro programming. 

Automation was built by the Visual Basic team at Microsoft and it used to enable VB 
script to other applications. i.e. through Automation a VB program can launch and 
control an application such as Excel. 

Automation is somewhat similar to the dynamic invocation interface in CORBA. A 
scripting language cannot be pre-compiled with the stubs needed to access a object. 
Through Automation the scripting language can discover the information about an 
object interface at runtime. This is achieved through the use of TypeLibraries. Each 
Automation server must provide a description of its interface in a TypeLibrary 
(TypeLib). The scripting tool can then read the TypeLib information and ensure that 
the client is only trying to perform valid operations on the Automation server. For this 
reason, Automation is described as "late binding". 

Microsoft provide a tool to help in writing Automation Servers . Using a language 
called the "Object Description Language" (ODL), a developer can describe the 
interface to an Automation Server. This ODL is then used to automatically generate 
the TypeLib information needed so that a client can script to that Automation Server. 

1.9 OLE Controls 

The final piece of the OLE architecture is OLE Controls. This architecture feature 
circles the OLE square. Before OLE Controls there were two distinct pieces to OLE: 
Compound Documents and Automation. A programmer could write a GU! software 
component using the Compound Document features or they could write a non-visible, 
"programmatic" Automation server using Automation. Now with OLE Controls they 
can write GUI Automation Servers. OLE Controls allow the programmer to associate 
logic functions with entities that can be displayed on the screen and embedded in 
Containers. 

At time of writing, the main target Container for OLE Controls is VisauIBASIC 4.0. 
VB3.0 allowed the programmer to extend the VB environment through the use of 
VisualBASIC Extensions (VBXs). in VB4, these have been replaced by OLE 
Controls or OCXs. 

2. 0MG 

The Object Management Group was established in 1989 with the explicit aim of 
building a consensus based approach to the problems of application integration. From 



Distributed object oriented approaches 13 

an OMG perspective, the largest problems needing to be tackled in the software 
industry at that point were those relating to application integration. There existed no 
standards based solution for application integration. The OMG took a longterm view 
on what application integration actually meant. For them it was more than the sharing 
of real estate on the desktop, but rather it must encompass networking, programming 
languages, heterogeneous platforms and differing implementation choices. In other 
words, true application integration should enable an application to usc and share 
another application component regardless of the language in which that component is 
written, the type of operating system it is running on or indeed its location in the 
network regardless of the networking protocol employed. 

2.10MA 

With this ambitious goal in mind the OMG set about creating an architecture to meet 
these criteria. It was an architecture to be based on the concepts extolled by the object 
oriented paradigm. An object approach was adopted, not because object are "good" 
but rather that object technology seemed to offer the best technical solution to the 
problems of application integration. 

The resulting architecture created by the OMG is called the "Object Management 
Architecture" (OMA), outlined below in Figure 3. 

2.2 CORBA 

I•· ... ·A·--~ --~--· i-i ·~ - ~ .. t·i·~· .. ~ .. "l [ __ o~y~: Common I 
Fa~F~~·~" • 

Object Req uest Broker 

Object Services 

Figure 3: The Object Management Architecture 

At the heart of the OMA is a central software bus, or Object Request Broker. The aim 
of this component is to regularise the communication between the various connected 
"object" or software components. The concrete instantiation of this entity is defined 



14 Part One Invited Talks 

in the "Common Object Request Broker: Architecture and Specification" document 
published by the OMG. It is more normally referred to as CORBA. 

The central component of CORBA is the Interface Definition Language (OMG IDL). 
OMG IDL is to object systems, what DDL is to databases. Programmers use OMG 
IDL to describe the interface to their objects. OMG IDL is the fundamental basis for 
the definition of the contract exposed by the object to the rest of the world. 

A sample OMG IDL description might look like: 

interface Person ( 

} ; 

attribute long Age; 
attribute float Height; 

oneway void Marry(in Person Spouse); 
boolean getJob(out float Salary); 

Programmers who wish to develop CORBA objects must first begin by designing the 
OMG IDL for the objects they wish to create. Having completed the OMG IDL 
specification an implementor is then free to implement that language in any 
programming language (there are currently OMG mappings for C, C++, Ada and 
Smalltalk). 

The actual CORBA architecture is depicted below in Figure 4: 

Client 

Dynamic 
Invocation 
Interface 

Object Request Broker 

Figure 4: CORBA Architecture 

Target 
Object 

Object 

Adapter 

When a client wishes to avail of the service provided by an OMG IDL object it can do 
so in two ways: it can use a static invocation or dynamic invocation mechanism. The 
static approach assumes that the client has pre-compiled knowledge of the OMG IDL 
service it is about to use. (In concrete terms this means that the client application has 
been built with a generated stub or proxy for that remote object). Using the dynamic 
approach, the client must make a runtime discovery of the OMG IDL interface of the 
object. To do this it contacts the Interface Repository which is used to store runtime 
information about every OMG IDL interface. Having obtained at runtime the details 
about the interface supported by the target object, the client can use the Dil to build a 
Request and sent that Request to the target object. 



Distributed object oriented approaches 15 

In CORBA, objects are created in one location and remain at that location for a given 
lifetime. The entities which are passed over the network are "object references". An 
object reference is a unique identifier used to locate and describe a given instance of a 
given object type. 

2.3 Object Services 

The CORBA specification defines a basic software bus. In addition , the OMA 
provides for a set of Object Services. Since 1991, the OMG have been populating the 
Object Service space with a range of specifications. The full set of Object Services 
are as follows (services marked in bold have had their formally specifications adopted 
by theOMG): 

• Naming 
A directory service which enables object references to be named by high level 
"human readable" names. The service is organised a collection of contexts 
(directories). These can be related in a hierarchical or federated manner. A 
universal "root" is not assumed. 

• Persistence 
Enables objects to exist beyond the lifetime of their creator. 

• Life Cycle 
Provides a simple service for creating, destroying, copying and moving objects. Is 
in large part a style guide on what sort of operations a "well behaved" object 
interface should provide. 

• Properties 

• Concurrency 
Provides interfaces to acquire and release locks that let multiple clients coordinate 
their access to shared resources. 

• Collections 

• Security 

• Trader 
Provides a "matchmaking" service for objects. Enables one object to establish a 
link to another object based on a set of arbitrary properties, i.e. the printer object 
which "is closest to me" or the "hotel object which has free rooms", etc. 

• Externalisation 
Enables an object to stream in and stream out its internal state. 



16 Part One Invited Talks 

• Events 
Provides a framework whereby objects can exchange events among themselves. 
Enables the creation of Event channels to which events can be "pushed" or 
"pulled". 

• Transactions 
The Transaction service enables programmers to invoke objects within the context 
of a transaction which provides the standard ACID properties. Two usage 
scenarios are envisaged within the Transaction service. A transaction context can 
be passed implicitly: When an operation on an object is invoked within a 
transaction, the OTS will ensure that that object is correctly involved in the 
transaction without any programmer intervention. Alternatively, with explicit 
transaction support, the programmer can choose to explicitly control which objects 
are involved in the transaction. 

• Query 
Enables an object to select an object based on its attributed: e.g .. all Shape objects 
whose colour attribute is red. 

• Relationships 
Provides the basic service which lets objects to be "related" to one another in a 
fully dynamic way: e.g. a bank is related to accounts because it maintains them for 
customers. 

• Time 

• Change Management 

• License 
Enables an object to license itself to control authorised and paid up usage. 

All Object Services (or CORBAServices) are specified in IDL. In addition, the 
specification provide a number of conformance points which ensure interoperability 
between different implementations of those services. 

2.4 Common Facilities 

The Common Facilities, or CORBAFacilities provide a layer of application specific 
services. The first round of CORBAFacilities being adopted by the OMG are those 
for Compound Documents. The two main technologies under consideration are 
OpenDoc (an alternative to OLE) and Fresco (a C++ class library for structured 
graphics). 



Distributed object oriented approaches 17 

2.5 Interoperability 

With the CORBA 2.0 specification comes a description of a mandatory protocol 
which all ORBs must support in order to be a CORBA2.0 compliant implementation. 
The basis of this protocol is as follows: 

• The General Inter-ORB Protocol (GlOP) specifies a set of message formats and 
common data representation for communications between ORBs. The GlOP is 
specifically designed for a CORBA-to-CORBA communication. It is based on the 
principle of KISS (Keep it Simple, Scaleable). 

• The Internet Inter-ORB Protocol (lIOP) is a concrete instantiation of the GlOP 
over a TCP/IP communication protocol. This is the mandatory protocol which all 
CORBA2 implementations must support. 

• The Environment Specific Inter-ORB Protocols (ESIOPs) are intended for 
alternative implementation of the GlOP over different networking protocols. The 
first ESIOP to be adopted is support for GlOP over the DCE RPC. Other ESIOPs, 
such as support for IPXlSPX and NetBIOS are envisaged. 

The IIOP brings binary interoperability to CORBA. Through the combination of IDL 
and the lIOP, CORBA offers a comprehensive solution to interoperability and "shrink 
wrapped" network objects. 

3. Conclusions 

This shon paper has given an overview of both COM and CORBA technologies. It is 
clear that while both started out with the familiar theme of application integration the 
two have taken different tracks in achieving that goal. COM (and OLE) with a 
document centric approach has developed leading desktop technology and is now 
trying to extend that base into the network. OMG with the OMA and CORBA have 
adopted a very network centric approach and are now extending towards the desktop. 
It is clear the two will meet in the middle. 

From a technical perspective this paper has focused on highlighting the difference in 
the object models used by each technology. COM adopts a binary object model 
whereas CORBA has focused on a language based approach. Each have their merits 
and domain of applicability. COM and OLE are likely to remain the desktop standard 
whereas CORBA is likely to win the hearts and minds of the world networks. 


